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a b s t r a c t

In view of recent attacks on smart grid surveillance is of vital importance to enforce surveil-
lance based disaster recovery management operations to ensure seamless energy genera-
tion anddistribution. The reliability of disaster recoverymanagement depends on availabil-
ity and privacy preservation of surveillance data. In this paperwe propose a reliable privacy
preserving smart grid surveillance architecture over cognitive radio sensor networks. Cog-
nitive radio sensor networks are capable of facilitating reliable communications through
opportunistic spectrum sensing capabilities as opposed to fixed radio terminal networks
based surveillance architectures. The main privacy preserving feature is a novel energy
aware physical unclonable function (PUF) based cryptographic key generation method.
The proposed solution determines the encryption key length depending on the remain-
ing energy reserve to facilitate data transmission over an expected period of time with
minimum channel interferences. Based on the experimental evaluation, the PUF pattern
matching based key generation is viable for 32 bits pattern length over a cognitive radio
sensor with optimum power utilization and with a probability of reproducibility of a bit
pattern (i − p) = 0. We have also performed experiments to validate the reliability model
using real-world data. In conclusion, our proposed cognitive radio sensor based solution
provide more pragmatic insights in reliability assurances for surveillance in smart grid.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A large portion of communication infrastructure of smart grid uses wireless communications. Cognitive radio (CR) net-
works are considered as promising solutions for efficient wireless communications in smart grid [1,2] due to several advan-
tages: (i) to reduce radio frequency interference from power equipment and packet collisions in wireless communications
links, (ii) to reduce delays in communications by employing vacant channel bandwidth and can (iii) cater to the large scale
distributed communication needs of smart grid [1].

Surveillance based emergency resilience [3] is vital in smart grid in order to support self healingmechanisms [4], to facil-
itate seamless operations and to execute reactive or preventive measures in situation aware collaborative disaster response
management [5]. In addition, due to the growing number of physical attacks on smart grid, multimedia surveillance is vital
to provide adequate security to ensure reliable operations of critical smart grid components [6–9].
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1.1. Motivation

Motivation for this research comes from the recently reported malicious attacks on smart grid, and growing number of
location-privacy violations aimed to disrupt seamless operations.

• Physical security of smart grid power generation equipment and components—Attack on Pacific Gas & Electrics (PG&E)
substation in California last April raise questions about the vulnerabilities of physical security of the US power grid [6].
The assault took place in themiddle of the nightwhen at least one person entered an underground vault at PG&EsMetcalf
substation and cut fiber cables. Soon after, one or more gunmen opened fire on the substation for nearly 20 min. They
took out 17 transformers and then slipped away into the night before police showed up.

• Physical security of smart meters—In 2009 an electric utility in Puerto Rico asked them to help investigate widespread
incidents of power thefts that it believed were related to its smart meter deployment [5]. The FBI discovered that
former employees of the meter manufacturer and employees of the utility were altering the meters in exchange for
cash. Presumably, they hacked into the meters using an optical serial port that allowed them to connect their computers
locally and change the settings for recording power consumption. They just needed a software program that could be
directly downloaded from the Internet.

In addition, reliability of surveillance based disaster recovery management requires sufficient data availability to detect
anomalous events, secure data generation and transmission. Therefore, to ensure the ability for a sensor to securely generate
data over an expected time period is vital.

Ramifications of the above facts are to have a robust surveillance system to reduce the impact of malicious physical
attacks on smart grid, reliable data communications and privacy preservation of surveillance sensor data.

1.2. Need for cognitive radio sensor networks (CRSN) for surveillance

The main objective of surveillance systems is the ability to monitor critical assets remotely without physically being
present at each asset. In the context of smart grid, wireless multimedia sensor networks are of great value in providing rich
surveillance information for failure detection and recovery, energy source monitoring and management as well as physical
security of grid components [8]. Distributed situation awareness helps to better coordinate and strategic implementation of
disaster response and emergency management in order to reduce outages and damage containment to facilitate seamless
and efficient service delivery [10,11]. Reliability of decision making in disaster response and emergency management
depends on the availability and privacy preservation of surveillance data.

• Ability to offer reliable communications—Existing surveillance systems are based on fixed radio access technology
(RAT) [12]. However, the reliability is less in fixed RAT systems due to signal losses, power losses, hardware unavail-
ability due to theft or damaged due to natural disasters (e.g. floods, hurricanes) [12]. Thus, CRSN can facilitate more
reliable communications by using opportunistic spectrum sensing capabilities which are not feasible to achieve through
wireless sensor networks.

• Energy-aware secure surveillance data transmission—Unlike conventionalwireless sensor networks, a CRSN is composed
of CR sensors which are capable of more opportunistic spectrum sensing capabilities in addition to the other computa-
tional operations such as data encryption. Energy expenditure is an important consideration for surveillance applications
in order to securely transmit the surveillance data over a sufficiently long period of time. Therefore, energy-aware data
encryption solutions are vital for CRSN based surveillance applications in order to guarantee data transmissions over a
sufficiently long period of time.

