
MMP: A Dynamic Routing Protocol Design to Proactively
Defend against Wireless Network Inference Attacks

Jinmiao Chen

University of Oklahoma

Norman, OK, USA

jinmiao.chen-1@ou.edu

Zhengping Jay Luo

Rider University

Lawrenceville, NJ, USA

zluo@rider.edu

Yuchen Liu

North Carolina State University

Raleigh, NC, USA

yuchen.liu@ncsu.edu

Shangqing Zhao

University of Oklahoma

Tulsa, OK, USA

shangqing@ou.edu

ABSTRACT
Network inference refers to the process of extracting sensitive in-

formation from a network without directly accessing it. This poses

a significant threat to network security since it allows attackers to

gain insight into sensitive information such as flow information

through inference. Possessing flow information about a wireless

network can empower attackers to launch more sophisticated and

targeted attacks. Network inference relies on consistent traffic pat-

terns or behavior to establish the relationship between themeasured

link metrics and flow information. Therefore, dynamic routing can

help enhance resilience against network inference by proactive in-

troducing variability into network traffic patterns, which can incur

a high probability of mismatch between the observed patterns and

the actual ones. In this paper, we observe that the inference error

is positively related to the mismatch. Therefore, we propose a dy-

namic routing protocol, called Max-Mismatch-Probability (MMP),

which seeks to maximize mismatch probability and increase the

inference error. In this paper, we provide the theoretical analysis of

our proposed protocol and show that the inference error of MMP

is Θ(
√
𝑁 ), which is verified in our experimental results.
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1 INTRODUCTION
Network flow information is the foundational knowledge for wire-

less networks. It encompasses sensitive information about the net-

work, such as the data rates at which data flows between source-

destination pairs along end-to-end paths. If malicious adversaries

possess such knowledge, they can understand who is communi-

cating with whom or the data rate between two communicating

parties, and then launch effective attacks against the network [? ?
]. For example, given the flow pattern, attackers can create profiles

of individual devices or users based on their behavior. This can

assist in targeting specific devices for attacks or tailoring phishing

attempts to match the behavior of particular users. The direct obser-

vation of end-to-end flow information in some wireless networks,

such as wireless sensor networks (WSNs) [? ? ] and mobile ad-hoc

networks (MANETs) [? ? ], often remains unattainable or could be

prohibited due to various reasons such as privacy concerns, legal

restrictions, or technical limitations[? ? ? ? ? ]. For example, in

MANETs, nodes communicate directly with each other, forming a

self-organizing network without a fixed centralized infrastructure

to control the routing flows, making monitoring them challenging.

Network inference, also known as network tomography [? ? ?
? ], is designed as a process of indirectly inferring sensitive flow

information by observing link metrics that are easy to capture in a

wireless network[? ? ? ? ? ? ? ? ? ? ? ? ]. Network inference involves
using relationships between end-to-end flow rates and link rates,

often determined by the routing protocols and network topology,

to make inferences. However, when malicious attackers leverage

network inference to analyze and infer flow information from easy-

captured and seemingly innocuous data, they can uncover valuable

information that can aid in their attacks [? ? ? ? ? ? ? ]. Network
inference eliminates the requirement for attackers to gain access

to the network, which results in significant security and privacy

concerns.

For successful network inference, attackers should rely on con-

sistent patterns and behavior. Therefore, dynamic routing can be

used to mitigate wireless inference attacks. Dynamic routing pro-

tocols continually adjust the paths that data packets take within a

wireless network [? ? ? ? ? ]. This means that even if an attacker is

monitoring network traffic over time, the flow rates and commu-

nication paths they observe will be constantly changing, creating

mismatch between the observed traffic pattern and the actual pat-

tern used in the network. This mismatch disrupts the attacker’s
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ability to derive an accurate inference from the measured link infor-

mation. In literature, many dynamic routing protocols have been

proposed. In our early work [? ], the performance of many existing

dynamic routing protocols was investigated and compared without

proposing new protocols. However, we notice that most of exist-

ing protocols prioritize security objectives other than defending

network inferences, thereby hindering resilience performance. For

example, in Tor [? ], anonymous communication is achieved by ran-

domly choosing three relays; however, it remains unclear whether

the randomness of Tor is sufficient to prevent network inference

attack. In this paper, we observe that the inference error is posi-

tively related to the probability of the mismatch between the flow

template, which is characterized as the random matrix in network

inference, observed by the attackers, and the real template used

in the network. Motivated by this, we propose a dynamic routing

protocol, called Max-Mismatch-Probability (MMP), which seeks to

maximize mismatch probability and increase the inference error.

We conduct a comprehensive theoretical analysis to demonstrate

that our proposed method MMP can achieve the inference error on

the same order of the number of nodes in the network.

Following is a summary of the contribution of this paper.

• We design a routing protocol that specifically addresses the

resilience of the network inference attack on wireless net-

works, and then we propose a protocol calledMax-Mismatch-

Probability to prevent this attack.

• We present a comprehensive theoretical analysis of the per-

formance of MMP against inference attacks, i.e., inference

errors, and the cost of the protocol, which is the delay. Using

MMP, we have shown that flow information can be concealed

by inference errors.

• Simulations are conducted to demonstrate the performance

and cost of MMP, and the results verify the theoretical anal-

ysis.

The remainder of this paper is organized as follows. In Section 2,

we briefly introduce the network inference and state our problem.

In Section 3, we introduce our mathematical model of the routing

protocol and propose our design. In Section 4 we provide theoretical

analysis and deliver and prove our results. In Section 5, we use

simulation experience to verify our results. Finally, we present

related work in Section 6 and conclude in Section 7.

2 ATTACK MODELING AND DESIGN
MOTIVATION

In this section, we first present the network model and the back-

ground of network inference. Then, we state our research problems.

All notations are defined in Table ??. Without extra specification,

in this paper, the upper-case bold indicates a matrix, the lower-case

bold indicates a vector, and the calligraphy font indicates a set.

2.1 Wireless Network Model
The topology of a wireless network is modeled as a random geo-

metric graph (RGG), which has been widely used for modeling

distributed wireless networks [? ]. Denoted by G = (V,L) the
RGG, where V is the node set and L is the undirected link set.

Let 𝑁 = |V| and 𝐿 = |L| be the total number of nodes and links

respectively. In this network, each node represents an RF end, and

Table 1: Notations.

X𝑇
The transpose of matrix X.

X−1
The inverse of matrix X.

∥x∥𝑝
The L-𝑝 norm of vector

x = [𝑥1, 𝑥2, · · · , 𝑥𝑛]𝑇 .
𝑓 (𝑛) = 𝑂 (𝑔(𝑛)) or
𝑔(𝑛) = Ω(𝑓 (𝑛))

∃𝑛0, there exists a constant 𝑐 such that

𝑓 (𝑛) ≤ 𝑐𝑔(𝑛) for ∀𝑛 > 𝑛0.

𝑓 (𝑛) = Θ(𝑔(𝑛)) 𝑓 (𝑛) = 𝑂 (𝑔(𝑛)) and 𝑓 (𝑛) = Ω(𝑔(𝑛)).
|F | The cardinality of set F .

tr{X} the trace of X.
⌊𝑥⌋ the floor of a scalar 𝑥 .

𝑁 nodes are randomly placed in a region Ω = [0,
√
𝑁 /_]2, where

_ denotes the node density, and we assume _ is sufficiently large

such that the entire network is connected asymptotically almost

surely [? ]. Denoted by 𝑟 the transmission range of each node, and

two nodes are connected if they are in each other’s transmission

range. Note that adopting whether the directed or undirected case

has no impact on our formulation of our problem and the directed

case is a straightforward extension of the undirected case.

