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Abstract—This article presents a visual analytics
framework, idMotif, to support domain experts in identifying motifs in protein
sequences. A motif is a short sequence of amino acids usually associated with
distinct functions of a protein, and identifying similar motifs in protein sequences
helps to predict certain types of disease or infection. idMotif can be used
to explore, analyze, and visualize such motifs in protein sequences. We introduce
a deep-learning-based method for grouping protein sequences and allow
users to discover motif candidates of protein groups based on local explanations
of the decision of a deep-learning model. idMotif provides several interactive
linked views for between and within protein cluster/group and sequence analysis.
Through a case study and experts’ feedback, we demonstrate how the framework
helps domain experts analyze protein sequences and motif identification.

T he sequences of proteins are integral to dictat-
ing their function. The specific order of amino
acids, placement of a conserved set of amino

acids at specific regions of a protein, and segregation
of protein structure/sequence into subdomains within a
multi-domain protein all signify functional importance.
The protein sequences are conserved during the pro-
cess of evolution such that amino acid properties
across the length of the protein are preserved by amino
acids with identical properties. Detecting conserved
amino acid patterns within the whole protein sequence,
termed motifs, and the position of each amino acid
within the motif can signify the critical role of that
motif towards a biological function. For example, the
identification of motifs that are unique to a pathogenic
bacterial protein can be a new strategy to treat bacte-
rial infections.

Biochemists constantly depend on protein se-
quence analysis and visualization tools to ana-
lyze/identify important protein motifs and to design
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experiments to test the role of a motif. While several
methods have been proposed for automatically de-
tecting motifs, these approaches can miss some mo-
tifs/locations or be computationally expensive1. Thus,
it is necessary to develop an interactive tool that allows
domain experts to examine protein sequences and
motifs for verification even though motifs are discov-
ered automatically. Existing work for analyzing and
visualizing biological sequences contributes to many
areas, including identifying sequence differences2 and
comprehending protein interaction3. In addition, sev-
eral methods focus on sequence consensus or an
overview of sequences2. However, these tools don’t
allow users to interactively explore the characteristics
of proteins that are segregated into different groups by
comparing individual protein sequences or sequences
that are representative of that particular group. Such
interactive analysis will aid biochemists in discovering
motifs that maybe present in protein sequences.

To address this issue, we present idMotif to en-
able a user to get insights into protein sequences
and identify motif candidates by observing sequence
patterns. It is designed through an iterative discussion
with a team of biochemists. Instead of automatically
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identifying motif candidates, we compute the possibility
of each location as a motif candidate by using a deep-
learning-based approach. This possibility is referred
to as the saliency value and is visualized in idMotif.
In our deep-learning model for motif identification, we
utilized a pre-trained model to generate embeddings
of protein sequences. We then fine-tune the model
to predict groups of protein sequences. Lastly, we
compute motif candidates by applying an interpretation
method to the fine-tuned model. idMotif offers multiple
linked views to present an overview and details of
individual and groups of protein sequences as well as
the saliency values of the sequences. It helps domain
experts explore protein sequences, comprehend the
characteristics of the sequences in different groups of
protein sequences, and identify motif candidates. We
conducted a case study and had expert feedback to
demonstrate the effectiveness and usability of idMotif
in identifying motif candidates. The main contributions
of idMotif are summarized as follows:

• We present an interactive visual analytics frame-
work, idMotif, to assist domain experts in analyz-
ing individual and groups of protein sequences
and identifying motif candidates.

• We offer a deep-learning based analytical ap-
proach that fine-tunes a deep-learning model
and applies an interpretation model to the fine-
tuned model to discover motif candidates.

• We demonstrate the effectiveness of our frame-
work with a case study and through qualitative
user feedback from domain experts.