The main objective of our research is to analyze the reliability guarantees for enforce disaster recovery management effec-
tively in terms of (i) secure surveillance data transmission and (ii) persisted data transmission over an expected period of
time.

1.3. Limitations of existing work

In applications using sensors, node identity concealment and cryptographic techniques are seen as viable solutions
to preserve the location privacy of sensor nodes [13]. In cognitive radio networks, reputation (or trust) based node
evaluation methods [14–16], collaborative sensing coupled with anonymity techniques or cryptographic methods [17] are
proposed as viable solutions for preserving privacy of secondary users. Cryptographic techniques aremore promising privacy
preserving solutions. In order to reap the intended security stealth from cryptographic solutions, power consumption and
computational overheads should be optimized for sensors and the cryptographic identification of sensor nodes should also
be feasible with the open deployment (i.e. physically unprotected) nature in cognitive radio sensor networks [18].

Recent work propose physical unclonable functions (PUFs) based secure key generation and deployment schemes in
wireless sensor networks [19,20]. PUF based keys are highly secure as these cannot be forged since the responses are
generated with hardware inherent noise characteristics which are unclonable [21]. Given a challenge, a PUF generates a
response. For the same challenge due to the noise characteristics of hardware, the responsesmay slightly vary, thus demands
reliable and efficient error correction schemes. In order to account for this variability, key generations and selections for



U.S. Premarathne et al. / Pervasive and Mobile Computing 22 (2015) 3–15 5

identification and authentication applications has to be carefully designed to preserve the uniqueness of keys [22]. PUF
based cryptographic device identification applications have been proposed for wireless sensor networks [20], RFID systems
[23,24], secure storage applications [25]. However, PUF based authentications with energy expenditure awareness have not
been explored in CR sensors for surveillance applications in smart grid.

Based on the above discussion, existing privacy preservingmechanisms do not suffice on their own to address the privacy
requirements for reliable cognitive radio sensor based surveillance in smart grid. Therefore, more robust energy-aware
privacy schemes are required.

1.4. Contributions

Reliability of decision making in situation-aware disaster response and emergency management depend how secure is
the transmitted surveillance data and whether sufficient amount of data is available to make reliable decisions. The data
should be transmitted securely so as to ensure its confidentiality. Therefore, encryption schemes are of vital importance.
However, in order tomaintain an efficient power consumption in the cognitive radio sensors, the encryptionmethod should
not demand heavy computational demands on CR sensors.

In this paper we propose an energy-aware key generation method with reliability guarantees. The main focus of our
research is how to realize highly reliable smart grid surveillance system over cognitive radio networks by improving the
privacy preservation of sensor data. The main contributions are,

• Robust surveillance architecture based on CRSN for smart grid—Cognitive radio sensor networks is more appropriate
to facilitate surveillance in smart grid. We propose a reliable surveillance architecture based on CRSN. The proposed
architecture provides reliability in terms of communications, energy-aware PUF-based encryption to ensure data
availability using secure data transmissions over an expected period of time.

• Novel energy-aware PUF based key generation model for CR sensors—Our key generation model uses a novel approach
of being energy-aware. This approach is more suitable for a CR sensor based critical applications such as for surveillance
in smart grid in order to ensure reliable data generation and for secure transmission for an expected length of time. We
have developed a constraint based model to derive the optimal key size based on channel availability and minimum
interferences in a CRSN.

• Novel reliability model—The proposed reliability model is based on the energy-aware key size, channel availability
and surveillance application specific constraints. Our approach is more suitable to analyze the impact of reliable data
generation and data availability with known quality-of-service constraints in a CRSN. The proposed reliability analysis
model proves to be more expressive than the existing security analysis models which only focus on specific attacks for
specific components in the smart grid.

Rest of the article is organized as follows. In Section 2, we discuss the existing privacy attacks on cognitive radio sensor
network applications and sensor node identification attributes. In Section 3, we present the cognitive radio sensor network
based privacy preserving surveillance architecture for smart grid. In Section 3.3 we present the reliability model. Section 4
we present our results and the effectiveness of the proposed solutions through a case study. Finally, Section 5 concludes.

2. Existing work

Existingwork on privacy preservationmainly focus onwireless sensor networks and cognitive radio networks. Both these
research areas are of paramount importance in realizing the potential privacy threats in cognitive radio sensor networks.

