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Abstract—To enable ultra-high throughputs while addressing
the potential blockage problem, maintaining an adaptive access
point (AP) planning is critical to mmWave networking. By
investigating the hidden interaction between the environment
map and the placement of mmWave APs, we develop an
adaptive AP planning (E-app) approach that can accurately
sense the environment dynamics, reconstruct the obstacle map,
and then predict the placements of mmWave APs adaptively.
Specifically, our solution leverages mmWave radio itself to sniff
the unacceptable performance degradation through sensing only
a small fraction of observation points that are identified by a
sparsity-aware analytical model, thereby accurately triggering a
prediction module for AP positioning when necessary. Extensive
evaluations show a very high prediction accuracy for our solution,
which can provide around 25% improvement on user throughput
performance in mmWave WLANs. This intelligent AP-planning
framework well handles the environment dynamics that affect the
average-case network performance, which is of utmost interest
for network deployers because of its usage convenience and
adaptivity.

Index Terms—mmWave; AP planning; WLAN; prediction;
environment-aware; reliabiliy.

I. INTRODUCTION

Millimeter-wave (mmWave) communication has been heav-

ily researched for academia and industry due to its huge avail-

able bandwidth, which has the potential to provide ultra high

speed wireless communication with individual link rates over

tens of gigabits per second. Because of this potential, mmWave

is considered as a key enabling technology to support various

bandwidth-intensive applications in recent years, e.g. virtual

reality, online gaming, high-definition (HD) video streaming

and holographic projection. Several standardization efforts,

such as IEEE 802.11ad/ay, are focused on 60 GHz mmWave

communications for wireless local-area networks (WLANs)

[1], [2] with a goal of achieving multi-Gbps data rates to

satisfy bandwidth-hungry applications.
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Fig. 1. A WLAN scenario with deployed mmWave access points (APs).

However, the achievable network performance of a

mmWave WLAN is significantly sensitive to the environment

dynamics such as blockages and user mobility. Prior researches

on network planning [3]–[5] have found that the mmWave

network performance is a sensitive function of access point

(AP) placement and environmental characteristics, such as the

obstacles’ layout and locations of transceivers, and concluded

that AP planning should be strategically determined to max-

imize the line-of-sight (LoS) coverage. However, considering

the potential environment dynamics, i.e., as the obstacle map

experiences a major change, e.g., some furniture is re-deployed

or new furniture is brought in, the network performance could

be possibly degraded a lot with the current multi-AP placement

due to the location sensitivity of mmWave tranceivers, and

this might require a position tuning of APs to maintain

the network coverage and robustness, so as to enhance the

overall network performance. To elucidate this situation, we

did the performance study with environment dynamics in a

12m×8m×3m 60 GHz WLAN scenario, and evaluated the

aggregate throughput performance over 20 user locations.

As shown in Fig. 2, it is observed that as the obstacles

layout (either locations or density) changes, the worst-case

performance can be degraded 20%–40% even with multiple

APs deployed. Another factor that may impact the AP planning

is the popularity of user locations. This is driven by human

behavior such that users may have unbalanced dwelling time

at different locations, where wireless devices in frequently-

visited areas (e.g., around conference or lunch tables) will

generate or consume more data traffic. In the worst case,

when all those popular hotpots fall in the unplanned shadowing

region of deployed APs, the users’ quality of service would

be inevitably degraded since the large amount of data have to

be transmitted under the worse channel conditions.
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(b) The changes on density.

Fig. 2. Performance degradation vs. obstacles’ locations and densities.

Based on above compound effects caused by environment

dynamics, the initial AP deployment may not be sufficient
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to maintain a desired network performance, and an adaptive

multi-AP planning is required to update the AP placements

when necessary, e.g., the obstacle layout or user-location pop-

ularity experiences a major change. However, the limited field

of view of mmWave APs and sparse multipath diversity make

it challenging to accurately sense the environment dynamics

through mmWave radios. Therefore, recent works [6], [7]

on deriving mmWave environment information have to rely

on heavy infrastructure support, non-trivial human labor, or

expensive software defined radios (SDR), which prevent their

usage in practice. While in our preliminary research [3], we

have derived the analytical model to obtain the shadowing

regions in arbitrary environments, which makes it possible to

map the physical environments with gathered LoS connectivity

status at different locations. Thus, the work herein aims

to investigate an environment-aware approach that leverages

mmWave radios themselves to sense the environment dynam-

ics, and reconstruct the obstacle map to guide an optimal

multi-AP deployment adaptively. In general, through sensing

the environment dynamics, the network will determine: 1)

whether the network experiences an unacceptable performance

degradation, which requires a multi-AP re-positioning; and 2)

if so, what the new optimal multi-AP placements should be.

To this end, we propose an environment-aware AP planing

(E-app) approach to guide an adaptive multi-AP placements

due to the changes on obstacle layout and popularity of user lo-

cations. The re-positioning of APs could be performed through

either human operation or automatic mobility techniques [8]–

[10]. To be specific, in order to sense the environment changes

and reconstruct the obstacle map, each AP first initializes a

raw map that is divided into a number of small grids, and

then a sparse sampling approach is used to identify the crit-

ical viewpoints that are highly correlated to the environment

dynamics. Next, APs implicitly sense the LoS/non-LoS(NLoS)

status for users at those selected viewpoints over time to deter-

mine whether or not the network experiences an unacceptable

performance degradation. In parallel, a deep neural network

based prediction model is trained with the synthetic generated

dataset to infer the full obstacle map, which in turn helps

optimize and tune the multi-AP placements when necessary.