RELATED WORK

Motif Discovery
Several methods have been proposed to identify motifs
automatically. DeepBind4 uses a convolutional neu-
ral network (CNN) to identify nucleotide motifs. The
authors convert the frequency of the four nucleotide
bases of DNA sequences at each location to four 2D
channels and predict the existence of each base at
each location. iDeepS5 predicts RNA-protein binding
sites by combining two CNNs and a Bidirectional Long
Short Term Memory network (Bi-LSTM). In the method,
the CNNs extract the features of the input sequences,
and the Bi-LSTM is exploited to capture the long-term
dependency between the extracted features. Recently,
Yamada and Hamada6 used Bidirectional Encoder
Representations from Transformers (BERT) for fore-
casting the interaction between RNA sequences and
RNA-binding proteins and analyzed the attention of
BERT for interpreting the prediction. All these methods

require manual sequence exploration for domain ex-
perts’ verification because they can miss some motifs.
idMotif aims to incorporate several interactive views,
a fine-tuned pre-trained Transformer model, and an
interpretation model in motif discovery to aid domain
experts in detecting motif candidates.

Sequence Visualization

There are various frameworks for visualizing and ana-
lyzing sequences in many areas7. These frameworks
aid users in extracting patterns, discovering the rela-
tionship between inputs and outcomes of sequence
models, and forecasting sequences. For example, LST-
MVis8 is a visual analytics framework for helping users
understand hidden states in a recurrent neural net-
work. The framework visualizes text with hidden state
patterns similar to a specific text defined by a user.
idMotif not only displays similar protein sequences to a
representative protein sequence but also allows users
to compare groups of protein sequences.

Some of the existing sequence visualization meth-
ods focus on comparing multiple biological sequences.
Multiple sequence comparisons reveal high similarity
in sub-sequences/regions in two or more sequences,
in terms of location, order, proximity, and orientation2.
For instance, Furmanová et al.3 developed an in-
teractive visualization framework for protein complex
exploration, comparison, and filtering at various levels
of detail. invis9 is a visual analysis tool to explore pro-
jected RNA sequence data and compare sequences.
Strobelt et al.10 proposed the Vials for understanding
alternative mRNA sequences by comparing single and
groups of samples. Additionally, the tool can be used
for quality control of data. Unlike these methods, the
focus of our work is to comprehend the characteristics
of individual and groups of protein sequences and
identify motif candidates.

In addition, motif visualization can be used for the
prediction of protein structures and functions. Exist-
ing motif visualization methods are helpful in building
consensus on sequences or comparing nucleotides
or amino acids at each location to show relation-
ship patterns between locations within multiple se-
quences2. While these motif visualization methods
focus on identifying motifs in a single type/group of
protein sequences, idMotif enables users to build se-
quence groups and identify and compare motifs of
each protein group based on their features extracted
from a deep learning model.
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BACKGROUND AND TASKS
This section presents how protein sequences were
obtained and the target tasks of idMotif. We held
several meetings with domain experts in bioinformatics
and biochemistry to define the target tasks.

Protein Sequence Acquisition
Most protein sequence data is obtained through
nucleic acid sequencing and processing as follows:
1. A nucleic acid, a fundamental building block, is
extracted from a cell or tissue sample. The nucleic
acid sample is the input for a sequencing platform,
which utilizes a sequencing-by-synthesis approach
to get multiple short reads covering the input nucleic
acid sample. The output is many overlapping short
nucleotide sequence reads.
2. Sequence assembly software is then used to
assemble the input of short overlapping sequencing
reads into contigs (longer and less fragmented
sequences) using either de novo techniques or a
similar organism’s assembled nucleic acid sequence
as a reference template. The output is a long and
intact nucleic acid sequence, as opposed to ones
that are short and fragmented. The assembled output
nucleotide sequence may be as complete as a whole
microbial genome or whole mammalian chromosome.
3. The assembled sequences are deposited into a
sequence database, and submitted sequences have
undergone a combination of automated and manual
processing. One aspect of the genome annotation
pipeline is that it identifies open reading frames and
lists the genes found in that nucleic acid sequence.
The software also translates the gene sequences
into protein sequences comprised of amino acid
sequences.