In the network, packets are exchanged between nodes in a node

pair, resulting in multiple end-to-end data flows. We denote by F
the end-to-end flow set consisting of the potential flow for each

node pair. Therefore, there are |F | = 𝑁 (𝑁 − 1)/2 flows in this

network, which is also the number of node pairs. Denoted by 𝑥𝑖
the data rate of flow 𝑓𝑖 ∈ F , then we have a column vector x =

[𝑥𝑖 ]𝑖∈[1, |F | ] , the flow rate vector for the network. We consider

𝑥𝑖 = 0 if flow 𝑓𝑖 does not exist (i.e., there is no communication).

By analyzing the flow rate vector x, we can determine who is

communicating with whom in the network and how much data

rate they have. The disclosure of such information is undesirable

or even prohibited in many practical scenarios such as military and

civil applications [? ? ? ].

2.2 Wireless Network Inference Attacks
The flow rate vector x contains important information for the net-

work. Malicious adversaries can launch powerful, effective attacks

against a network when they possess such information. As a result,

we model the attacker’s objective as obtaining the flow rate vector

x. It should be noted that although each link is connected wire-

lessly with a broadcast nature, the flow rate vector x is usually not

directly measurable by the attacker since the flow information is

indicated at the network or higher layers[? ], whose data is typically
encrypted at the physical or link layers. As a result, the attacker

has to indirectly infer this information from physical and link-layer

activities, which is referred to as network inference.

Mathematically, let a column vector y = [𝑦1, 𝑦2, · · · , 𝑦𝐿]𝑇 be a

measured link rate vector where 𝑦𝑖 denotes the rate of the link 𝑙𝑖 .

In network inference, the relationship between the link rate vector

y and the flow rate vector x can be modeled as the following linear

system

y = Rx, (1)
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Figure 1: Example of a network consisting of 6 nodes (nodes
𝐴 · · · 𝐹 ), 6 links (links 𝑙1 · · · 𝑙6 ) and 8 flows (flows 𝑓1 · · · 𝑓8), and
a routing matrix R built based on the shortest-path routing
protocol.

where R is the routing matrix with size 𝐿 × |F |, whose entry

𝑟𝑖 𝑗 =

{
1, if link 𝑙𝑖 is present on a path of flow 𝑓𝑗 ;

0, otherwise.

(2)

Information in R illustrates how flows are constructed by links

based on routing protocols. Denoted by𝑇 the routing protocol used

in a network. Figure ?? demonstrates a toy example showing how

the routing matrix is built based on the shortest-path routing proto-

col. This network consists of 6 nodes, 6 links, and 8 flows. Therefore

the link set L = {𝑙1, · · · , 𝑙6} and flow set F = {𝑓1, · · · , 𝑓8}.
Assume the shortest-path protocol is implemented in this net-

work, and we define the number of hops as the distance, then each

flow will select the shortest path for routing packets. For example,

the flow 𝑓2 will go through links 𝑙1 and 𝑙2 which have the shortest

distance 2, and the distance of all other paths are longer than this

path, e.g., the distance of path 𝐴 → 𝐵 → 𝐸 → 𝐹 → 𝐶 is 4, thus we

avoid using it. Then the second column of the routing matrix R is

[1 1 0 0 0 0]𝑇 indicating that flow 𝑓2 is concatenated by 𝑙1 and 𝑙2.

In a wireless network, it is easy to obtain the link rate vector y
through eavesdropping. The routing matrix R is determined by the

network topology and routing protocol. In this paper, we consider

a powerful attacker who has an entire knowledge of the network

topology and routing protocol. Denoted by x̂𝑡 the inferred value of

flow rate vector x𝑡 , and defines the inference error 𝜖 as

𝜖 = ∥x̂ − x∥2 . (3)

Then we can model the objective of the attacker is to obtain an

inferred flow rate vector x̂ which has the minimized inference

error 𝜖 , given the knowledge of the link rate vector 𝑦, the network

topology G, the routing protocol 𝑇 , i.e.,

Objective : x̂ = argmin 𝜖

Given : y𝑡 , G, 𝑇 .
(4)

In a wireless network, the number of flows |F | is usually larger

than the number of links 𝐿, resulting in the linear system (??)
under-determined, thus the attacker can leverage any optimiza-

tion algorithms to minimize the inference error 𝜖 . In Figure ??, the
shortest-path protocol is used, then we have the routing path of

each traffic flowwill be fixed onto the one with the shortest distance.

If flow rate of 𝑓4 is 10bps and other flows have no data exchange,

i.e., y = [0 0 0 10 0 0 0 0 ], and given the routing matrix R, we can
know the rate of links 𝑙2 and 𝑙4 are 10bps, i.e., x = [0 10 0 10 0 0 ].
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Figure 2: Illustrative example of the difference of routing
matrix R in static routing (e.g., the shortest-path) and a ran-
dom static routing protocol.

In this work, we assume the optimization algorithm used by the

attacker is agnostic to us which is the worst case since if we know

it, we may provide a easier method-specific defense strategy.

2.3 Dynamic Routing
Taking a close look at (??), the inference error will be induced by

two factors: the routing matrix R, and the eavesdropping link rate

vector y. Since the wireless medium is open, the attacker is always

able to acquire an accurate link rate vector y through advanced

spectrum sniffing techniques [? ? ], thus our focus in this work is

on investigating how the routing matrix R can affect the attacker

for inferring the flow rate.

Even though the routing matrix R is not directly available to

the attacker in some network scenarios, the attacker is able to con-

struct it based on the routing protocol 𝑇 and network topology

G. Denoted by R̂ the constructed routing matrix by the attacker.

Assuming the optimization algorithm is accurate enough, then the

inference error 𝜖 will be solely dominated by the mismatch between

the constructed routing matrix R̂ and the real matrix R. In the case

of static routing, such as the shortest-path, the routing matrix R
is uniquely constructed based on the routing protocol 𝑇 and will

be fixed for all communication rounds. Even in the scenario where

routing protocol is not available, the attacker is still able to obtain it

through sensing. Therefore The attacker can build the exact routing

matrix with high probability, i.e., R̂ = R, resulting in an accurate

inference of the flow rate vector x̂. In contrast, the routing path of

each flow changes at each communication round under a dynamic

routing protocol. Given the routing protocol 𝑇 and topology G,
the routing matrix R cannot be uniquely determined, making con-

structing an accurate routing matrix extremely difficult, resulting

in more inference errors to the attacker than deterministic ones.

Previous work in [? ] analyzed the performance of many exist-

ing dynamic routing protocols without proposing new protocols.

However, we notice that most of existing dynamic protocols priori-

tize security objectives other than defending network inferences,

thereby hindering resilience performance. Therefore, in this work,

we are interest in designing a routing protocol that specifically

addresses the resilience of the network inference attack in wireless

networks.