Extensive evaluations show that our E-app can achieve fairly

high accuracy to predict the optimal AP placements under

environment dynamics, and provide around 25% improvement

on user throughput performance in mmWave WLANs.

The main contributions of this work are as follows.

• We propose the design of an adaptive AP planning

scheme (E-app) that includes the sparse sensing strategy

and the optimal AP-placement prediction to deal with

the performance degradation brought by environment

dynamics in mmWave WLANs. This approach can syn-

ergistically determine when and how to optimally place

or re-deploy the APs, which provides a basis for the

development of BS/AP mobility technique in the wireless

network with automatic location discovery capability.

• We develop for the first time a method to quantify

reliability of the location points in mmWave WLANs,

which is used to identify only a few sensitive observation

points that are highly correlated with the environment

dynamics. The resultant sparsity-aware scheme is able to

significantly reduce the environmental sensing overhead

used for data collection and training process.

• We develop the systematic solution of E-app and perform

extensive evaluations, where the results show the highly

accurate prediction to AP planning under environment

dynamics and significant improvement on the overall

network performance in mmWave WLANs. This demon-

strates that mmWave AP placement can be accurately

predicted through the use of detailed environment infor-

mation and the awareness of a few critical observation

locations.

II. RELATED WORK

Prior works that have addressed the problem considered

herein, i.e. multi-AP planning in indoor mmWave settings

are [3], [6], [11]–[14]. Of these, [11] investigated the impact

of base station deployment on LoS probability in 5G indoor

scenarios, [3] proposed the LoS-optimal AP planning schemes

in mmWave WLANs, and other AP placement schemes

were studied in [12]–[14] to evaluate random, edge-based,

or evenly-spaced multi-AP deployments. Each of the above

planning schemes is a heuristic or LoS-optimal scheme, how-

ever, they all failed to overcome the performance degradation

brough by potential environment dynamics since the planning

was only performed for once without considering the re-

deployment of APs when necessary, which is the main subject

of our work herein.

Specifically, a more relevant work about 60 GHz AP plan-

ning was presented in [6], where sensed environment informa-

tion is fed into a ray tracer to predict link performance and then

guide the AP deployment. There are several key differences

between the approach of [6] and our work. First, [6] relies

heavily on software-defined radios, where a dedicated and

specialized hardware platform is used to provide a detailed

map of the propagation environment in order to guide the

AP deployment. By contrast, our approach only needs to use

mmWave radios and LoS information. Second, the approach

in [6] does not attempt to capture environment dynamics,

and in case such obstacle change their locations, the SDR

infrastructure has to be deployed to accommodate the changes,

i.e., moving transceiver to multiple locations for measurement.

While our solution can well handle the environment dynam-

ics automatically with implicitly sensing a few observation

points by APs, which provides good performance over a wide

range of obstacle environments and guides the optimal AP

(re)deployment when necessary.

For the prior works on sensing the environment dynam-

ics, state-of-the-art radio-based simultaneous localization and

mapping [15], [16] can only achieve localization accuracy of

around 5 meters, far from enough to predict the spatial per-

formance of a mmWave wireless network in a typical indoor

scenario. Some works [17], [18] adopted multiple mmWave

radars to explicitly scan the environment by continuously
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moving the radar in front of the obstacle’s body to identify

its shape and reflectivity. In contrast, our work leverages the

collected LoS channel information from 60 GHz Wi-Fi APs, so

as to reconstruct the entire environments with limited sampling

client spots. Another benefit of our work is that we can

sense the environment dynamics irrespective of the number

of available APs, i.e., even a single AP can also discover the

environment details and thereby recovering an obstacle map,

which in turn helps optimize the planning adaptively. Also,

other works [7], [19]–[22] proposed to sense the environment

through assistants of mobile robot, radar, ray-tracing engine,

or laser localization technology and, however, these techniques

require additional deployment of sensors, which increases the

implementation and hardware complexity. Our work stands

apart from such side-information aided schemes since our ap-

proach does not require any additional infrastructure support,

which only leverages mmWave radios themselves as sensors

to “sniff” the environment and guide an optimal AP planning

with the better usage convenience and adaptivity.

III. E-APP: AN OVERVIEW

E-app is the first holistic scheme for optimizing and tuning

AP deployments over mmWave WLANs, taking into account

the underlying environment dynamics. The major challenges

in deriving this solution are: 1) A small change on obstacle

map may have a dramatic impact on AP deployment to

maximize network performance, thus the knowledge of the

environment dynamics is essential to guide and tune the AP

planning adaptively. However, it is analytically intractable to

determine the optimal AP placements as environment changes;

2) Although machine learning techniques could be used to

make predictions on AP planning, it is challenging to collect a

sufficient volume of training data in real environment covering

a complex range of network scenarios; and 3) in practice, the

collected sensing information from APs is either incomplete or

redundant, which makes it infeasible to reconstruct the entire

obstacle map, thus posing the challenge on tuning and redeploy

the APs when necessary.

Fig. 3 gives an overview of our E-app framework that

addresses the above challenges, which includes the process

of online inference and offline training. In the online infer-

ence stream, a 3D weighted shadowing-elimination searching

(wSES) algorithm is first proposed to efficiently determine

the optimal AP placements, and a set of shadowing-region

(SR) maps are also derived that contains the LoS/NLoS

information at arbitrary locations of the scenario. Then, a

sparse sampling approach is investigated to identify only a

few sensitive observation points (OPs) in SR maps that are

sufficient to reflect the environment dynamics. Next, APs keep

sensing the LoS/NLoS status of the users located at those OPs

over time, and the LoS coverage rate (LCR) among the OPs

will be constantly checked. Once LCR is lower than expected,

i.e., the environment map experiences a major change, a deep

neural network (DNN) will be run to predict the new optimal

AP placements. The DNN model is derived from the offline

training stream as shown in Fig. 3, which is in parallel with

the online inference phase. Specifically, we propose a data

generation framework to efficiently generate a large amount of

synthetic data by reusing the wSES algorithm, which are then

used to train the DNN model for predictions to new optimal

AP placements with respect to sensed dynamics. Lastly, the

redeployment of APs can be performed through either simply

human operation or automatic mobility techniques as in [8].