Tasks
We adopted Sedlmair et al.’s nine-stage framework11

for problem discovery and visualization design and
implementation. We collaborated closely with two do-
main experts who have worked in bioinformatics and
biochemistry for over 20 years. We had multiple dis-
cussions with them at different stages of development,
each lasting 30 minutes to 1 hour. During our dis-
cussions with the domain experts, they expressed a
need for a tool to help identify motifs in groups of
protein sequences. Specifically, they wanted a tool that
could explore both individual and groups of protein
sequences and discover motif candidates related to
specific groups of protein sequences. Once identified,

they could then validate the results through experi-
ments in their lab.

To meet this need, we identified several tasks that
the tool should be able to perform based on the
discussions:

T1 Classify groups of protein sequences:
Some protein sequences can have unique character-
istics that distinguish them from other types of protein
sequences. The tool should enable domain experts to
explore and discover groups of protein sequences with
common characteristics.

T2 Identify motif candidates:
Each group of sequences can have short sequence
patterns, motifs, associated with distinct functions
within the group. Domain experts are interested in
identifying motif candidates in each group.

T3 Compare different groups of protein sequences:
There can be distinctive sequence patterns for different
groups of protein sequences. Comparing these pat-
terns can aid domain experts in understanding the ba-
sis for the separation of protein sequences as distinct
groups.

T4 Comprehend the similarity within each group:
In some cases, protein sequences in the same group
can share only a few common amino acids yet still
belong to the same type. It is crucial to identify the
common patterns within each group. Additionally,
protein sequences may be misclassified due to a
clustering method. The similarity computation within a
group helps domain experts discover misclassification
and correct it.

MOTIF DISCOVERY
One of the goals of idMotif is to identify motif candi-
dates in protein sequences. To achieve this goal, we
developed a deep-learning-based motif identification
method. The method consists of two steps: 1) training
a deep-learning model to capture the characteristics
of groups of protein sequences and 2) using a local
explanation method for understanding the contribution
of amino acids in the sequences of a particular group.
Fig. 1 illustrates a pipeline of our identification method.

Sequence Prediction
To extract the characteristics of groups of protein
sequences, we convert input protein sequences to
embeddings and apply a deep-learning model to the
embeddings. A CNN and recurrent neural network
(RNN), including long short-term memory (LSTM) and
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FIGURE 1. A pipeline of the proposed motif identification
method. (a) Given protein sequences, (b) we use a pre-
trained model (ProtBert 12) to generate embeddings for the
sequences. Next, we (c) fine-tune a Transformer model (Prot-
Bert) for sequence group prediction and then (d) apply a local
explanation method (SHAP) to the sequences.

gated recurrent unit (GRU), can be used to classify pro-
tein sequences. While CNNs focus on local structure,
Transformer-based models capture more global con-
text than CNNs13. Capturing global context is impor-
tant in our task because motif candidates represent-
ing protein sequence groups can be long sequences
comprising several hundreds of amino acids. In addi-
tion, although RNN-based models can capture long-
term dependency in sequences similar to Transformer-
based models, Transformer-based models have shown
better performance than an RNN model and a CNN
model in biological sequence prediction13. Thus, in
this work, we employed a Transformer-based model,
ProtBert12 that is a deep language model specifically
designed for protein sequences, for protein sequence
classification (Fig. 1(b)).