In Figure ??, an illustrative example is provided of how the rout-

ing matrix R in a 4-node, 6-link network is constructed based on

two kinds of routing strategies, i.e., 𝑇1: shortest-path and 𝑇2: ran-

dom dynamic routing. In this example, there are two traffic flows,

i.e., flow 𝑓1 from node A to D, and flow 𝑓2 from node B to C, in
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which each flow contains 3 potential paths, i.e., the flow 𝑓1 may use

path 𝑙1 → 𝑙4, or 𝑙2 → 𝑙3 or 𝑙5, and flow 𝑓2 may use path 𝑙2 → 𝑙1, or

𝑙3 → 𝑙4 or 𝑙6. For the shortest-path protocol 𝑇1, the routing matrix

can be uniquely determined. Flow 𝑓1 only goes through link 𝑙5 and

flow 𝑓2 goes through link 𝑙6, thus there is only one candidate R𝑠1

that can be selected by the routing matrix. Accordingly, by using

the shortest-path protocol, it is very likely to construct a routing

matrix R̂ by the attacker such that R̂ = R, from which an accurate

flow rate vector can be derived. However, for the dynamic routing

strategy 𝑇2, where the routing matrix can be randomly selected

from 3 × 3 = 9 candidates (e.g., R𝑑1, · · · ,R𝑑9) at each transmission

round. As the routing matrix selection is random and unpredictable,

even if the attacker is aware of the routing protocol, the attacker

cannot gain any priority on the selection of the current routing

matrix, and the probability that R̂ = R is 1/9. Therefore, the ma-

trix mismatch will introduce additional errors, which, in turn, will

protect the network against inference attacks.

3 ROUTING PROTOCOL MODELING AND
DESIGN

In Figure ??, we demonstrate that introducing additional errors is

the basic idea forwhy dynamic routing can protect networks against

network inference attacks. Therefore, this paper aims to propose a

dynamic routing protocol 𝑇 that maximizes the inference error 𝜖 .

In the following, we first model the dynamic routing protocol and

then propose our protocol.

3.1 Routing Protocol Decomposition and
Modeling

Each traffic flow can include multiple paths in a wireless network,

and the routing protocol determines which path is selected. For

example in Figure ??, there are two traffic flows and each flow

includes 3 paths, therefore, the routing protocol will choose one

path for each flow and totally there are 9 combinations. To have a

better understanding of the routing protocol, according to [? ], we
decomposite the routing matrix R into two parts, i.e., R = M × D,
whereM is the path set matrix and D is the routing protocol matrix.

The path set matrix M = [m1,m2, · · · ,m𝐹 ] represents all paths
of every traffic flow in the network, inwhich each entrym𝑖 indicates

the path set of flow 𝑓𝑖 . Denoted by P𝑖 the path set of flow 𝑓𝑖 ∈ F ,

and let P = {P𝑖 }𝑖=1, · · · ,𝐹 be path set of every flow in the network.

Define a function 𝑉 to map paths to column vectors in the routing

matrix, then we have 𝑉 (P𝑖 ) = m𝑖 and 𝑉 (P) = M. Note that a path

set matrix M can be uniquely determined when a specific topology

is provided.

The routing protocol matrix D = diag(d1, d2, · · · , d𝐹 ) is respon-
sible for modeling the behavior of a routing protocol into a matrix

that selects a particular path for each active flow at each communi-

cation round. Every d𝑖 is a column vector with length |P𝑖 |, in which
only one entry is 1 and the remaining entries are all 0, identifying

the selected path. For the static routing protocol D is unique, ren-

dering the routing matrix R unique as well. For the dynamic routing

protocol, the D changes over time, making the routing matrix R
dynamic.

Figure ?? shows how the decomposition happens in the ex-

ample of Figure ??. Since there are two active traffic flows and

each flow contains 3 paths. Thereby, we have the path set matrix

M = [m1,m2], and each𝑚1 includes three columns indicating 3

potential paths. We assume the routing protocol selects path 3 and

path 4 for flow 1 and flow 2, respectively. Then we can see d1 is
[0, 0, 1]𝑇 (i.e., select path 3) and d2 is [1, 0, 0]𝑇 (i.e., select path 4).

Then the routing matrix is constructed by path 3 and path 4.

Based on the decomposition R = MD we can model the routing

protocol 𝑇 as follows.

Model 1. [Routing Protocol] In a network, the routing protocol
can be modeled as a function 𝑇 to derive the routing protocol matrix
D, given the network topology G, the path set matrix M, i.e.,

𝐷𝑡 = 𝑇 (G,M) . (5)

Remark 1. The Model ?? divides the construction of the routing
matrix R into two separate factors i.e., the path set matrix M and
the routing protocol matrix D, and build the connection between
the routing protocol 𝑇 and the routing protocol matrix D. The static
routing protocol can be considered as a one-to-one mapping, thus given
the input, the routing protocol matrix D can be uniquely derived. In
contrast, the dynamic routing protocol can be considered as a one-to-
many mapping, which derives a set consisting of many candidates
of routing protocol matrices. The probability that the attacker has a
correct construction depends on the size of the set.

3.2 Max-Mismatch-Probability Routing
The dynamic routing protocol builds a set of routing protocol ma-

trices. For example, in Figure ??, there are 9 candidate matrices. At

each communication round, the network randomly chooses one

D to determine the routing matrix R, and the attacker will also

randomly choose one D̂ to construct R̂ and then launch the infer-

ence attack. The selection mismatch, i.e., D̂ ≠ D, will cause the

attacker and the network to construct different routing matrices,

i.e., R̂ ≠ R, and eventually induce inference error. To maximize the

inference error, the intuitive strategy is to select matrix D that has

the maximum difference ∥R̂ − R∥. However, this strategy requires

knowing the matrix selected by the attacker D̂, which is usually

unavailable.

Instead, we notice that, in a random graph, the inference error is

also related to the probability that the attacker and the network will

choose different routing protocol matrices, and this probability is

determined by the number of candidate matrices generated by the

routing protocol. For example, if there is only one candidate matrix,

then the probability of choosing a different matrix will be 0. For
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the example in Figure ??, there are 9 candidate matrices therefore

the probability of mismatch is 1 − 1/9. The number of candidate

matrices depends on the number of paths for each flow and the

routing protocol. Assuming that a topology exists, the number of

paths for each flow will be fixed, then the protocol will determine

how large the search space will be. For example, Tor will select

three relays randomly for tuning the path, thus only a subset of

paths that pass through those relays are considered. It is easy to

know, the maximum mismatch probability is 1− 1/∏P𝑖 , therefore,

we propose a dynamic routing protocol designed to achieve this

probability. We call this protocol Max-Mismatch-Probability (MMP)

routing. Specifically, at each communication round, each packet in

a traffic flow 𝑓𝑖 is transmitted through one path that is randomly

selected from all P𝑖 . In this way, the maximum probability can be

achieved.

4 THEORETICAL ANALYSIS
In this section, we provide the theoretical analysis of our proposed

protocol for the upper and lower bound of the interference error.We

first introduce the genie bound and then we show our theoretical

results.

4.1 Genie Bound
As aforementioned, the attacker can leverage any optimization

algorithm to infer the flow rate vector x̂, and we are agnostic to

optimization algorithm. To remove the impact from the algorithm,

a commonly used method is to leverage the genie bound [? ] to
measure the inference error 𝜖 .

Specifically, 1) we first construct a new flow rate vector x𝑔 via
deleting zero entries by the help of a genie, andR𝑔 that is the routing
matrix based on x𝑔 . This step shrinks the system by removing the

flows with no data traffic and have a new system

y = R𝑔x𝑔 . (6)

2) Use the least square to derive the estimation of x𝑔 , i.e.,

x̂𝑔 = (R𝑇𝑔 R𝑔)−1R𝑇𝑔 y. (7)

3) Finally, the genie bound can be derived as the mean square error

of x̂𝑔 and x𝑔

𝐺 (x𝑔) = E
(
∥x̂𝑔 − x𝑔 ∥22

��) . (8)

In solving under-determined systems, the genie bound is widely

used to provide a lower error bound regardless of the method of

inference used. Using the genie bound, we redefine the inference

error as

𝜖𝑔 = E
(
∥x̂𝑔 − x𝑔 ∥22

��)
(9)

Remark 2. The first two steps convert the under-determined system
(??) to a determined system by eliminating nonexistent flows, so that
inference approaches have no effect on deriving the genie bound. Then
the inference error 𝜖 in (??) is measured only on the flows with real
traffics, serving as a general, method-independent error bound.