It is worth noting that the proposed E-app also offers the

potential solution for the location discovery problem of BS/AP,

UAV, or robot mobility technology used in future wireless sys-

tems, e.g., proactively moving an AP to the optimal locations

that maximize the network coverage adaptively, or developing

the optimal trajectory of UAV-based BSs to offload services to

users within a region of interest. We will leave these promising

directions as the future work, and in what follows, we discuss

the details of technical components in our E-app framework.

IV. SPACE GRIDDING: WEIGHTED SHADOWING AREA

SEARCH

Considering the sharp differences between LoS and NLoS

performance in mmWave wireless network [23], we use ge-

ometric analysis to identify the shadowed regions in an area

that correspond to definite LoS/NLoS cases, as shown in the

first step of Fig. 3. To capture the environment dynamics and

user location preference, we propose a weighted shadowing-

elimination search (wSES) approach that jointly considers

obstacle effects and client-location popularity to efficiently

determine the LoS and NLoS areas and the optimal placement

of APs in a given scenario. Algorithm 1 summarizes the steps

of wSES algorithm, involving the following two procedures:

1) Space gridding: The network environment space S is

divided into Nc equal sized cubes ci with size length of lc,

where
⋃Nc

i=1 ci = S and
⋂Nc

i=1 ci = ∅. The center of each cube

can be considered as a candidate observation point. From the

2D perspective, the network environment space S is actually

decomposed as ⌈rh/lc⌉ planes, where each of them consists

of Ng equal sized grids with the gridding length of lc, where

Ng = (rl · rw)/lc. In practice, we consider that the height

range of a client devices is H = [Hmin, Hmax], so the space

is divided into ⌈Hmax −Hmin/lc⌉ 2D planes, and each plane

has Ng non-overlapped grids.

2) Weighted shadowing elimination: Based on the knowl-

edge about the obstacle information Obs and popularity of

user locations Pw
1, Algorithm 1 first considers all grids in

a 2D plane of room at the specific height (Lines 1-2), and

then the weighted shadowing volume wSV with regard to

each AP position is calculated (Lines 4-5). Specifically, we

divide the 3-D space into several 2-D planes at different

heights and therefore, the obstacles’ heights need to be ad-

justed accordingly due to the change of each height base hi

(Lines 13-14). Next, for every obstacle i at height base hi,

a grid-based searching method from our prior work [3] is

1In practice, the objects’ locations, sizes, and material types could be
obtained in a variety of ways, e.g., through camera-based sensing [24], and
Pw can be investigated by recording user’s frequently visited locations (FL)
within the room over time [25].
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Fig. 3. Schematic of proposed E-app framework.

conducted to get shadowed-grid set SGj , which includes all

grids shadowed by the obstacle (Lines 16-17). Next, we start

to check whether the grid in SGj has already been put in

SGall (Lines 18-19), and if not, this new shadowed grid will

be added in SGall (Line 20). This step is used to eliminate

the overlapping shadowing area caused by different obstacles.

After traversing all obstacles at all height bases, the weighted

shadowing volume is obtained as:

wSV =
∑

i

Pwi
· l3c (i ∈ SGall), (1)

and the first AP is optimally placed in the position with the

minimum wSV (Lines 6-7). Before starting to find the next

AP’s position, the grid set G is updated as the shadowed-

grid set of the first AP (Line 8), which means that the second

AP will be placed at the position that eliminates the most

remaining wSV of the first AP. Then, the third AP is placed

to minimize the remaining shadowing volumes given the first

two APs positions. This process continues until all N APs’

positions are derived. In [3], this SES-based approach has been

validated to achieve the near-optimal results for AP placement.

As a side note, the wSES algorithm can also output the

shadowed grids G over the entire 3D space, which is used to

map the physical environment from a camera’s eye to a radio

“environment" from APs’ eyes (i.e., a set of shadowing-region

map) as shown in Fig. 4.
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Fig. 4. From physical environment to radio “environment".

V. SPARSE SAMPLING: CRITICAL VIEWPOINT

IDENTIFICATION

To sense the environment dynamics through LoS identifi-

cation technique [26] from APs’ eyes, we propose a sparse

sampling approach to identify the critical viewpoints on the

radio environment map. The underlying principle suggests the

potential to collect a smaller-sized network information by

pruning useless information while resulting in equally optimal

solutions for the original problem. The sensing overhead to

detect environment changes will be significantly reduced by

imposing sparsity awareness, as we can sense the LoS/NLoS

information from only a few sensitive observation points that

obviously reflect the environment dynamics, which further

helps reconstruct the new shadowing-region map.

Definition 1. Client locations pi are defined as observation

points (OP) only when their client-dwelling probability ex-

ceeds a threshold ǫp (e.g., 0.05), i.e.,

OP = {pi ∈ G|Pwi
> εp, hpi

∈ H} (2)

Definition 2. An OP has the state transition if it is under

one of the following situations: 1) the OP had at least one LoS

APs, but now there is no LoS APs to it after any environment

dynamics; 2) the OP was under a NLoS condition, but now

there exists at least one LoS AP to it.