ProtBert, a large language model, consists of both
local and global representations, and has been trained
on a large corpus of protein sequences. The amino
acids have been treated as tokens, and ProtBert pro-
duces a vector representation with a length of 1024
for each amino acid token. The length of protein se-
quences can be varied, so first, we find the maximum
length of protein sequences in our dataset, Lenmax . To
ensure consistent input size, we padded each protein
sequence to the maximum length (Lenmax ), resulting
in a standard size of 1 × Lenmax × 1024 for each
protein sequence. The use of ProtBert allowed us to
obtain a powerful vector representation for each amino
acid token in our protein sequence dataset, facilitating
downstream analyses.
Subsequent to the generation of protein sequence em-
beddings using ProtBert, we conducted a fine-tuning

FIGURE 2. An architecture of our protein sequence prediction
model, including (a) a pre-trained ProtBert and (b) a fine-
tuning process.

process on the embedding dataset utilizing the Prot-
Bert model (Fig. 1(c)). The objective of this fine-tuning
process was to create a model that can accurately
differentiate and classify each protein sequence based
on its underlying features.
During classification, the Transformer model outputs
confidence probabilities for each group, indicating
the model’s belief in the presence of that particular
class/group in the protein sequence. These probabil-
ities reflect the model’s prediction and serve as the
basis for generating explainers.

Model Architecture.
The ProtBert can generate features/embeddings for
the input protein sequences (Fig. 2(a)). We begin by
processing an incoming sequence of length L, which
is composed of L amino acids. The initial step involves
tokenizing and positional encoding, which transform
each amino acid into a vector. A pre-trained ProtBert
model, which includes a stack of five self-attention
layers with 16 attention heads, is applied to the vectors.
This process generates protein sequence embeddings.

We then fine-tune the ProtBert model to classify
protein sequences (Fig. 2(b)). In fine-tuning, we first
concatenate the embeddings and apply mean pooling.
It generates a fixed-length (1024) vector. Subsequently,
a fully-connected layer operates on the vector, followed
by a softmax operation. The possible output sequence
types of the fine-tuning part are the number of protein
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FIGURE 3. idMotif contains five linked views. (a) The Cluster view shows an overview of clustered protein sequences. (b)
The Sequence view presents the details of each protein sequence. (c) The Projection view displays the similarity of protein
sequences. (d) The Motif view displays the details of a selected region in the Cluster view for discovering motifs. Lastly, (e) the
Distribution view visualizes the length distribution of protein sequences in a selected cluster.

sequence groups (e.g., 3 for Cas1 dataset). In this fine-
tuning process, we use a dataset with labels. The fine-
tuned model can be used for similar protein sequence
datasets. This process containing 105M parameters
constitutes our comprehensive motif candidate iden-
tification pipeline.

Motif Identification
Existing work showed that deep learning models have
a tendency to concentrate their prediction on traditional
motifs14. To understand which location our deep learn-
ing model focuses on, we deployed a popular local
explanation model, SHAP15, which can be applied
to any deep learning model (Fig. 1(d)). Several local
explanation techniques have been proposed to aid
in comprehending machine learning models, including
LIME, SHAP, and Integrated Gradients. SHAP stands
out as it can accurately identify significant features
in Transformer-based classifiers15. We apply SHAP
to protein sequences. Internally, SHAP first performs
tokenization on the input sequences, which converts
the sequences into a sequence of tokens. It then
generates a set of perturbations by creating mod-
ified versions of the input sequences, where each
modification involves replacing a single token with a
special "mask" token. SHAP uses a variant of the
Shapley values algorithm to compute the contribution
of each token to the model’s prediction. The algorithm
computes the difference in the model’s output when a

token is present compared to when it is replaced with
the mask token. The contributions of all tokens are then
aggregated to compute an overall explanation for the
model’s prediction. By analyzing these contributions,
we can identify the specific parts of protein sequences,
motifs, that contribute to their distinct grouping. In
this work, we refer to these contributions as saliency
values.

IDMOTIF DESIGN
To explore and analyze input protein sequences to
perform the identified target tasks, we provide several
linked views, as shown in Fig. 3: the Projection view,
the Cluster view, the Sequence view, the Motif view,
and the Distribution view. In the Cluster view, the
Sequence view, and the Motif view, we apply a global
alignment16 to protein sequences for comparing the
sequences. Additionally, a user can highlight specific
amino acids based on their saliency values by select-
ing a range of saliency values.