Remark 3. Note that the estimation (??) is available under the
condition that the row rank of R𝑔 is no less than the column rank of
R𝑔 . This condition is always valid because x is spare, and in practice,
it is less likely that every node is communicating with others. Denoted

by F𝑔 the corresponding flow set of x𝑔 , obtained by removing non-
existing flows from F . In the rest of this paper, we assume 𝐿 > 𝐹

where 𝐹 = |F𝑔 |, thereby this condition always holds.

4.2 Theoretical Results
Consider the network G with 𝑁 nodes, 𝐹 traffic flows. Assume the

flow rate 𝑥𝑖 ∈ x𝑔 is a random variable with mean ` and variance

𝜎2. Then we have the following theorems.

Theorem 1. [Inference Error] For the proposed MMP routing pro-
tocol, the inference error 𝜖𝑔 satisfies

Θ

(
𝐹 2`2 (𝑁 − 1)2

𝑁 2 (
√
(𝑁 ) + 𝐹 )

)
≤ 𝜖𝑔 ≤ Θ

(
2𝐹 2 (`2 + 𝜎2)
𝑁 /(𝑁 − 1)

)
. (10)

Remark 4. Results showing in the Theorem ?? indicates the infer-
ence error is affected by the number of flows 𝐹 in a network. Then
if we increase the number of data flows in the network to make the
communication scenario in the network more complicated and inten-
sive, the inference error increases quadratically. In addition, the traffic
with larger data rate will also induce more inference error than the
slow rate traffic.

Compared to the shortest-path protocol, the proposed MMP pro-

tocol incurs a large inference error. However, using a random path

for communication will cause a longer delay, since packets are

not always routed through the shortest route. In order to measure

the extra cost due to the MMP rounding protocol, we use the dis-

tance between two nodes as the metric of the delay. Denoted by 𝜏

the average distance of all node pairs, then we have the following

theorem.

Theorem 2. [Delay] The delays of MMP satisfy

𝜏 = Θ(
√
𝑁 ). (11)

Remark 5. Theorem ?? shows that the average delay is on the order
of

√
𝑁 which shares the same order with the typical shortest-path

protocol. This indicates that MMP routing protocol does not induce
significant delay increase comparing with the shortest-path protocol,
however the security enhancement is significant against inference
attacks.

4.3 Theorem Proof
We first prove Theorem ?? and then prove Theorem ?? because the
results from Theorem ?? will be used for the proof of Theorem ??.

4.3.1 Proof of Theorem ??. In a network G, let the distance of

∀𝑓𝑖 ∈ F is𝑑𝑖 i.e., the number of hops of the shortest path. According

to [? ], if the density _ is large enough such that the all nodes in

the network is connected, then the expected number of path for

a node pair is Θ(𝑁 ). Then the average distance of flow 𝑓𝑖 can be

expressed as

𝜏𝑓𝑖 = 𝑑𝑖 +
1

𝑠𝑁

𝑘∑
𝑗=1

𝑐𝑖 𝑗 , (12)

where 𝑠 is an arbitrary positive scalar and 𝑐𝑖 𝑗 is a positive constant

showing the distance difference between path 𝑝 𝑗 ∈ P𝑖 to the short-

est path. Then the average distance in the network can be expressed
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as

𝜏 =
1

𝐹

𝐹∑
𝑖=1

𝑑𝑖 +
1

𝐹𝑠𝑁

𝐹∑
𝑖=1

𝑠𝑁∑
𝑗=1

𝑐𝑖 𝑗 . (13)

According to Lemma ??, we have

1

𝐹

𝐹∑
𝑖=1

𝑑𝑖 = Θ(
√
𝑁 ) (14)

Furthermore, we know

1

𝐹𝑠𝑁

𝐹∑
𝑖=1

𝑠𝑁∑
𝑗=1

𝑐𝑖 𝑗 = Θ(1) (15)

then we can obtain 𝜏 = Θ(
√
𝑁 ), and finish the proof. □

4.3.2 Proof of Theorem ??. According to the Model ??, then (??)
can be rewritten by

y = MDx𝑔 . (16)

The MMP routing protocol randomly select a path for each flow 𝑓𝑖 ∈
F . Therefore, the routing protocol used by the attacker may differ

from the network. Denoted by D̂ the matrix used by the attacker.

Therefore, for the attacker, (??) can be expressed as y = MD̂x𝑔 .
Then the inferred flow rate vector x̂ can be written as

x̂𝑔 = [(MD)𝑇RD]−1 (RD)𝑇 y. (17)

In the following, the proof logic is partially based on [? ]. Then
according to the genie bound (??), we have that

𝐺 (x𝑔) = E
(
∥x̂𝑔 − x𝑔 ∥22

)
= E

(
∥ [(MD̂)𝑇MD̂]−1MD̂𝑇 y − x𝑔 ∥22

)
= E

(
∥ [(MD̂)𝑇MD̂]−1 (MD̂)𝑇 (MDx𝑔) − x𝑔 ∥22

)
= E

(
∥B[MD −MD̂]x𝑔 ∥22

)
= E

(
∥BΔx𝑔 ∥22

)
(18)

where B = [(MD̂)𝑇MD̂]−1MD̂𝑇
, and Δ = MD − MD̂. In (??), Δ

shows the mismatch between the constructed routing matrix by the

attack and the real routing matrix, and a large mismatch is expected

to induce a large inference error. According to Lemma ??, we have
the following relationship

_min (B𝑇B)∥Δx𝑔 ∥22 ≤ ∥BΔx𝑔 ∥22 ≤ _max (B𝑇B)∥Δx𝑔 ∥22, (19)

where _min (B𝑇B) and _max (B𝑇B) denotes the minimum and maxi-

mum eigenvalues of B𝑇B. According to Lemma ??, _min (B𝑇B) and
_max (B𝑇B) can be replaced by _−1max

(MD̂(MD̂)𝑇 ) and _−1
min

(MD̂(MD̂)𝑇 )
respectively, then (??) can be rewritten as

E

(
∥Δx𝑔 ∥2

2

_max (MD̂(MD̂)𝑇 )

)
≤ 𝐺 (x𝑔) ≤ E

(
∥Δx𝑔 ∥2

2

_min (MD̂(MD̂)𝑇 )

)
, (20)

Next, we proceed to derive _−1
max

(MD̂(MD̂)𝑇 ) and _−1
min

(MD̂(MD̂)𝑇 ).
According to Lemma ??, we have that _min (MD̂(MD̂)𝑇 ) = Θ(𝜏 (𝑁 ))
and _max (MD̂(MD̂)𝑇 ) ≤ Θ

(
𝜏 (𝑁 ) + 𝐹𝜏2 (𝑁 )/𝑁

)
. Then the genie

bound can be expressed as the following asymptotically solution

E∥Δx𝑔 ∥2
2

Θ
(
𝜏 (𝑁 ) + 𝐹𝜏2 (𝑁 )

𝑁

) ≤ 𝜖𝑔 ≤
E∥Δx𝑔 ∥2

2

Θ(𝜏 (𝑁 )) . (21)

Next, we will derive the E∥Δx𝑔 ∥2
2
. Let each entry in Δ as 𝛿𝑖 𝑗 ,

where 𝑖 ∈ [1, 𝐿] and 𝑗 ∈ [1, 𝐹 ], and 𝛿𝑖 𝑗 ∈ {0, 1,−1}. Since both the

attacker and the network randomly select their paths for each flow,

denoted by 𝑔 𝑗 = |P𝑗 | the number of paths of flow 𝑓𝑗 , then we have

that

Pr{𝛿𝑖 𝑗 = 1} = Pr{𝛿𝑖 𝑗 = 1|d𝑗 ≠ ˆd𝑗 } Pr{d𝑗 ≠ ˆd𝑗 }

=
𝑔 𝑗 − 1

𝑔 𝑗
Pr{𝛿𝑖 𝑗 = 1|c𝑗 ≠ d𝑗 }

=
𝑔 𝑗 − 1

𝑔 𝑗
Θ

(
𝜏 (𝑁 )
𝑁

) (
1 − Θ

(
𝜏 (𝑁 )
𝑁

))
.