2.1. Privacy issues in cognitive radio sensor networks

In cognitive radio sensor networks, significant privacy concerns exist with the identity of sensors and the privacy of
the data generated. In cognitive radio sensor networks spectrum sensing reports are valuable sources of information to
malicious adversaries to identify the location of the primary users, to launch privacy violation attacks on primary users,
service disruptions. Location privacymechanisms have been proposed to preventmalicious adversaries fromgaining control
over the sensor node capabilities to send erroneous data or to completely tamperwith sensor functionalities. Various defense
mechanisms aimed at preserving location privacy and confidentiality of sensor data can be categorized as: schemes based
on (i) reputation and trust of the CR sensor nodes, (ii) robust authentication schemes using cryptographic algorithms,
(iii) obfuscation techniques to preserve confidentiality of sensor data, (iv) point-of origin verification techniques. Table 1
provides overview of the privacy issues and the existing measures to mitigate or minimize the impact of potential privacy
violations in cognitive radio sensor networks.

In order to reduce the breeches location privacy of sensor nodes, cryptographic measures, anonymity of sensing data re-
ports, reputation and trust based validation methods as well as emulated geo-location techniques have been proposed. The
main objective of reputation based spectrum sensing methods are to quantify the trust or the reliability of a sensor node to
validate the data by using qualitative or evidence-based quantitative measures. The initial selection of trusted sensor nodes
helps to (i) collect correct data, (ii) aggregate datawith high accuracy, (iii) reliability of the integrity of the sensor data aswell
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Table 1
Threats and mitigation strategies for different elements of a cognitive radio sensor.

Elements that require security Vulnerabilities Mitigation strategies

Location

Geo-location estimation. Geo-location countermeasures such as emulated
geolocation [26]

Primary user emulation attacks—transmit high power
signals to falsify the presence of primary users [27,15]

Cryptographic countermeasures [27], point of
origination verification [15]

Inferring location and time from sensor data in
participatory sensing [28]

Obfuscation methods

Intercepting spectrum sensing reports [29] Transmit dummy sensing reports [29]

Data

Eavesdropping Cryptographic randomization [17] where all n
number of sensing reports from n nodes should be
there to decrypt the data and each independent
report cannot be decrypted on its own.

Impersonation or mimicry attacks Authentication of the received signal and the
sensing reports [29]

Traffic analysis to infer context of data Information flooding such as probabilistic
flooding [30]

Sensor data falsification attack [31]

Operations
Erroneous spectrum sensing information injection. Authentication of the received signal and the

sensing reports [29]
Excuse attack which exploits the over-riding of explicit
authentications in events of damage to sensor
nodes [32].

Trust and reputation based node authenticity
verification [14–16].

Newbie picking attack which exploits the possibility to
move from one newbie node to another to avoid
mandatory requirements to provide network based
information [32].

Trust and reputation based node authenticity
verification [14–16].

as (iv) to reduce the potential vulnerabilities in making wrong decisions in transmission allocations. For example, in [14],
sensing information from trusted nodes is only considered reliable and used in the decision making. The use of reputation
system increases the robustness of cooperative sensing scheme. In order to reduce the disclosure of sensor data as ameasure
of preserving confidentiality, anonymity schemes have been proposed. In addition information flooding as well as sending
dummy data are also proposed to reduce the likelihood of disclosure of sensor data. These methods ensure privacy but with
processing overheads and reduced data utility.

2.2. Identification attributes of sensors

Recently, secret key pre-distribution techniques have been proposed for wireless sensor networks [33,34]. When new
sensor nodes are added on to the network, keys have to be update and revoked. Thus, increase the complexity of these key
pre-distribution systems. Random key pre-distribution schemes with the assumption that a sensor node is able to verify
the identity of a sender, make them rather weak security enforcement. So in order to successfully receive the message con-
tent, unless the sensors are able to identify the sender, the key pre-distribution is of little use. One feasible identification
parameter is the RF fingerprint [33].

Radio fingerprinting can be used as an identity of a sensor [35,34]. RF fingerprints allow wireless signals to be identified
based on their physical characteristics. Therefore, the RF fingerprint can be used as an equivalent biometric feature in
authentication processes. However, the radio fingerprint is not unique for every sensor. If the application carefully selects a
set of sensors, then the identity of each of the sensors can be established as an identity to distinguish its RF operations [35].
Moreover, the identification accuracy depends on the accuracy of the classification technique employed [34]. Proximity
based sensor identification techniques have also been proposed as potential identifications of the sensors. However, since
the proximity is an estimation which is not collusion resistant, it is not a highly reliable identification technique. Since
location privacy is vital in CRSN applications, accurate location information being used as sensor identity form is conflicting.

In sensors, photo-response non-uniformity (PRNU) is amultiplicative noise caused by imperfections in themanufacturing
process and non-homogeneous properties of silicone [36]. PRNU is unique to each sensor and therefore is used for forensic
applications (e.g. point of origin of digital image identification). However, the raw sensor output should bemeasured in order
to capture the PRNU signature to be used for identification purposes. Its applicability inwireless sensor network applications
are limited due to the complex signal processing to extract the identification features in the presence of noise in wireless
links.