Workflow.
In a typical workflow, users first examine the Projection
view to identify groups of protein sequences. They
then move to the Clustering view to compare each
group, where certain regions are highlighted as poten-
tial motif candidates by a system. Additionally, users
can understand the distribution of protein sequence
lengths in the Distribution view, which may characterize
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FIGURE 4. Comparison of two different projected data using
UMAP: (a) the saliency values generated from SHAP analysis
of the fine-tuned model, and (b) the embedding directly from
the pre-trained ProtBert. Different colors indicate different
groups of protein sequences.

the groups. At this stage, users may discover a motif
candidate(s) based on the saliency values of repre-
sentative sequences. In some cases, users explore
protein sequences in each group in the Sequence
view to correct misclassified sequences or to further
refine a motif candidate. Finally, users confirm a motif
candidate by selecting a region corresponding to a
motif candidate sequence and inspecting the selected
region’s amino acids and saliency values in the Motif
view.

Projection View
The Projection view provides the user with an overview
of protein sequences based on their saliency values. In
the Projection view, we project the saliency values of
each protein sequence to a 2D scatter plot, where each
circle represents a protein sequence. The Projection
view uses the saliency values generated from SHAP
analysis of the fine-tuned model as an input for the
view instead of the embedding directly from the pre-
trained ProtBert because it encodes more information
and can better separate the protein sequences (Fig. 4).

This scatter plot assists the user in identifying and
grouping similar sequences together easily (T1). There
are several dimensionality reduction methods, and we
applied UMAP17 to the saliency values because it can
preserve both the local and global structure of the input
data.

After creating the scatter plot, we apply a cluster-
ing method to protein sequences (circles) in the plot
to help the user find protein sequences with similar
saliency values. By default, K-medoids clustering is
used for partitioning the data points. The center point
of each cluster will be displayed as a representative se-
quence for each cluster in the Cluster view. K-medoids

FIGURE 5. An example of the Cluster view. The Cluster view
can visualize two types of information: (a) the type of amino
acids and (b) the saliency values of amino acids.

clustering requires the number of clusters as an input
parameter. The user interactively changes the number
of clusters and finds an optimal value by exploring the
results of clusters in the Projection view, the Cluster
view, and the Sequence view. If the user is not satisfied
with the result of K-medoids, they can employ another
clustering method. Additionally, the users can select
circles and create a new cluster manually by brushing.
The selected circles are highlighted in the Sequence
view, helping the user compare them. We color each
circle to its corresponding cluster in the Projection view.
Fig. 3(c) illustrates an example of the Projection view.

Cluster View
The Cluster view allows the user to compare the simi-
larities and differences between clusters based on their
representative protein sequences (T3). Once the user
finds the optimal number of clusters, a representative
protein sequence for each cluster is visualized in the
Cluster view, as illustrated in Fig. 5. The Cluster view
displays the sequences by using horizontal bars, where
each row displays a representative protein sequence
of each cluster, and each column/bar represents each
sequence location. The color of each bar can encode
the types of amino acids (Fig. 5(a)) or the saliency
values of amino acids (Fig. 5(b)). After consulting
with domain experts, we chose a color scheme for
amino acid sequences that is widely used in existing
protein sequence visualization tools. It may be misin-
terpreted that there is a relationship between clusters
and sequences, as both have identical color schemes.
However, our primary objective was to utilize distinct
colors in both clusters and sequences. Additionally, we
use a color scheme for clusters in the views located
on the left side of idMotif (the Projection view and the
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Distribution view), and a color scheme for sequences
in the rest of the views on the right side of idMotif. This
separation reduces the likelihood of any confusion or
misinterpretation.