(22)

Since the path selection is random, we know that Pr{𝛿𝑖 𝑗 = −1} =
Pr{𝛿𝑖 𝑗 = 1}. All nodes are placed uniformly, thus according to

[? ], all flows will have the same expected number of paths, i.e.,

E(𝑔 𝑗 ) = 𝑔 = Θ(𝑁 ). Then we have

E{𝛿𝑖 𝑗 } = Pr{𝛿𝑖 𝑗 = 1} − Pr{𝛿𝑖 𝑗 = −1}

= Θ

(
𝑁 − 1

𝑁
× 𝜏 (𝑁 )

𝑁

)
= Θ

(
(𝑁 − 1)𝜏 (𝑁 )

𝑁 2

)
,

(23)

and

E{𝛿2𝑖 𝑗 } = Pr{𝛿𝑖 𝑗 = 1} + Pr{𝛿𝑖 𝑗 = −1}

= Θ

(
2(𝑁 − 1)

𝑁
× 𝜏 (𝑁 )

𝑁

)
= Θ

(
2(𝑁 − 1)𝜏 (𝑁 )

𝑁 2

)
.

(24)

Then the lower bound and upper bound of E∥Δx𝑔 ∥2
2
can be derived

as follows.

E∥Δx𝑔 ∥22 = E
©«

𝐿∑
𝑖=1

©«
𝐹∑
𝑗=1

𝛿𝑖 𝑗𝑥 𝑗
ª®¬
2ª®®¬

= Θ(𝑁 )E ©«©«
𝐹∑
𝑗=1

𝛿𝑖 𝑗𝑥 𝑗
ª®¬
2ª®®¬

≥ Θ(𝑁 ) ©«E ©«
𝐹∑
𝑗=1

𝛿𝑖 𝑗𝑥 𝑗
ª®¬ª®¬

2

= Θ

(
[𝐹` (𝑁 − 1)𝜏 (𝑁 )]2

𝑁 3

)
.

(25)
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and by leveraging Cauchy-Schwarz inequality

E∥Δx𝑔 ∥22 = Θ(𝑁 )E ©«©«
𝐹∑
𝑗=1

𝛿𝑖 𝑗𝑥 𝑗
ª®¬
2ª®®¬

≤ Θ(𝑁 )E ©«
𝐹∑
𝑗=1

𝛿2𝑖 𝑗
ª®¬E ©«

𝐹∑
𝑗=1

𝑥2𝑗
ª®¬

= Θ

(
2𝐹 2 (𝑁 − 1) (`2 + 𝜎2)𝜏 (𝑁 )

𝑁

)
.

(26)

Replacing the result of 𝜏 (𝑁 ) from Theorem ??, and (??), (??) into
(??), we can complete the proof. □

4.3.3 Proof of Lemmas.

Lemma 1. For network G consisting of 𝑁 nodes, for all path based
on the shortest path protocol we have the average distance as 𝑑 =
1

𝐹

∑𝐹
𝑖=1 𝑑𝑖 = Θ(

√
𝑁 ), where𝑑𝑖 is the distance of arbitrary flow 𝑓𝑖 ∈ F .

Proof: Denoted by 𝑒𝑖 the Euclidean distance for flow 𝑓𝑖 . The

distance of each hop is Θ(𝑟 ), thus the distance of flow 𝑓𝑖 by us-

ing the shortest path is Θ(𝑒𝑖/𝑟 ). The average delay over all flows

is Θ( 1

𝑁

∑𝑁
𝑖=1 𝑒𝑖/𝑟 ). Since all nodes are randomly distributed in a

region Ω = [0,
√
𝑁 /_]2, for a large 𝑁 , we have

1

𝑁

𝑁∑
𝑖=1

𝑒𝑖 = Θ
(√

𝑁 /_
)
. (27)

Therefore the average delay can be derived as

𝑑 = Θ

(√
𝑁 /_
𝑟

)
= Θ(

√
𝑁 ), (28)

which completes the proof. □

Lemma 2. For an arbitrary matrix B and an arbitrary vector 𝛼 , it
satisfies

_min (B)∥𝛼 ∥22 ≤ ∥B𝛼 ∥2
2
≤ _max (B)∥𝛼 ∥22, (29)

where _min (B) and _max (B) is the minimum and maximum eigen-
values of matrix B.

Proof: It is easy to know

∥B𝛼 ∥2
2
= ∥𝛼𝑇B𝑇B𝛼 ∥ = ∥𝛼𝑇B𝑇B𝛼 ∥

𝛼𝑇𝛼
∥𝛼 ∥2

2
. (30)

Based on [? ], ∥𝛼𝑇 B𝑇 B𝛼 ∥
𝛼𝑇𝛼

has the minimum bound _min (B𝑇B) and
the maximum bound _max (B𝑇B), then we complete the proof. □

Lemma 3. For amatrixB ∈ R𝑚×𝑛 where𝑚 > 𝑛, letH = (B𝑇B)−1B𝑇 ,
thenwe have _max (H𝑇H) = _−1

min
(B𝑇B) and _min (H𝑇H) = _−1

max
(B𝑇B).

Proof: According to singular value decomposition, for matrix

B ∈ R𝑚×𝑛
, then we have two unitary matrices: V ∈ R𝑛×𝑛 and U ∈

R𝑚×𝑚
, such that B = UΛV𝑇 where Λ = diag(𝑠1, · · · , 𝑠𝑛) ∈ R𝑚×𝑛

is

a rectangular diagonal matrix, where 𝑠𝑖 = _𝑖 (
√
B𝑇B) for 𝑖 = 1, · · · , 𝑛

are singular values of B. Let𝐷 B diag(𝑠2
1
, · · · , 𝑠2𝑛) ∈ R𝑛×𝑛 , we have

B𝑇B = V𝐷V𝑇 , thus

(B𝑇B)−1 = V𝐷−1V𝑇 . (31)

Then we can derive H as

H = (B𝑇B)−1B𝑇 = V𝐷−1V𝑇VΛU𝑇 = VΛ−1U𝑇 , (32)

where Λ−1 = diag(𝑠−1
1
, · · · , 𝑠−1𝑛 ) ∈ R𝑛×𝑚 . Then

H𝑇H = U(Λ−1)2U𝑇 = U𝐷−1U𝑇 . (33)

Combining (??) with (??) we have that _(H𝑇H) = _−1 (B𝑇B), which
completes the proof. □

Lemma 4. For a random binary matrix B ∈ R𝐿×𝐹 , let the expec-
tation of each entry be E(𝑏𝑖 𝑗 ) = Θ(𝜏 (𝑁 )/𝑁 ) with 𝜏 (𝑁 ) = 𝑂 (𝑁 )
and 𝐿 = Θ(𝑁 ). Then if 𝐹 → ∞ with lim𝐿→∞ 𝐹/𝐿 < ∞, then the
following statements are satisfied almost surely,