More recent work propose physical unclonable functions (PUFs) based secure key generation and deployment schemes
in wireless sensor networks [19,20]. PUF based keys are highly secure as these cannot be forged since the responses are
generated with hardware inherent noise characteristics which are unclonable [21]. However, the PUF-based key should be
sufficiently large enough to provide security as well as not to computationally over-burden the sensor node.
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3. Reliable energy-aware cognitive radio sensor data generation model

In this section, we explain the energy-aware key generation and reliability model. We explain the energy-aware optimal
key generation in a CR sensor. Then, we describe the reliability model to analyze the effectiveness of the proposed solutions.

3.1. Overview

Based on the recent literature on CRSN applications [37–39], we infer the following requirements to provide reliable
surveillance in smart grid using CRSN: (i) prioritize spectrum access based on traffic type (e.g. high priority assigned to real-
time control and monitoring and event reporting traffic), (ii) authenticity of CR sensors, (iii) confidentiality of sensing data.
In this paper will not consider the spectrum access and priority based traffic management, rather we will only focus on the
latter two requirements.

Fig. 1 illustratesthe CRSN smart grid surveillance architecture using home area network (HAN), field area network (FAN)
and wide area network (WAN) terms familiar in smart grid. In HAN, surveillance is required for advanced metering infras-
tructure (AMI). We assume that the CR sensors are installed within the smart meters and the data communications are
performed over CR network. The CR sensors of smart meters communicate to FAN via a gateway. The spectrum access is
determined by the gateway in consultation with the spectrum database. In WAN, over a large distributed area, actor nodes
perform spectrum access decision making in consultation with the spectrum database.

In smart grid surveillance, CR sensors exchange different types of data. Examples of different types of data include event
readings, control data for group formation as well as for spectrum allocation and hand-off management [38]. Application
of CRSN on smart grid surveillance requires CR sensors to forward critical information pertaining to different operational
aspects of smart grid. Essentially, the surveillance sensor data from CR sensors are used in collaborative situation-aware
disaster recovery management, which is a decision making process. Examples include distributed feeder switching control
data, emergency response data, transmission line monitoring data, event data from intelligent electronic devices in order
to detect faults and malfunctions [37]. Secure transmission of surveillance data demands to have strong resilience against
malicious information leakage or misuse by eavesdropping and traffic analysis based attacks. Therefore, authenticity of CR
sensors and confidentiality of sensing data are essential requirements for reliable surveillance for smart grid.

CR sensor has to perform multiple functions including spectrum sensing using the RF transponder, monitoring and
sensing, data encryption, data transmission, receiving information from neighborhood sensors as well as control messages
from base stations. Secure data transmission is of vital importance to ensure the reliability of the surveillance sensor data.

3.2. Energy-aware PUF based key generation

PUF based key generation essentially requires the keys to be generated so as to preserve the uniqueness among the keys.
Recent work on this area use pattern matching approaches using Hamming distance metric to preserve the uniqueness of
PUF based cryptographic keys [22]. However, there is no formal approach to define the key generation and error corrected
key selection so as to maximize the uniqueness among the keys. We select the key generation method using pattern
matching [22]. Pattern matching method proposed in [22] is a more efficient and less complex technique suitable for smart
grid surveillance applications which involves real-time decision making.

When PUF is used to generate secret keys, a fixed number of secret bits are required to be generated from the PUF. The
challenge is kept public and the seed bots are selected differently to generate different keys. These bits are then used to
generate the public/private keys in a separate secure processor. However, noise introduced should be error corrected using
helper bits to ensure reliable key management. Robust error correction mechanisms such as index based syndrome cod-
ing [40] have been proposed. However, the robust error correction schemes demand high computational resources which
are stringent in cognitive radio sensors. Pattern matching based key deployment using a trusted server is more viable for
CRSN surveillance application. In this approach, there are more than one challenge and these are kept in secret while re-
sponse bits are kept public.

In PUF-based patternmatching key generation technique requiresmultiple streams to be selected inm number of rounds
to generate the key as a composition. The index for each round is combined to form the full-length key. For encrypting the
data, CR sensors use the PUF-based secret key by KeyGen and the raw sensor data. The encryption function is bit-wise XOR
operation over the blocks of size n bits 2. This approach is cryptographically strong, since a one-way compression function
is a function that transforms two fixed-length inputs into a fixed-length output, which makes it difficult, given a particular
output, to compute inputs which compress to that output. However, the stealth of the encryption depends on the secrecy
of the key. Since the key is generated by PUF streams, which are near-perfect random sources, selected based on an access
structure, it is theoretically impossible to hack the ciphertext.