On the left side of the view, we display three types
of information: 1) a cluster/group identified by our
clustering method in the Projection view, 2) the ratio
of the protein sequence groups assigned by domain
experts (e.g., Group 1, Group 2, and Group 3 in Cas1
protein sequences18), and 3) the variation of protein
sequences in each cluster based on their saliency
values. A pie chart shows the ratio of the sequence
groups. The pie chart assists the user in understanding
the uniformity of protein sequences in a cluster, i.e.,
whether there is a single protein group in the cluster. If
there are multiple protein groups in a cluster, the user
can further divide them by exploring sequences in the
cluster in the Sequence view. Based on the discussion
with domain experts, we display both clusters and pro-
tein groups. This is because domain experts wanted
to see how accurate a clustering method is and what
types of protein sequences the method misclassified.
A Gaussian curve displays the variation of protein
sequences in each cluster, where a standard deviation
of the curve is the standard deviation of Euclidean
distances between the center point and other data
points of each cluster in the Projection view. Moreover,
upon selecting a sequence, the user can assess the
presence of either the same or different amino acids
at each location.

At the top, bars with inverted y -axis represent the
accumulated saliency values, where the x-axis is the
location of each amino acid, and y -axis indicates the
accumulated saliency values at each location. The
accumulated saliency value at a location i is computed
as follows:

Acci =
N∑

j=1

∥Sij∥ (1)

where Sij is a saliency value of j th protein sequence at
i location, and N is the number of protein sequences.
This chart enables the user to pinpoint significant
regions within the clusters, which could potentially be
considered as motif candidates. In addition, the user
is allowed to select a specific range of saliency values,
and the corresponding locations will be highlighted.

We have observed that some columns in the Clus-
ter view do not contain any amino acids or relevant
information. For these instances, we removed the
empty columns and indicated their deletion with lines.
This streamlines the sequence comparison process
and offers a concise overview of the representative
sequences.

FIGURE 6. An illustration of the Sequence view. (a) A
stacked bar below a representative protein sequence is shown
above the baseline to represent the frequency of amino acids
matching the representative protein sequence at a specific
position. For amino acids that do not match, their frequency
is represented with bars stacked below the baseline.

Design Rationale.
Initially, we designed the Cluster view similar to the
top part of the Sequence view, where we summarized
the frequencies of the amino acids at each location for
each cluster. However, we found that users couldn’t
easily understand the patterns among groups when
motif candidates did not have the perfect consensus
(e.g., one amino acid is prevalent in one location,
but still many other amino acids exist at the same
location within a group.). Identifying distinctive patterns
or motif candidates for each cluster is one of our main
tasks (T2), and the potential motif candidate locations
can have similar amino acid and saliency value pat-
terns. These observations motivated us to display a
representative protein sequence for each cluster. We
found that domain experts prefer horizontal bars to
other shapes, including circles, because a group of
bars with similar values/colors naturally form a region
(rectangle), so they can easily discover them.

Sequence View
The user can choose a specific cluster in the Cluster
view, and the details of all protein sequences in the
chosen cluster are then visualized in the Sequence
view (Fig. 6). This allows the user to comprehend
the similarity and dissimilarity of protein sequences
in the selected cluster (T4). The main part of the
Sequence view displays the details of each sequence
in a selected cluster, where each column indicates
amino acid location, and each row represents a protein
sequence. The color of each cell corresponds to the
types of amino acids and their saliency values, the
same as the Cluster view.