(1) for the minimum eigenvalue, _min (B𝑇B) = Θ(ℎ(𝑁 ))
(2) for the maximum eigenvalue,

_max (B𝑇B) ≤ Θ

(
ℎ(𝑁 ) + 𝐹ℎ2 (𝑁 )

𝑁

)
Proof:
We first prove statement (1). According to [? ], Let 𝑓 be a function

satisfying Var(𝑓A) = 1. Then we have

_min (B𝑇B) =
𝐿

𝑓 2
_min (𝐿−1 (𝑐B)𝑇 (𝑐B)) . (34)

From [? ], we have _min (𝐿−1 (𝑐B)𝑇 (𝑐B)) = Θ(1) with high proba-

bility. Then according to [? ], the number of links is on the order

of nodes with high probability in an RGG, i.e., 𝐿 = Θ(𝑁 ) happens
with high probability, then we know that

_min (B𝑇B) = (𝐿/𝑓 2)Θ(1) = Θ(𝑁 )
Θ(𝑁 /𝜏 (𝑁 )) = Θ(ℎ(𝑁 )). (35)

Now we prove statement (2). Let U and V be two matrix where

V is an all-one matrix and each entry in 𝑢𝑖 ∈ U satisfies E(𝑢𝑖 ) = 0,

and U and V satisfies

B = U + Vℎ(𝑁 )/𝑁 . (36)

Replacing into B𝑇B, then we have that

_max (B𝑇B) = _max ((U𝑇 + V𝑇 𝜏 (𝑁 )/𝑁 ) (U + V𝜏 (𝑁 )/𝑁 ))

≤ _max (U𝑇U) + 2𝜏 (𝑁 )/𝑁_max (U𝑇V)

+ (𝜏 (𝑁 )/𝑁 )2_max (V𝑇V) .

(37)

Because the rank of V is 1, then we have that

_max (U𝑇V) = tr{U𝑇V} =
∑
𝑖

∑
𝑗

𝑢𝑖 𝑗 . (38)

According to the large number law,

_max (U𝑇V) = 𝑜 (𝑁𝐹 )1/𝑝 (39)

for 1 < 𝑝 < 2. Then similarly, we have

_max (V𝑇V) =
∑
𝑣𝑖 𝑗 ∈V

1 = Θ(𝐹𝑁 ) (40)

From [? ], the first term satisfy _max (U𝑇U) = Θ(𝜏 (𝑁 )). Replacing
_max (U𝑇V), _max (V𝑇V), _max (U𝑇U) into (??), we can complete the

proof. □

5 EXPERIMENTAL RESULTS
In this section, we demonstrate the performance of our proposed

routing strategy MMP through simulation. In the following, we first

introduce the experimental setups, and then evaluate the inference

error and the induced delay.
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Figure 4: Genie bound of inference error with different num-
ber of nodes.

5.1 Experimental Setups
5.1.1 Network Topology. The network is simulated using RGGwith

𝑁 nodes, and the number of nodes varies between 20 and 100, and

randomly place them in a region [0,
√
𝑁 /_]. We consider the node

density _ = 5 indicating that the expected number of neighbors of

each node is 5, and the communication range of each node as 𝑟 = 2.

5.1.2 Parameter Setting. The theoretical results from Theorem ??
indicates that the inference error is associated with number of

flows 𝐹 , therefore, in our experiments, we consider two different

traffic scenarios, i.e., 1) limited traffic where 𝐹 = ⌊
√
𝑁 ⌋, 2) normal

traffic where 𝐹 = 𝑁 . In the first scenario, only a few of nodes are

involved in the communication process, whereas in the second

scenario, almost all the nodes are active in at least one traffic flow.

We consider the data rate of each flow 𝑥𝑖 as a random variable

subject to Gaussian distribution. The default mean and variance of

𝑥𝑖 are set as ` = 10 and 𝜎2 = 2 respectively.

5.1.3 Performance Metrics. In the experiments, we consider the

worst-case that the inference algorithm is unknown, the genie

bound is applied to gauge inference errors. Section ?? outlines the
approach to derive this genie bound, while the delay is obtained by

averaging the hop count across all network flows. For the purpose of

comparative analysis with the results in [? ], we also implement the

Tor network as a typical framework for analyzing existing routing

protocols.

5.2 Inference Error
We first evaluate the inference error of our proposed MMP protocol.

5.2.1 Varying Number of Nodes. Theorem ?? shows that the in-
ference error increase quadratically if we increase the number of

nodes. We compare the results between both traffic scenarios in

Figure ??. We can clear see that as we increase the number of nodes

𝑁 , the difference of inference error between both traffic scenarios

is enlarged. This is because the attacker need to guess more paths

under the normal traffic making the attacker to have a correct guess

on the routing matrix more difficult.

Figure ?? shows the difference between our proposed MMP and

Tor. As can be seen, MMP provides a significantly better inference

error than Tor. Tor requires the path to pass through the selected

20 40 60 80 100

Number of Nodes (N)

200

400

600

800

In
fe

re
n
c
e
 E

rr
o
r MMP

Tor

Figure 5: Genie bound of inference error between MMP and
Tor.
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Figure 6: Genie bound of inference error between MMP and
Tor.

relays, thus decreasing the search space for selecting a path. The

size of the path set of Tor for arbitrary flow is a subset of that of

MMP. As a result, MMP has a higher inference error than Tor.

5.2.2 Varying Mean Value. The inference error is also related to

the mean value ` of the flow rate. Figure ?? shows the comparison

results between limited traffic and normal traffic for different `s.

In this figure, we can clear see that as we increase ` the inference

rate of both flow scenarios increase. The inference error of normal

traffic is universally better than the limited traffic because in the

normal scenario, there are more flow that the attacker should guess.

5.3 Delay Evaluation
According to Theorem ??, the delay is related to the number of

nodes 𝑁 . Figure ?? shows the evaluation results between delay and

𝑁 . When the number of nodes increases, the delay for both traffic

scenarios increase as well. In addition, there is no big difference

between both traffic scenarios because the number of flows has

little impact on the delay.

Figure ?? shows the difference between MMP and Tor in terms

of the delay. MMP has a smaller delay when there are fewer than

100 nodes, and when the number is greater than 100, MMP has a

larger delay. The reason behind this phenomenon is that when the

number of nodes is not sufficient, MMP is more likely to choose
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Figure 7: The delay of MMP for different number of nodes.
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Figure 8: The delay of MMP for different number of nodes.

the path with a smaller delay. For Tor, however, the delay is at least

3, indicating three relays were selected.

6 RELATEDWORK
Our work is related to the network inference and tomography, and

the dynamic or random routing designs.

6.1 Network Inference and Tomography
Network tomography and inference have emerged as essential tech-

niques in the field of network monitoring and analysis [? ? ]. Net-
work inference involves the estimation of flow information through

eavesdropping on wireless link activities, which is widely feasible

in wireless networks because of the broadcast nature of the wireless

medium [? ? ? ? ]. Many of existing works of network inference and

tomography were designed for the optimizing the inference accu-

racy [? ? ? ? ? ? ? ]. However, the applicability of network inference

is still limited by some strong assumptions (e.g., known network

topology, etc.). In light of the aforementioned problem, machine

learning can be used in order to predict the underlying unknown

parameters [? ? ? ? ]. For example, the authors in [? ] use deep

neural networks to predict unmeasured network attributes and

reconstruct network topology. In [? ] leveraged machine learning

to facilitate the network inference when only limited information

about the network’s topology is available.