3.2.1. Impact of key size on pattern reproducibility
It is evident, when the key size is large, the security offered is high as the reproducibility of the key reduces. However,

in application on cognitive radio sensors, large key sizes demand more processing power from the sensors in encrypting
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Fig. 1. Privacy preserving cognitive radio sensor network based surveillance architecture for smart grid.

Fig. 2. Block-cipher encryption function in a cognitive radio (CR) sensor. The encryption is equivalent to a one-way functionwith XOR operation over n-bit
data block with n-bit PUF-based secret key to output a n-bit ciphertext.

and decrypting the data. Therefore, it is necessary to find the optimal trade-off between the key size and the computational
demand on cognitive radio sensors to sustain a minimum required level of security.

Consider a patternwi which is likely to be reproduced. The ability to predict thewhole patternwi depends on the ability to
guess the bit values based on observed sub-strings si,j. This approach is more realistic than to assume independent guessing
of each bit. The security objective is to reduce the likelihood of reproducibility of the patterns so as to minimize the misuse
of PUF-based key generation. To address this requirement we assume the events of guessing the sub-strings of the pattern is
not limited but the dependency of these events are limited. Such a dependency structure can be well represented by using
the Lovasz local lemma.
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We define the probability that an event of reproducing a sub-string bit pattern as P(Ei) ≤ p and the probability of not
existing a dependency for reproducing a sub-string pattern is P(E ∗i) ≥ 0. The aim is to prove that, the average event
dependency probability (P(∪n

j=1 E ∗j)) is P(Ei| ∪j∈S E ∗j) ≤ P(Ei). In orderto prove this result we make use of the event
dependency graph structure. Event dependency graph structure G = (E, V ) such that v = 1, . . . ,m and E = E1, . . . , Em
where an event Ej is mutually independent of the events if Ej|(i, j) ∉ E. If the degree of the dependency graph is bounded
by d and 4 · d · P(Ei) ≤ 1, then it is proved that the average event dependency probability is non-zero P(∪n

j=1 E ∗j) ≥ 0.
Consider the dependent events occur very rarely, then we can assume these event to be represented by Poisson trials,

P([Ei]k) =
e−µµk

k!
(1)

for a set of k events. Using k = 0 we have P(E ∗i) ≈ e−µ
≤ P([Ei]k). Therefore, wehave P(Ei| ∪j∈S E ∗j) ≤ P(Ei).

In order to limit the degree of nodes to d, we have to restrict the number of dependent events. To do this, we define a
confidence level which limits the choice of the possible sub-strings. Consider E∗ ∈ E as the possible range of sub-string
patterns which limits the match probability of θ . So θ is the event probability that a sub-string pattern si is within the range
of wi for a population size of k out of K i.e. P(E ∈ E∗) ≥ θ for i = 1, 2, . . . , k.

In order to derive the relation between θ and PEi as follows. Assume that r̄p is the average estimate of the reproducibility
PEi such that Pmiss ∉ [ ¯PE∗ − δ, ¯PE∗ + δ]. Then, we have the following propositions,

• if PEi < ¯PE∗ − δ then X = k ¯PE∗ > k(PEi + δ) = E[X](1 +
δ
PEi

)

• if PEi > ¯PE∗ + δ then X = k ¯PE∗ > k(PEi − δ) = E[X](1 −
δ
PEi

).

Applying the Chernoff bounds, we have,

P(X ≥ (1 + δ)µ) < e−
µδ2
3 (2)

P(X ≤ (1 − δ)µ) ≤ e−
µδ2
2 . (3)

Assume that δ < ¯Pmiss we have,

P(Pmiss ∉ [ ¯Pmiss − δ, ¯Pmiss + δ]) = P

X < k · Pmiss


1 −

δ

Pmiss


+ P


X > k · Pmiss


1 +

δ

Pmiss



< e−

k·Pmiss


δ

Pmiss

2

2

= e−
k·δ2

2·Pmiss + e−
k·δ2

3·Pmiss .

Since P(Pmiss ∉ [ ¯Pmiss − δ, ¯Pmiss + δ]) = 1 − θ , the above result reduces to,

θ = 1 − e−
k·δ2

2·Pmiss − e−
k·δ2

3·Pmiss . (4)

3.2.2. Energy-aware key size selection
In order to determine the possible values of θ , we define the probability of reproducibility of a bit and the bit-pattern

of length w. We use the l, w and t of the pattern based PUF based key generation introduced in [22]. We define the bit
reproducibility as rp. The probability for a bit to be successfully estimated or to miss it completely depends on the value of
rp ∈ [0, 1]. In order to derive the relationship of rp and the probability of missing estimating a bit successfully Pmiss−bit , we
state the following rationale. The worst-case when rp = 1, it is impossible to miss accurate bit estimation, so Pmiss−bit = 0
and when rp = 0, it is impossible to estimate the bit, so Pmiss−bit = 1. Therefore, we have,