Based on our observation, not all OPs are sensitive to

environment changes, which means that some of them (re-

ferred to as inert points) seldom or never experience the

state transition in terms of the current AP deployment. This

motivates us to identify the volatile points (VPs) as critical

viewpoints for sensing, which are actually sufficient to capture

the potential changes on an obstacle map. This sampling

process can significantly reduce the computational overhead of

online inference process as shown in Fig. 3. In what follows,

we first derive the new metric to quantify the “volatility” of all

OPs, and then develop the algorithms to identify these VPs.

A. Reliability Score

Starting from the single-AP case, we first use geometric

analysis to quantify the reliability of the link between a client

location and an AP. Based on the random shape theory from

[27], obstacles are assumed to form a Boolean scheme of

rectangles, in which the centers of the rectangles fall within the

room and form a homogeneous Poisson point process (PPP)

C of density λ, where λ is the mean number of obstacles in

an unit area. The width, W , and length, L, are assumed to

be i.i.d. distributed and follow normal distributions, i.e. W ∼
N (µw σw

2) and L ∼ N (µl, σl
2). The orientation distribution

Θ of every obstacle is uniform over [0, π]. In this way, a
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Algorithm 1: wSES: weighted Shadowing-Elimination

Search

Input: Obs, lc, prm, N , Pw (popularity weights),

Hmin, Hmax

Output: Pap

1 for each height (hi = Hmin + i ∗ lc) & (hi <= Hmax)

do

2 G(i, :)=[all grids in a 2D plane at height hi]; ⊲

init G
3 for each AP i from 1 to N do

4 for each pos of AP i do

5 [wSVui
, SGi]=FindSV(Obs, pos,G, lc, prm,

Pw);

6 APi=arg min{wSVui
};

7 Pap.add(APi);

8 G=[grids in SGi]; ⊲ update G
9 if G = ∅ then break;

10 return Pap;

11 Function: FindSV(Obs, pos,G, lc, prm, Pw)

12 Init SGall; ⊲ init the shadowed-grid set

13 for each height (hi = Hmin + i ∗ lc) & (hi <= Hmax)

do

14 Obs.height = max{Obs.height - hi, 0}; ⊲ change

the height base

15 pos.height = pos.height - hi; ⊲ change the height

base

16 for each obstacle j ∈ Obs do

17 [SAj , SGj] = GSSFunction(Obs(j), pos,

G(i, :), prm); ⊲ Tech Report

18 for each grid g ∈ SGj do

19 if (g /∈ SGall) then

20 SGall.add(g);

21 wSVu=
∑

i Pwi
· l3c (i ∈ SGall); ⊲ weighted shadowing

volume

22 return wSVu, SGall;

random obstacle is characterized by the quadruple {c, w, l, θ},

which is generated by sampling the distributions C, W , L, Θ.

Based on the blockage-area calculation in a 2D plane, we

derive the expectation of total number of random obstacles

blocking the link is
2di·(µw+µl)

π + µw · µl, where di is the

horizontal distance between AP and client. Then, we introduce

the height effects of obstacles and extend the model to 3

dimensions. Based on the height modeling from [25] and

assuming that the obstacle’s height ho follows the uniform

distribution H∼U(ao, bo), we derive the conditional probabil-

ity that an obstacle blocks the connected link is:

ε = 1−
1∫
0

y·Hc+(1−y)HA∫
0

fH(h) dh dy = 1− 1
bo−ao

1∫
0

[max

{min{bo, yHc + (1− y)HA}, ao} − ao] dy
= bo+ao−2Hc

2(HA−Hc)
,

(3)

where HA and Hc are the height of AP and client location

(HA > Hc), respectively. Next, we arrive at the probability

that the LoS link exists with multiple random obstacles, which

is also referred to as reliability score (RS):

RS1
(a)
= e

λ
2π(HA−Hc)

·(2Hc−bo−ao)(2diµl+2diµw+πµlµw)
(4)

where (a) follows the basic property of homogeneous Poisson

distribution with density λ.

While extending the derivation of RS to multi-AP cases is

not straightforward, we first introduce the RS derivation for

2-AP case. In a similar way, we first derive the blockage area

from an individual link, and then compute the overlapping

blockage area of two links, finally incorporating the height ef-

fects in Eq. 3, such that we arrive at the close-form expression

of RS score in 2-AP case, i.e., the probability that at least one

of the LoS links is connected with multiple random obstacles:

RS2
(b)
=

∑
x=i,j

RS1(dx) + e
−2λε(di+dj)(µl+µw)+2πµlµw

π

· e
λε(µw

2+σw
2)

π
·[ 14 (π−α)·cot γ−

sin(2α−γ)
8 sin γ

− 1
4 cos

2γ+ 1
8 ]

· e
λε(µl

2+σl
2)

π
·[ 14 (π−γ)·cot γ+ 1

4 cos
2γ] · e

λεµwµl
2π (π+γ)

(5)

where (b) is true because of the inclusion-exclusion principle

and the property of homogeneous Poisson distribution. In Eq.

5, α equals to max{0, γ−π/2}, and γ is the intersected angle

of two links.

It is not trivial to extend the RS analysis to higher-

dimensional AP case, but here we adopt a simplified geometric

model from [28], i.e., the line Boolean model, which assumes

that all the blockage elements are in the form of lines for

tractability. Based on this model, the RS derivation can be

easily extended to N -AP cases (N ≥3).