From the security perspective, using network inference, the at-

tacker can obtain internal information of a network without ac-

cessing to it. In terms of the attack, the authors in [? ? ] proposed
an data poisoning attack targeting on misleading the network op-

erator to make a wrong decision. The authors in [? ? ] analyzed
the fundamental limit of a stealthy attacker in maximally degrad-

ing the performance of end-to-end communications without being

localized. For the defense, the authors in [? ? ? ] provided the proac-
tive strategy to intentionally degree the inference performance.

For example, in [? ], authors provide a theoretical analysis on the

relationship between the inference error and the artificial noise

added on the measurements. Authors in [? ], by integrating the

machine learning, authors noticed that the network topology can

be obfuscated to attackers. In our early work [? ], the performance

of many existing dynamic routing protocols was investigated and

compared without proposing new protocols. However, we notice

that most of existing protocols prioritize security objectives other

than defending network inferences, thereby hindering resilience

performance. Different from previous works, this paper focus on

investigating the reason to cause the inference error and then de-

signing a routing protocol that specifically addresses the resilience

of the network inference attack on wireless networks

6.2 Dynamic Routing
Dynamic and random routing strategies have garnered significant

attention in the wireless networks, offering promising solutions

to the challenges posed by the ever-changing and unpredictable

nature of wireless environments [? ? ]. Dynamic routing adapts to

network dynamics by selecting paths for data transmission based

on real-time conditions such as signal strength[? ? ? ], traffic load [?
], channel interference[? ? ], and topology changes [? ]. For example,

in [? ], the authors make relay selection based on instantaneous

Received Signal Strength Indicator (RSSI) and Link Quality Indi-

cator (LQI) values to fit the wireless environment. When it comes

to defending against network inference attacks, dynamic routing

can help enhance security by introducing variability into network

traffic patterns. Previous research in [? ? ] has demonstrated the

basic idea that random routing can make the inference process

inaccurate, and provide the analysis results on existing dynamic

routing protocols. However, whether such protocols can provide

sufficient randomness against network inference attacks remain

unclear. In stead, in this paper, we observed that the inference error

is positively related to the probability of the mismatch between the

flow template observed by the attackers, and the real template used

in the network. Motivated by this, we propose a dynamic routing

protocol, called Max-Mismatch-Probability (MMP), which seeks to

maximize mismatch probability and increase the inference error.

7 CONCLUSION
Attacks employing network inference pose a significant threat to

network security since they provide attackers with the opportunity

to gain insight into sensitive flow information without gaining

direct access to it. Using flow information, an attacker can launch

powerful attacks against the wireless network. In wireless networks,

dynamic routing can enhance security and privacy by increasing

variability in traffic patterns and thereby increasing inference error.
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In this paper, we propose a new dynamic routing protocol, called

MMP, that maximizes inference error, thus effectively hiding flow

information. We conduct a comprehensive theoretical analysis of

the inference errors of MMP against inference attacks and the cost

of the protocol, which is the delay. Using MMP, we have shown

that the flow information can be concealed effectively.

ACKNOWLEDGEMENT
This work was supported in part by NSF under grants SaTC-2321271

and CNS-2312138.

REFERENCES
[1] Wireless LAN medium access control (MAC) and physical layer (PHY) specifica-

tions. IEEE Std 802.11, 2013.
[2] Novella Bartolini, Ting He, Viviana Arrigoni, Annalisa Massini, Federico Trom-

betti, and Hana Khamfroush. On fundamental bounds on failure identifiability by

boolean network tomography. IEEE/ACM Transactions on Networking, 28(2):588–
601, 2020.

[3] Ilker Bekmezci, Ozgur Koray Sahingoz, and Şamil Temel. Flying ad-hoc networks

(fanets): A survey. Ad Hoc Networks, 11(3):1254–1270, 2013.
[4] Sanjit Biswas and Robert Morris. Opportunistic routing in multi-hop wireless

networks. ACM SIGCOMM Computer Communication Review, 34(1):69–74, 2004.
[5] Emmanuel J Candès, Justin Romberg, and Terence Tao. Robust uncertainty princi-

ples: Exact signal reconstruction from highly incomplete frequency information.

IEEE Trans. Inf. Theory, 52, 2006.
[6] Rui Castro, Mark Coates, Gang Liang, Robert Nowak, and Bin Yu. Network

tomography: Recent developments. 2004.

[7] Szymon Chachulski, Michael Jennings, Sachin Katti, and Dina Katabi. Trading

structure for randomness in wireless opportunistic routing. ACM SIGCOMM
Computer Communication Review, 37(4):169–180, 2007.

[8] Nessrine Chakchouk. A survey on opportunistic routing in wireless commu-

nication networks. IEEE Communications Surveys & Tutorials, 17(4):2214–2241,
2015.

[9] Cho-Chun Chiu and Ting He. Stealthy dgos attack against network tomography:

The role of active measurements. IEEE Transactions on Network Science and
Engineering, 8(2):1745–1758, 2021.

[10] Cho-Chun Chiu and TingHe. Stealthy dgos attack: Degrading of service under the

watch of network tomography. IEEE/ACMTransactions on Networking, 29(3):1294–
1307, 2021.

[11] Xiangrui Fan, Wenlong Cai, and Jinyong Lin. A survey of routing protocols

for highly dynamic mobile ad hoc networks. In 2017 IEEE 17th International
Conference on Communication Technology (ICCT), pages 1412–1417. IEEE, 2017.

[12] XiaoBo Fan and Xingming Li. Network tomography via sparse bayesian learning.

IEEE Communications Letters, 21(4):781–784, 2017.
[13] Mohammad Hamed Firooz and Sumit Roy. Link delay estimation via expander

graphs. IEEE Trans. Commun., 62:170–180, 2014.
[14] Manjesh K Hanawal, Diep N Nguyen, and Marwan Krunz. Jamming attack on

in-band full-duplex communications: Detection and countermeasures. In IEEE
INFOCOM, 2016.

[15] Ting He. Distributed link anomaly detection via partial network tomography.

2018.

[16] Tao Hou, Zhe Qu, Tao Wang, Zhuo Lu, and Yao Liu. Proto: Proactive topology

obfuscation against adversarial network topology inference. In IEEE INFOCOM
2020-IEEE Conference on Computer Communications, pages 1598–1607. IEEE, 2020.

[17] Yiyi Huang, Nick Feamster, and Renata Teixeira. Practical issues with using net-

work tomography for fault diagnosis. ACM SIGCOMM Computer Communication
Review, 38(5):53–58, 2008.

[18] Amani Ibraheem, Zhengguo Sheng, George Parisis, and Daxin Tian. Neural

network based partial tomography for in-vehicle network monitoring. In 2021
IEEE International Conference on Communications Workshops (ICC Workshops),
pages 1–6. IEEE, 2021.

[19] Amani Ibraheem, Zhengguo Sheng, George Parisis, Jianshan Zhou, and Daxin

Tian. Internal network monitoring with dnn and network tomography for in-

vehicle networks. In 2022 IEEE International Conference on Unmanned Systems
(ICUS), pages 928–933. IEEE, 2022.