Pmiss−bit =
1
2

−


rp −

1
2


. (5)

For a bit-pattern of length w indexed with t , we assume Binomial trials (X = k · r̄p) to assume the bit estimation for the
whole pattern. We can modify the above formulation as follows.

p = Pmiss = 1 −

T
t=0

(wt)P t
miss−bit(1 − Pmiss−bit)

w−t . (6)

In this section, we optimize this key size to retain a viable power constraint on the cognitive radio sensor so to minimize
the impact on its necessary processing capabilities (e.g. spectrum sensing). We assume that the main power consumption
determinants are spectrum sensing and data encryption functionalities. And the other potential computational capabilities
incur relatively low power consumption demands in a cognitive radio sensor.
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We define a throughput metric (TM) to find the relative energy expenditure with respect to the key size as follows.

TM(n) =
ztr(n)

ztr(n) + zpr(n)
(7)

where ztr(n), zpr(n) denote the energy consumption in transmitting an encrypted packet and the fraction of energy
consumed in encrypting the data using n bit key respectively.

ztr = E1
total · Psuccess · n · t1. (8)

E1
total denotes the energy consumed during transmission of one bit, t1 is the transmission time and Psuccess denotes the

probability of the channel state without any interruptions offered by the PUs and collisions from SUs [41]. This is the most
desirable transmission state, so we term this scenario as the best case. It is reasonable approximation to use Psuccess ≈ e−

n
Rvp

where R is the datarate of a CR sensor and vp is the channel idle time modeled as an exponential random variable [41]. The

worst possible channel state will then have Pfail = 1 − Psuccess = 1 − (e−
n

Rvp ) implies that there exists no transmissions. We
assume that E1

total is constant over t1.

zpr = E2
total · e(n) · t2 (9)

where E2
total denotes the energy consumed during encryption of one bit, t2 is the processing time to perform encryption for n

bits and e(n) denotes the encryption function. The total energy expenditure should be less than Etotal < E1
total + E2

total where
Etotal denotes the total energy available for consumption. We assume that E2

total is constant over t2.
Since our proposed scheme is a symmetric encryption technique, we approximate the encryption function, e(n), as a

one-way block cipher computation with the transformation function as XOR 2. Based on the efficiency of a hash function
stated in [42], we can approximate the average computational efficiency of the encryption function for n bit blocks in the
CR sensor as follows.

e(n) =

n
i=1

mi
s·n

n
(10)

where mi is the processed number of bits at the ith iteration, n is the total number of output bits and s is the number of
operations to process n − mi bits.

3.3. Reliability model

In this section, we formally present the reliability model and analyze its properties using failure criteria.

3.3.1. Reliability requirements
Surveillance data (D) should be available for decisionmaking.We defineD = {d1, d2, d3 . . . dn−1, dn} as the data required

to make a decision Ei at the ith instance, where dj (where j = 1, 2, . . . , n) is the data required by the jth CR sensor. In order
to analyze this reliability requirement we use queuing theory. Consider the arrival of surveillance data should be available
with minimum uncertainty. This implies that if the data availability is less than that of the required amount of data, then
uncertainty is claimed to be high. This is not desirable as a reliable decision making will have a significant risk. Suppose the
uncertainty caused due to absence of 1D amount of data is computed using a utility function U1D.

We assume that the n CR sensors experience homogeneous channel conditions in transmission and also assume the
channel is available and the channel conditions do not vary significantly over time. With this assumption we define another
channel availability based utility function Uchannel ∈ [0, 1]. Fig. 3 shows both the utility functions Uchannel and U1D. We have
considered the possible utility variation of a channel depending on the interference UchannelInt (inferred the utility bounds
based on the results published in [41]).

By using a particular surveillance data D is required to formulate a decision Ei to perform a specific disaster recovery and
emergency management operation Oi. The reliability of decision R(Ei) to select to perform the operation Oi, depends on the
reliability of surveillance data R(D) and the relative importance of performing that operation at the ith time instance. We
can formally state this as follows.

Reliable decision, to perform an operation is define as R(Ei) = p(Oi) ∈ [0, 1]. The decision to select to perform the
operation Oi is denoted by 1 and not being successful denoted by 0. We calculate p(Oi) as a conditional probability (R(D))
based on the reliability of Di.

R(Ei) ∝
R(Di)

R(Di) + A(Di)
(11)

R(Ei) = α ·
R(Di)

R(Di) + A(Di)
(12)
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Fig. 3. Utility functions (a) Uchannel and U1D and (b) variation of channel utility depending on the interferences Uchannel and UchannelInt .

where, α is the relative importance of the operation Oi.
As defined before, suppose we have a sequence of event data generated by n CR sensors Di = d1, d2, . . . , dn. texp is the

expected time of surveillance by that particular CR sensor. Psuccess is defined in Section 3.2.2 as the reliability of the wireless
channel with minimum interference for communication. Then, reliability R(D) is defined as follows.