The user can sort rows in the Sequence view
based on embedding similarity, saliency similarity, and
sequence similarity. The embedding similarity ESi

r ,j is
computed between a representative protein sequence
Si

r and a protein sequence Si
j in a selected cluster i ,
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as follows:

ESi
r ,j =

Emb(Si
r ) · Emb(Si

j )
∥Emb(Si

r )∥∥Emb(Si
j )∥

Si
r ̸= Si

j and Si
j ∈ Si

(2)
where Emb(x) is an embedding of a protein sequence
x , and Si represents all the protein sequences in a
cluster i . To calculate saliency similarity, we substitute
embedding with saliency values in Equation (2). For
the sequence similarity, we count the number of the
matching amino acids at each location between Si

r and
Si

j .
idMotif also enables the user to manually select a

different protein sequence in a cluster to serve as the
representative protein sequence of the cluster. Similar
to the Cluster view, the user can compare the repre-
sentative protein sequence to other protein sequences
in a cluster by highlighting the same or different sub-
sequences. At the top, idMotif utilizes stacked bars to
display the frequencies of the amino acids in a selected
cluster (Fig. 6(a)), similar to invis 9. A stacked bar is
shown above the baseline to represent the frequency
of amino acids that match the representative sequence
value at a specific location. Amino acids that don’t
match are represented with bars stacked below the
baseline. On the left side, we display the group and
name of each protein sequence. Additionally, the sim-
ilarity between a representative protein sequence and
each protein sequence is visualized by using a gray
rectangle, where the width of the rectangle indicates
the degree of similarity based on the chosen similarity
computation method.

Motif View
The Motif view visualizes detailed information about
specific locations selected in the Cluster view. This
includes the frequencies of amino acids and the dis-
tribution of saliency values. The view shows the char-
acteristics of selected sub-sequences and helps the
user determine whether it is a motif candidate (T2). For
each cluster, the view provides two types of informa-
tion: horizontally stacked bars showing the amino acid
frequencies (top) and a boxplot displaying the saliency
value distribution across all input sequences (bottom)
at the selected locations. Figs. 3(d) and 10 illustrate
examples of the Motif view.

Distribution View
A protein group can be associated with the length
of its sequence, but it’s not the only factor. To un-
derstand this relationship between groups of protein
sequences and their length distribution, we display
the length distribution of protein sequences for each

FIGURE 7. The distribution of sequence lengths for three
groups of protein sequences: (a) Cluster 0, (b) Cluster 1, and
(c) Cluster 2.

cluster as histograms. In the Distribution view, users
can compare length distributions across clusters easily.
The Distribution view is updated when the user adds or
removes a cluster in the Projection view. Fig. 7 shows
the distribution of sequence lengths for three groups
of protein sequences.

EVALUATION
We evaluate the effectiveness of our motif identification
method and present a case study as validation for
idMotif. Furthermore, we conducted informal interviews
with two domain experts in bioinformatics and bio-
chemistry and collected their feedback.

Dataset - Cas1 Sequences
Two domain experts have utilized publicly available
data to analyze protein sequence motifs present in pro-
teins associated with type II-A clustered regularly inter-
spaced short palindromic repeats (CRISPR)-CRISPR-
associated (Cas) systems18. CRISPR-Cas systems
are adaptive immune systems that protect bacteria and
archaea from invading genomes such as phages and
plasmids. In this study, we focused on Cas1, a protein
that belongs to the type II CRISPR-Cas systems, which
plays a critical role in the adaptation stage of the
CRISPR-Cas systems. Cas1, along with Cas2 protein,
inserts pieces of foreign DNA into the CRISPR locus of
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FIGURE 8. Accuracy comparison. We compared the accuracy
of motif identification between our method and MEME by
counting matching motifs with known motifs 19 within specific
similarity ranges (p-values).

bacterial or archaeal genome as “spacer” sequences.
These spacer sequences are then utilized to generate
CRISPR RNAs (crRNAs), which help the CRISPR-
Cas systems to sequence-specifically recognize and
eliminate foreign genetic materials in subsequent en-
counters. The domain experts analyzed 167 protein
sequences and segregated each protein into three
distinct groups18.