In 3-AP case, based on the line Boolean model and Eq. 3,

the probability that no blockages lie in a link li of distance

di between APi and client is derived as e−λSli , where Sli =
2λǫµldi

π . Then, considering any two links (li and lj) between

the client and APs, the overlapped blockage area Sli,lj can be

derived through the geometric analysis as follow:

Sli,lj =
∫

l

∫ 2π

γ
l2 sin θ·sin(θ−γ)

2 sin γ · [1− (1−min{1, di sin γ
l sin θ ,

dj sin γ
l sin(θ−γ)})

2]fL(l)fΘ(θ) dl dθ

= 2
πµl(di + dj)−

1
4π (µl

2 + σl
2) · [(π − γi,j)

· cot γi,j + 1]
(6)

where di(j) is the distance between APi(j) and client, and

γi,j is the intersection angle of li and lj . Moving forward, we

derive the overlapped blockage area with all three links in a

similar way:

Sli,lj ,lk = 2
πµl

∑
x∈i,j,k

dx − 1
4π (µl

2 + σl
2)[(π − Γmin1)

· cot Γmin1
+ (π − Γmin2

) · cot Γmin2
+ 2]

(7)

where Γmin1
and Γmin2

are the first two minimal intersected

angles among the three links. Finally, we arrive at the RS of

three-AP case as:

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on March 01,2024 at 23:33:12 UTC from IEEE Xplore.  Restrictions apply. 



RS3
(b)
=

∑

x∈i,j,k

e−
2ελµldx

π −
∑

x,y∈i,j,k;x 6=y

e−λεSlx,ly+e−λεSli,lj ,lk

(8)

Without the loss of generality, we derive the RS for multi-AP

cases (more than three APs) as follow:

RSn = P (
n⋃

i=1

Sli) =
∑

B⊆As

(−1)
|B|−1 · P (

⋂
s∈B

s)

(c)
≈

∑
i≤n

P (Sli)−
∑

i,j≤n;i 6=j

P (Sli,lj )

+
∑

i,j,k≤n;i 6=j 6=k

P (Sli,lj ,lk)

+ o(
∑

B⊆As\(Spre)

(−1)
|B|−1 · P (

⋂
s∈B

s))

(d)
=

∑
i

e−
2ελµldi

π −
∑

i,j≤n;i 6=j

e−λεSli,lj

+
∑

i,j,k≤n;i 6=j 6=k

e−λεSli,lj ,lk (n > 2)

(9)

where (c) is true because of the multi-set inclusion-exclusion

principle and the fact that APs are distributed dispersively in

the scenario, which always leads to the negligible overlapped

blockage areas of more than 3 links, and (d) is based on the

homogeneous Poisson distribution and Eq. (6)-(8).

B. Impact factor and algorithm design

Based on the derived RS, we define a new metric to

quantify the “volatility" (i.e., unreliability) of every possible

observation point. Intuitively, this impact factor (IF) should

reflect 1) how sensitive the OP is to the environment dynamics;

and 2) how popular the OP is (i.e., whether the client location

is frequently visited or not). To this end, by incorporating the

popularity weight (Pw), we arrive at IF of each OP i as:

IFi = Pwi
· (1−RSi). (10)

In specific, IF is higher when the OP has i) a larger

popularity weight, and/or ii) a lower reliability score, i.e. more

susceptible to blockage effects. Fig. 5 shows IF distributions

of different client locations in a network scenario2, and it is

observed that the IF distribution is highly dependent on the

density and location of APs. Therefore, based on the current

AP deployment, it has the potential to identify the VPs among

all OPs in the network scenario.

AP

AP

AP

AP

AP

(a) (b)

IF IF

Fig. 5. IF distribution of OPs in a network scenario. (a) 2-AP case; (b) 3-AP
case.

2Here we set µl = 1.08, σl = 0.18, µw = 0.56, σw = 0.08, ao = 1.5,
bo = 2.5, Hc = 1.5, HA = 3, and Pwi is equally distributed.

Algorithm 2 shows the approach to identify the VPs. Con-

sidering all possible cubes (i.e., all available OPs), we first

compute their IF factors (Lines 1-4), and rank these cubes v in

the descending order of IF (Line 5). Then we re-scale IF with

the min-max normalization (Lines 6-7). Next, starting from

the viewpoint vi with the largest IF, we put the viewpoint vi
into the VP set only if the distances to any other existing VPs

are greater than their robustness coherence distances (RCD)

(Lines 8-13). We define RCD as the ratio of reference distance

δ and the normalized IFi, where the viewpoint with larger IF

will have the smaller RCD, such that more OPs around it are

likely to be selected as VPs, and this is consistent with the fact

that mmWave spatial channel profiles at nearby locations are

highly-correlated. Thus, the OPs having better reliability (i.e.,

the smaller IF) will be given a larger RCD since the nearby

viewpoints within its RCD are expected to show the similar

robustness to the environment changes. Note that δ is a tuning

parameter to determine the percentage of sampling OPs that

will be selected as VPs.

Algorithm 2: Identify the critical viewpoints

Input: apPos, δ, Pw, H , lc
Output: V P

1 G = GetCube(H , lc);

2 for each cube center vi ∈ G do

3 IFi = Pwi
· (1−RSi);

4 Pair.add(vi, IFi);

5 Pair.order(↓ IF );

6 for each IFi ∈ Pair do

7 IFi =
IFi−min(IF )

max(IF )−min(IF ) ; ⊲ min-max normalization

8 for viewpoint from v1 to vn in Pair do

9 V P .add(vi);

10 for each viewpoint vj ∈ V P do

11 if ||vi − vj || ≤
δ

IFj
then

12 V P .rmv(vi);

13 break;

14 return V P ;

To show the performance of our Algorithm 2, we evaluate

the VP coverage rate (VCR) vs. the percentage of sampling

OPs (see Fig. 6), where VCR indicates the percentage of OPs

having status transitions due to environment changes covered

in the set of identified VPs, and 100% VCR means that all

OPs experiencing the state transitions have been included in

the VP set. Each data point in Fig. 6 is the averaged result of

over totally 1000 dynamic cases over 5 different scenarios3.