R(D) ∝ n · Psuccess · texp · TM(n) (13)

R(D) = β · n · Psuccess · texp · TM(n) (14)

where, β is the relative importance of Di at the ith time instance.

3.3.2. Failure criteria
If any sensor drains its battery power to a level Ev that encryption function cannot be performed for bit size v of the key

but for a smaller bit size v′ (where v > v′). For a conventional sensor node secure transmission does not occur at TM(v′) as
Eav < TM(v) and TM(v) > TM(v′). We assume that the channel availability is guaranteed. The impact of data unavailability
(UA(Dj)) of k CR sensors at the jth time instance can be stated as follows.

UA(Dj) = β · U1D · trem · Psuccess · TM(v′) (15)

where trem is the remaining time that a CR sensor is expected to transmit the required data. If the channel conditions vary,
then Psuccess gets replaced by Uchannel.

Suppose there is a minimum key size v∗ such that minimum security against a possible interception of the transmitted
data can be prevented, then a minimum reliability (Rmin(D)) can be guaranteed so as to preserve the data transmission over
a period of texp.

Rmin(D) = β · U1D · n · Psuccess · texp · TM(v∗). (16)

When there is a fixed width key (i.e. of v bits) for encryption the CR sensor will not be able to transmit data securely and
thus there will be an uncertainty in the data D′ (where D < D′ and 1D = D − D′) that is required to make the decision Ei at
the ith time instance. Based on the above formulation, it is evident that in order tomaintain aminimum reliability in decision
making it is evident to have minimum key size to encrypt data in a CR sensor so as to ensure required data availability with
minimum uncertainty.

4. Evaluation

In this sectionwe describe the theoretical validation of the energy-aware pattern size computation. Then, we experimen-
tally evaluate the effectiveness of the proposed solutions using the reliability model described in Section 3.3 with real-life
sensor data for smart grid surveillance application.

4.1. Optimum energy-aware pattern size computation

When δ2

Pmiss
< 1, variation of θ with k is shown in Fig. 4.

We have used Eqs. (5) and (6) to compute the p values with different n values. We use Eqs. (10) and (9) to compute
thevariation of e(n)with different n values. Asmentioned in Section 3.2.2, based on our assumption that themain processing
functions are encryption and spectrum sensing we have,

zpr < 0.5 (17)

sincezpr + ztr < 1. (18)
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Fig. 4. Variation of θ with k when δ2

Pmiss
< 1.

Fig. 5. Optimum pattern size computation. Variations with pattern miss detection probability (p) and the energy consumption for encryption (e(n)) for n
bits.

Based on Eq. (9) and the above relation we have,

e(n) ∝ zpr → e(n) < 0.5 (19)
n

i=1

mi
s·n

n
< 0.5. (20)

Then, in order to determine the bit pattern size in order to minimize the bit-pattern reproducibility we use the Eqs. (5)
and (6).

The results shown in Fig. 5, we have the optimal solution at w = 32 with e(n) = 0.4844 and a probability of the not
reproducing the bit pattern p = pmiss = 1. The results also indicate that depending on the capabilities of the cognitive radio
sensor, larger key sizes can also be accommodated with lower probability to reproduce the bit pattern however, with an
increased cost of battery power consumption.

4.2. Experimental scenario: reliability for fire detection in cables in smart grid using temperature measurements communicated
over CRSN

Temperature sensing of cables, ducts and chases is a vital DRM pro-active measure in smart grid to ensure seamless
power delivery [43]. For example, in October 2014, in Calgary in Canada the city had to experience a power outage due to an
underground electric fire effecting over 5000 residents and 1200 businesses [44]. Existing approaches for distributed real-
time temperature sensing of electrical cables include use of fiber optic cables [45] and sensor networks [43]. Due to limitation
of providing reliable communications wireless multimedia sensor networks, CRSN is ore useful for surveillance applications
in smart grid [46]. Therefore, the reliability of accurate decision making in DRM for smart grid essentially need to have
the communication channel reliability as a pre-requisite to facilitate secure data transmission over a channel. Therefore, the
main objective of this experimental scenario it is to demonstratewhywe need to have an energy-aware sensor data encryption
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Table 2
Number of samples analyzed for four sensor nodes.

Sensor 01 Sensor 02 Sensor 03 Sensor 04

Normal operating conditions [48]
Maximum 30.38 30.59 27.92 27.96
Minimum 26.29 26.41 25.69 25.97
No. of samples 4632 4690 4590 4690

Possible fire events
Maximum 65 58 64 50
Minimum 50 54 60 50
No. of samples 500 500 500 500

Table 3
Rmin variationswith1D for fire event data (when Psuccess does not vary depending onUchannelInt
and for a constant key size v).