[20] Grigorios Kakkavas, Despoina Gkatzioura, Vasileios Karyotis, and Symeon Pa-

pavassiliou. A review of advanced algebraic approaches enabling network to-

mography for future network infrastructures. Future Internet, 12(2):20, 2020.
[21] Hiroyuki Kasai, Wolfgang Kellerer, and Martin Kleinsteuber. Network volume

anomaly detection and identification in large-scale networks based on online

time-structured traffic tensor tracking. IEEE Trans. Netw. Service Manag., 13, 2016.
[22] Mohammad Shoeb Saeed Khan. Network tomography application in mobile ad-hoc

networks. University of Louisville, 2013.

[23] Demeke Shumeye Lakew, Umar Sa’ad, Nhu-Ngoc Dao, Woongsoo Na, and Sun-

grae Cho. Routing in flying ad hoc networks: A comprehensive survey. IEEE
Communications Surveys & Tutorials, 22(2):1071–1120, 2020.

[24] Fengyin Li, Pei Ren, Guoyu Yang, Yuhong Sun, Yilei Wang, Yanli Wang, Siyuan

Li, and Huiyu Zhou. An efficient anonymous communication scheme to protect

the privacy of the source node location in the internet of things. Security and
Communication Networks, 2021:1–16, 2021.

[25] Yimei Li and Yao Liang. Compressed sensing in multi-hop large-scale wireless

sensor networks based on routing topology tomography. IEEE Access, 6:27637–
27650, 2018.

[26] Yongjun Li, Wandong Cai, Guangli Tian, and Wei Wang. Loss tomography in

wireless sensor network using gibbs sampling. InWireless Sensor Networks: 4th
European Conference, EWSN 2007, Delft, The Netherlands, January 29-31, 2007.
Proceedings 4, pages 150–162. Springer, 2007.

[27] Yunzhong Liu, Rui Zhang, Jing Shi, and Yanchao Zhang. Traffic inference in

anonymous manets. In IEEE SECON, 2010.
[28] Zhuo Lu and Cliff Wang. Network anti-inference: A fundamental perspective on

proactive strategies to counter flow inference. In IEEE INFOCOM, 2015.

[29] Zhuo Lu and CliffWang. Enabling network anti-inference via proactive strategies:

A fundamental perspective. IEEE/ACM Transactions on Networking, 25(1):43–55,
2016.

[30] Liang Ma, Ting He, Kin K Leung, Ananthram Swami, and Don Towsley. Identi-

fiability of link metrics based on end-to-end path measurements. In ACM IMC,
2013.

[31] Liang Ma, Ting He, Kin K Leung, Don Towsley, and Ananthram Swami. Efficient

identification of additive link metrics via network tomography. In 2013 IEEE 33rd
International Conference on Distributed Computing Systems, pages 581–590. IEEE,
2013.

[32] Liang Ma, Ziyao Zhang, and Mudhakar Srivatsa. Neural network tomography.

arXiv preprint arXiv:2001.02942, 2020.
[33] Morteza Mardani and Georgios B Giannakis. Estimating traffic and anomaly

maps via network tomography. IEEE/ACM Trans. Netw., 24, 2016.
[34] Takahiro Matsuda, Masaaki Nagahara, and Kazunori Hayashi. Link quality

classifier with compressed sensing based on\ell_1-\ell_2 optimization. IEEE
Communications Letters, 15(10):1117–1119, 2011.

[35] Lu Mei-Hsuan, Steenkiste Peter, and Chen Tsuhan. Design, implementation and

evaluation of an efficient opportunistic retransmission protocol. Proc. Of IEEE
MobiCom, Beijing, China, 2009.

[36] Mathew Penrose. Random geometric graphs, volume 5. OUP Oxford, 2003.

[37] Ippokratis Sartzetakis and Emmanouel Varvarigos. Machine learning network

tomography with partial topology knowledge and dynamic routing. In GLOBE-
COM 2022-2022 IEEE Global Communications Conference, pages 4922–4927. IEEE,
2022.

[38] Anirvan M Sengupta and Partha P Mitra. Distributions of singular values for

some random matrices. Physical Review E, 60, 1999.
[39] Rahul C Shah, Sven Wietholter, and Adam Wolisz. Modeling and analysis of

opportunistic routing in low traffic scenarios. In Third International Symposium on
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt’05),
pages 294–304. IEEE, 2005.

[40] Rajinder Singh and Satish Kumar. A comparative study of various wireless

network monitoring tools. In 2018 First International Conference on Secure Cyber
Computing and Communication (ICSCCC), pages 379–384. IEEE, 2018.

[41] Paul Syverson, R Dingledine, and N Mathewson. Tor: The secondgeneration

onion router. In USENIX Security, 2004.
[42] Yehuda Vardi. Network tomography: Estimating source-destination traffic intensi-

ties from link data. Journal of the American statistical association, 91(433):365–377,
1996.

[43] WeiWang, HuiranWang, BeizhanWang, YapingWang, and JiajunWang. Energy-

aware and self-adaptive anomaly detection scheme based on network tomography

in mobile ad hoc networks. Information Sciences, 220:580–602, 2013.
[44] Zehua Wang, Yuanzhu Chen, and Cheng Li. Corman: A novel cooperative

opportunistic routing scheme in mobile ad hoc networks. IEEE journal on selected
areas in communications, 30(2):289–296, 2012.

[45] Chung-Kai Yu, Kwang-Cheng Chen, and Shin-Ming Cheng. Cognitive radio

network tomography. IEEE Trans. Veh. Technol., 59, 2010.
[46] Zhenghao Zhang and Avishek Mukherjee. Friendly channel-oblivious jamming

with error amplification for wireless networks. In IEEE INFOCOM, 2016.

[47] Zhiyong Zhang, Ovidiu Mara, and Katerina Argyraki. Network neutrality infer-

ence. In ACM SIGCOMM, 2014.

[48] Jerry Zhao, Ramesh Govindan, and Deborah Estrin. Sensor network tomography:

Monitoring wireless sensor networks. ACM SIGCOMM Computer Communication
Review, 32(1):64–64, 2002.

[49] Shangqing Zhao, Zhuo Lu, and Cliff Wang. When seeing isn’t believing: On

feasibility and detectability of scapegoating in network tomography. In IEEE
ICDCS, 2017.

[50] Shangqing Zhao, Zhuo Lu, and Cliff Wang. How can randomized routing proto-

cols hide flow information in wireless networks? IEEE Transactions on Wireless
Communications, 19(11):7224–7236, 2020.

 

10



MMP: A Dynamic Routing Protocol Design to Proactively Defend against Wireless Network Inference Attacks MTD ’23, November 26, 2023, Copenhagen, Denmark

[51] Shangqing Zhao, Zhuo Lu, and CliffWang. Measurement integrity attacks against

network tomography: Feasibility and defense. IEEE Transactions on Dependable
and Secure Computing, 18:2617–2630, Nov. 2021.

[52] Zhonghua Zhao, Wei Huangfu, and Linmin Sun. Nssn: A network monitoring

and packet sniffing tool for wireless sensor networks. In 2012 8th International
Wireless Communications and Mobile Computing Conference (IWCMC), pages
537–542. IEEE, 2012.

[53] Zhongliang Zhao, Denis Rosário, Torsten Braun, Eduardo Cerqueira, Hongli Xu,

and Liusheng Huang. Topology and link quality-aware geographical oppor-

tunistic routing in wireless ad-hoc networks. In 2013 9th international wireless
communications and mobile computing conference (IWCMC), pages 1522–1527.
IEEE, 2013.

[54] Lan Zhuo, Yutong Li, Jun Deng, and Hao Wang. An anonymous communication

method for wireless sensor networks based on bilinear pairings. In 2020 IEEE
2nd International Conference on Civil Aviation Safety and Information Technology
(ICCASIT, pages 517–525. IEEE, 2020.

 

11