From the figure, we can see that our algorithm can accurately

identify the VPs among all OPs, and only 30%–40% OPs are

sufficient to reach almost 100% VCR with different number of

APs. For example, in a scenario with 200 OPs, we can identify

only 60 VPs used to capture the environment dynamics, which

significantly reduces the overhead of the following information

collection and data training processes.

3For simplicity, we assume the equal Pw in each OP in this evaluation.
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VI. E-APP: ENVIRONMENT-AWARE AP PLANNING

Based on the above approaches to determine the optimal

AP placements (in Sec. IV) and to identify the critical view-

points for sensing environment dynamics (in Sec. V), here we

introduce a data-driven approach to predict the AP placements

adaptively, and the overall systematic solution of E-app will

be shown in detail.

A. Optimal AP placement prediction

As shown in Fig. 3, one of the key components of our

proposed E-app framework is a deep learning based model

to predict the optimal multi-AP placements adaptively, which

involves the dataset generation and learning model design,

discussed next.

First, as shown in the bottom half of Fig. 3, Algorithm

1 is performed to collect a large amount of environment

maps and corresponding optimal AP deployments, where each

data instance is generated with a random-obstacle distribution

to simulate the environment dynamics based on the initial

scenario configuration, i.e., the density and dimensions of

obstacles constantly vary in the network scenario. Next, we

train a deep learning based approach to predict the optimal

AP placements under those environment changes. The pro-

posed learning-based approach takes into account multiple

network state information as input, where the time complexity

will be constant for an offline trained model. Specifically,

the problem to predict the optimal positioning of APs is

represented and solved in a supervised fashion. Thus, the

underlying relationship between input and output is actually a

skewed representation of the obstacle map, and we utilize deep

neural networks (DNNs) as a recipe for parametric function

approximation to learn this latent structure.

1) Input feature: The input data is present in the format of

LoS connectivity matrix (LCM) between OPs and some APi,

i.e., LoS(ac,t). Specifically, we incorporate the error model

of LoS estimation and localization based on the prediction

cumulative distribution function (CDF) presented in [26] and

in [29], respectively. Given the network scenario with N APs,

room’s length rl and width rw, and the grid size of gl, each

LoS(ac,t) matrix has the size of (rl · rw)/gl. Therefore, the

input feature vector X is obtained by concatenating the feature

vectors of all APs into a single vector of size N · (rl · rw)/gl.
2) Output label: The labels (i.e., ground truth) for training

are present in the format of Pos(N,t), i.e., the multi-AP

positioning matrix for all APs including (rl · rw)/gl loca-

tions in a 2D plane as the APs are always mounted on the

ceiling to maximize the LoS coverage. Specifically, in the

data-generation step, we have obtained the two dimensional

cartesian coordinates of each AP’s position. Then, we perform

a pre-processing procedure to transform these coordinates

into a [0, 1](rl·rw)/gl vector Pos(N,t), which contains N ones

and N − (rl · rw)/gl zeros, and the grid index with “1" is

corresponding to the two dimensional cartesian coordinates of

APs. In this way, the network outputs Ŷ ∈ [0, 1](rl·rw)/gl ,

which is a (rl · rw)/gl sized probability vector representing

the probability of optimal positions of N APs.
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Fig. 7. Neuron network architecture.

3) Network configuration: Based on the input features and

output labels, we design a DNN with a number of hidden

layers and neurons configured to work across different network

scenarios. The flattened input feature vector of size N · (rl ·
rw)/gl is fed to a fully connected network as shown in Fig. 7

with three hidden layers. The lth hidden layer has a total of

nHl
neurons. The kth neuron in (l − 1)th layer is connected

to jth neuron in lth layer with a weight of wl
jk. blj represents

the bias of the jth neuron in the lth layer. The activation of

the jth neuron in the lth layer, i.e. alj , is calculated through

the forward propagation rule as below,

alj = f(
∑

k

wl
jka

l−1
k + blj), (11)

where f applies the non-linearity in the model using the tanh

activation function. Then, we use a softmax layer before the

output layer to transform the output logits to the probability

vectors. The model is trained through the backpropagation

rule, using weighted cross-entropy loss as:

Hy(p) =
P∑

i

−(yi log(pi) ∗ w + (1− yi) log(1− pi)), (12)

where p represents the softmax probability of output logits,

and w is calculated as the ratio of number of shadowed grids

(Nsg) vs. non-shadowed grids (Nng) according to the training

data. As the ratio of Nng to Nsg in the data samples is

imbalanced, the weighted cross entropy loss with weight w
can balance the loss function to avoid any local minima.

With the available training data bank, DB =
{(X1, Y1), (X2, Y2), . . . (XN , YN )}, of N samples, the

loss function is minimized using adaptive moment estimation

optimizer, where a batch of B training samples is randomly

selected out of N training samples, and the weights and biases

are updated through the backpropagation rule. A fraction of
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the gradient in the previous iteration is retained with the

“coefficient of momentum”. At each learning iteration, the

learning rate is decreased over time to optimize performance

and to increase the convergence rate of the algorithm. While

training, we also augment the training set by a random

permutation over the sequence order of the APs’ LCMs in

the input features. This not only increases the training set

size but also improves the convergence of gradient descent by

avoiding any OP order-based local minima, and the random

permutations prevent the DNN architecture from extracting

features based on the APs ordering.