1D 10% 20% 30% 40%
Mean variation 84 92 93 97
U1D 0.73 0.62 0.54 0.47
Psuccess 1 1 1 1
TM(v) 0.5 0.5 0.5 0.5
Rmin(1D) 0.73 0.62 0.54 0.47

Table 4
Classification error to declare a fire event with respect to 1D using neural network classifier.

1D 10% 20% 30% 40% 50%
Error 5% 12% 24% 33.8% 53%

method in CR sensors to securely transmit temperature sensing data, provided that the communication channel is reliable
over the CRSN in order to perform reliable DRM to handle cable fire disasters in smart grid.

We use two data sets (D1 and D2) for four (04) sensors. For D1 we have used the public data set on temperature
measurements for four (04) sensors [47,48]. We have considered D1 to indicate normal operating conditions over a day.
However, in themultihop temperature sensor data set of [48], the introduced events indicated by ′1′ had a range ofmaximum
48.24 and a minimum of 26.97. According to the published results in [45] this range was too narrow to declare a potential
fire event. Therefore, we have generated the second data set (D2) with a higher temperatures to indicate anomalous data.
The anomalous data are considered as fire event trigger points which has to be detected to take a DRM action Oi. Table 2
shows the summary of the number samples that were used in the analyses.

We consider the decision Ei to be to declare a fire. The accuracy of this decision depends on the availability of data by k
CR sensor.We also define the current energy profile for each CR sensor and calculate the likelihood of each sensor to encrypt
the data using an l bit key. We assume that 50% of the k CR sensors experience a exponential energy expenditure over the
next time instance. Then, there is an uncertainty (see the U1D in Fig. 3) due to the missing data from k

2 sensors. So there is
an uncertainty to distinguish between normal operating condition and a fire event. Then, we compare the reliability of this
scenario against a situation when the CR sensors can generate data with a key l′ (where l > l′) such that over m more time
instances can encrypt data to be transmitted securely. Furthermore, if Psuccess vary due to channel conditions. Then, UA(Dj)
(see Eq. (15) in Section 3.3.2), depends on the utility of the channel (i.e. based on the utility variation shown in Fig. 3). We
performed our experiment in Matlab. In our evaluation, we used fuzzy numbers to represent the utility functions, energy
profile and the time variation [49,50]. The main reason for selecting fuzzy numbers to represent each of these variables are
due to several reasons.We need to associate the uncertainty of lack of available data as an estimate. This is not possiblewhen
we use crisp values. Therefore, we use fuzzy numbers for the variables to calculate the extent of information unavailability.
We compute U1D based on the mean variation of the data.

Interpretation of results: As shown in Table 3, U1D degrades to a relatively low level. On the other hand, when1D reduces
more than 40%, it is difficult to detect the fire event accurately using a neural network classifier (Table 4). Therefore, we
conclude that U1D should be at least 40% to identify a fire event with minimum uncertainty. When Psuccess is not a constant,
Table 5 shows the variation of Rmin. Based on the results it is evident that it is more suitable to have energy-aware key size to
encrypt surveillance sensor data in CR sensors in order to provide reasonable reliability guarantees in terms of transmitting
over a texp time, provided channel availability by CRSN.

5. Conclusion

Cognitive radio sensor networks are more useful communication facilities for smart grid to facilitate reliable commu-
nications for reliable surveillance and situation-specific disaster recovery and emergency management. In view of recent
attacks on smart grid surveillance is of vital importance to ensure seamless energy generation and distribution. In order
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Table 5
Rmin variations with 1D for fire event data (when UchannelInt
varies over time for a constant key size v).

1D 10% 20% 30% 40%
Mean variation 84 92 93 97
U1D 0.73 0.62 0.54 0.47
UchannelInt 0.2 0.3 0.4 0.5
TM(v) 0.5 0.5 0.5 0.5
Rmin(1D) 0.146 0.219 0.292 0.365

to perform reliable disaster recovery mechanisms, authenticity of cognitive radio sensors and sensor data is vital. In this
paper we propose a privacy preserving smart grid surveillance architecture over cognitive radio sensor networks. The main
privacy preserving feature is a novel energy-aware key generation method for secure surveillance data transmission. We
analyze its usefulness using a reliability model. Our contributions mainly solves the question of how reliability of surveil-
lance can be assured with known energy constraints, channel availability with minimum security guarantees using the
energy-aware key generation for encryption. We have performed theoretical analysis as well as simulation based analysis
to experimentally validate the proposed model. Based on the results it can be concluded that the proposed security guaran-
tees can ensure reliable decision making in situation-specific disaster recovery and emergency management operations in
smart grid surveillance.
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