Note that the machine learning algorithm in our E-app is

not new, however, its application to this specific planning

problem, and the overall solution design is novel. Briefly,

the novelty of the overall learning model lies in 1) the

intuition behind the learning solution, e.g., the underlying

obstacle map is discoverable through the LoS connectivity

information between APs and a few observation points; 2)

the methodologies to make the model generalizable through

augmented training; and 3) as we will show later in Sec. VII,

a single network architecture with all the hyper-parameters

capable of learning in different network scenarios.

B. Systematic solution

Algorithm 3 summarizes the overall E-app solution exe-

cuted by the network controller. First, based on the initial

scenario configuration, the APs are optimally placed using the

wSES algorithm (Line 1). Then, the critical viewpoints V P
will be identified and transmitted to APs for sensing (Lines

2-3). At start with the current AP deployment, all APs collect

LoS connectivity information (LI) among those VPs, and then

compute the weighted shadowing factor (WSorg) for record

(Lines 4-5). In the meantime, a bunch of training data are

generated with respect to the current AP deployment for train-

ing the DNN-based AP positioning prediction model (Line 6)

based on the sythetically generated dataset. During each time

period, network controller collects the updated LI from APs

and computes the current weighted shadowing factors WScur

(Lines 7-9). Once the network experiences a non-negligible

performance degradation due to the environment changes, the

LI from each AP will be reformed as the input features to the

trained DNN model, which then predicts the corresponding

optimal AP deployment under current situation (Lines 9-15).

Once the new AP placements are made, the new round of

computation, sensing, and data training process with regard to

the current AP locations will be repeated in the same way.

VII. EVALUATION RESULTS

In this section, we evaluate the performance of our E-app

scheme to optimize and reconfigure the AP placements in

mmWave WLANs.

A. Network Settings

We first randomly generate various WLAN scenarios with

the following features: 1) the lengths, widths, and heights of

rectangular room follow uniform distributions Lr ∼ U (10.0,

4Note that this data generation time is not a serious issue, because it only
has to be done once to generate the model and then it can be used as many
times as needed for different scenario settings.

Algorithm 3: Workflow: E-app solution

Input: Nap, T , ts, rl, rw, lc, prmo, Pw, H

Output: apPosnew

1 apPoscur = wSES( rl, rw, lc, prmo, Pw, H); ⊲ Sec. IV

2 V P = IdentifyVPs(apPoscur , Pw); ⊲ Sec. V

3 Inform APs with V Ps;

4 Collect initial LIs from APs;

5 WSorg =
∑

k Pwk · Ik(∩iLIinit); ⊲ Ik(·) is the indicator

function, which is equal to 1 if the value of CP(k) is 1 in

∩iLIinit.

6 Train a DNN model with the training data4; ⊲ Sec. VI

7 while each time step ts at tj do

8 Collect LIs from APs;

9 WScur =
∑

k Pwk · Ik(∩iLTi); ⊲ only consider the

critical grids

10 if (WSorg −WScur)/WSorg > T then

11 break; ⊲ stop detection phase, update planning

12 ⊲****Update AP planning****⊳

13 LIre = Reform LIs: (Pwi → 0, 0 → 1); ⊲ consistent with

the form of input in the prediction model

14 input = concatenate(LIrei of each APi);

15 apPosnew = Prediction(input); ⊲ predict the AP positions

16 return apPosnew;

20.0), Wr ∼ U (5.0, 10.0), and Hr ∼ U (2.4, 4.5); 2) Objects

deployed in each scenario are modeled as cuboids and placed

on the floor, where the center of each obstacle follows a

Poisson point process with a specific density λ ∼ U (0.04,

0.3), the widths, and lengths follow the truncated normal

distributions W∼ T N (0.56, σw, 0.25, 1.25) and L∼ T N (1.08,

σl, 0.5, 1.75), where σw ∼ U (0.01, 0.38) and σl ∼ U (0.08,

0.58). Their heights and orientations follow uniform distribu-

tions Θ ∼ U (0, π) and H ∼ U (0.3, 2.3)); 3) each scenario

case includes some client devices, where are viewed as a

random point, and its height follows the uniform distribu-

tion U (0.1, 2.0). Also, a number of hotspot locations with

different popularity weights are generated in each scenario.

These parameters are derived by using a real-life office/lab

environment as a guiding example, and all length units of

parameters are in meters. Then, by running wSES algorithm,

the APs are initially deployed in the specific positions such that

the network achieves maximum LoS-coverage operation. Next,

the environment dynamics randomly occur in the network

scenario, including the changes on density, locations of the

obstacles and the user-location popularity.

In our DNN model as shown in Fig. 7, three hidden layers

in the model have 1024, 512 and 256 neurons, respectively.

We use a default batch size of 1024 (or more) except for

the cases where the total training sample size is smaller than

1024. The learning rate is initialized as 0.01, and decreased

with a factor of 0.9 every 2000 steps. We split the available

data into two sets: 1) the training set comprises of 80% of the

data and is used to learn the network weights and bias; and

2) the remaining 20% set is used for testing the predicted
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results. For each configuration, we ensure the evaluation

correctness through random permutation tests. Note that this

is a complicated classification problem as predicting some

AP should be optimally placed in a grid-level position and

hence, a random classifier will have a low accuracy of (0.5)Ng .

Additionally, we randomly permute the labels of test set to

validate that the DNN model is learning meaningful latent

structure in terms of the relationship between inputs features

and output labels.

B. Impact of Number of APs

Here we investigate how the performance of E-app varies

with the number of available APs in the network. An accurate

AP positioning prediction indicates that the predicted Ŷ ∈
[0, 1](rl·rw)/gl fully matches the ground truths. To relax the

matching results, we define a error bar (EB) to accept the

case when maxi∈N{|Pi−Gi|} ≤ EB∗gl, where gl is the grid

length and set as 0.2m, Pi and Gi are the predicted position

and ground-truth position of APi, respectively. Fig. 8 shows

the prediction accuracy vs. the number of deployed APs in

a WLAN scenario, where the prediction model of E-app is

trained with 20,000 data samples under environment dynamics.

It is observed that the prediction accuracy of around 90%–

98% is achieved for the cases with 1–5 APs and an EB of 2,

which means that over 90% of predicted AP positions have

the distance error of less than 0.4m to the ground truths. In

particular, we note that E-app works fairly well when there

are 1-3 APs deployed in the network, which is a common

AP density in most small to medium-sized mmWave WLAN

scenarios, and 91%–97% of predicted values can match the

ground truths with EB of 1 (i.e., distance error of 0.2m).
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Fig. 8. Prediction accuracy vs. number of deployed APs.

C. Impact of Training Data Samples

Although E-app enables offline training process, the larger

amount of data samples will consume more computational

resources and training time that may affect the real-time

online inference. Here we evaluate the prediction accuracy

while increasing the number of data samples. Clearly, we can

observe that there is a tendency that the prediction accuracy

increases as the number of data samples increases, and the

prediction accuracy for dataset from as low as 5000 data

samples is also reasonably accurate. Specifically, the predic-

tion accuracy increases from 84% to 94% (with EB of 2) as

the number of data samples increases from 5,000 to 35,000,

respectively. However, the achievable performance becomes

saturated when the amount of data is beyond 20,000, since

every additional 5,000 data samples only bring less than 1%

performance improvement. This result implies that generating

an appropriate amount of training data is critical to balance

the prediction performance and the resource cost.
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Fig. 9. Prediction accuracy vs. data samples used in training.

D. Impact of Obstacle Map

Next, we investigate the prediction performance of the

proposed approaches over three different obstacle maps in

9m*6m*3m, 12m*8m*3m, and 16m*10m*3m rooms, respec-

tively. We fix the training data samples at 20,000 and set EB as

2. Fig. 10 shows the prediction accuracy vs. 3 scenarios with

different initial obstacle map and multi-AP placements. It is

observed that the mean accuracy is 90% – 98% with a standard

deviation of 0.52% – 2.44% for cases with different number

APs. The low variance demonstrates that the proposed E-app

is generalizable to different scenario instances, exhibiting the

robustness of the proposed approach.
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Fig. 10. Prediction accuracy vs. different scenarios.

E. Network Coverage under Environment Dynamics

In this part, we investigate the network coverage improve-

ment brought by our proposed E-app. We define the network

coverage rate (CR) as the fraction of LoS areas over the all

critical viewpoints, i.e.,

CR =

∑
i∈V P

Pwi
· ILoS(i)

∑
i∈V P

Pwi

(13)

The results shown in Fig. 11 are generated by taking the

average over different scenario cases. In each scenario, the

original obstacles are randomly distributed within a WLAN

scenario. Then, the environment dynamics are randomly added

in every 3 minutes, including the operations of removing

existing obstacles, adding new obstacles, or changing their

locations, and Pw will also be changed accordingly. Here

we add the AP planning scheme from [3] as the baseline

scheme, which has shown to be superior to many state-of-

the-art AP placement approaches such as [11]–[14]. In this

situation, we observe that the network coverage is obviously

improved along the timeline when adopting our E-app scheme,

because the AP placements are adaptively updated to maintain
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the optimal LoS performance when necessary. On the other

hand, it is found that E-app can always detect the environment

dynamics and make countermeasures adaptively (i.e., every

3 minutes), which implies the effectiveness of our sparse

sampling approach to identify the critical OPs.
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Fig. 11. Network coverage rate under environment dynamics.

F. Throughput Performance under Environment Dynamics

Similar to Sec. VII-E, here we consider 10 users mov-

ing around in the scenario, whose next destination point is

determined by the popularity weights of pre-defined hotspot

locations, and the mobile user moves on a straight-line path

from the current location to the next one. Both the pause time

at each destination point and the speed of movement follow

the log-normal distribution, where the speed ln(v)∼N (-0.05,

0.69) (the mean is 1.21m/s) and pause time ln(tp)∼N (3.15,

0.70) (the mean is 30.0s). The evaluations are done at the

mmWave frequency of 60 GHz with a 2.16 GHz bandwidth,

and the transmission power at AP side is 10 dBm. we adopt

the channel model for indoor mmWave communication in [25],

which is based on the single carrier PHY mode, supporting 12

modulation and coding schemes (MCS) [1]. Each data point,

reported in Fig. 12, is the result of aggregate throughput over

all users in the network. We observe that our E-app can sig-

nificantly improve the user throughput performance by tuning

the AP deployments to resist the environment dynamics, where

25.14% improvements are achieved as compare to the baseline

scheme.
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Fig. 12. Aggregate user throughput with E-app scheme.

VIII. CONCLUSION

In this paper, we studied adaptive AP planning in mmWave

WLANs. By capturing the details of the environment and

the sensitive locations to dynamics such as the change of

obstacle layout and user-location popularity, we propose E-

app to predict optimal AP placements when necessary. In

particular, a learning-based model was trained to address the

AP positioning problem under environment dynamics by us-

ing our synthetically generated dataset. Extensive evaluations

were performed to show that our approach can achieve high

prediction accuracy and provide significant improvement on

network performance.
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