Accuracy of Motif Identification
We assessed the performance of motif identifica-
tion using the Cas1 Dataset. Specifically, protein se-
quences belonging to each group (Group 1: 87 se-
quences, Group 2: 55 sequences, and Group 3: 25
sequences) were submitted to idMotif for identifying se-
quence features. To evaluate the accuracy of our motif
identification method, we used a motif comparison
algorithm19, which measures the similarity between the
discovered motifs by our method and known motifs.
The comparison algorithm generates a p-value, which
indicates the probability of a random motif with the
same width as the target having an optimal alignment
with a match score as good as or better than the
target. The smaller p-value means a detected motif
is more accurate. Additionally, we computed p-values
of motifs identified by a popular motif discovery algo-
rithm, MEME20. In the experiment, we discarded motifs
with large p-values (p-value > 0.05). We counted the
number of matching motifs within specific ranges of

p-values. Our result shows that idMotif detects motifs
more accurately than MEME (Fig. 8).

Case Study
The experts began by exploring the Cas1 dataset
to identify groups of protein sequences that shared
similar characteristics in the Projection view (T1). They
discovered three groups of protein sequences in the
view (Fig. 3(c)). The experts then inspected each group
to identify any misclassified protein sequences (T4). In
one group, Cluster 0, they found two protein sequences
that were different from other sequences in the group
based on the sequence similarity score. The group
that these sequences were assigned by idMotif was
different compared to the group assigned by domain
experts, confirming that they were misclassified, and
the experts corrected the group accordingly. Next, they
analyzed the similarity among the groups by examining
the amino acid patterns of the representative protein
sequence of each group in the Cluster view. They
found that there were distinctive patterns among the
groups (Fig. 5(a)). The experts also analyzed the
distribution of protein sequence lengths of each group
because each group might have a different distribution.
They found that one group has relatively short se-
quences (Cluster 0, Fig. 7(a)), and another group has
a distribution with relatively long sequences (Cluster 2,
Fig. 7(c)), while Cluster 1 has a mix of both lengths of
Clusters 0 and 2 (Fig. 7(b)). This helped the experts
identify the unique pattern of each group (T3).

Additionally, they explored the saliency values of
the representative sequences. They observed that a
region in a group has a negative contribution to their
classification. To confirm that this region has similar
contributions across protein sequences within each
group, they also analyzed the saliency values of the
sequences in each cluster (T4). They compared a
representative sequence to other sequences in the
Sequence view and found that protein sequences cor-
responding to the region have similar saliency values
(Fig. 9).

Lastly, they analyzed the saliency values of the
protein sequences and pinpointed specific parts of
the sequences that could potentially serve as motifs
in the Cluster view. They achieved this by selecting
regions with high accumulated saliency values (T2).
Subsequently, they scrutinized each selected region in
the Motif view to verify its potential. For instance, they
found that some amino acids in a selected region, from
location 53 to location 56, were prevalent in Cluster
0 and Cluster 2, as illustrated in Fig. 10. Therefore,
the experts confirmed that sequences corresponding
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FIGURE 9. An expert selected (a) a region in Cluster 0 in the Clustering view, and they verified that (b) protein sequences
corresponding to the region have similar saliency values in the Sequence view.

FIGURE 10. An example of motif identification in the Motif
view. Some amino acids from location 53 to location 56, were
prevalent in Cluster 0 and Cluster 2, respectively.

to this region from Cluster 0 and Cluster 2 are motif
candidates for Cluster 0 and Cluster 2.

Expert Feedback
We presented idMotif to two domain experts in bioinfor-
matics and biochemistry and collected their feedback.
They had experience with analyzing and visualizing
biological data, including protein sequences. We held
hour-long interviews. First, we described the overall
goals of the proposed tool and demonstrated the dif-
ferent interactive visual components of our platform

to them. With a brief explanation, they were able to
gain insights from each view. We then let the experts
explore the system for 20 minutes freely. They used the
Cas1 dataset. During the exploration, they analyzed
the data and asked questions. After the exploration,
the experts gave their feedback on our idMotif tool.

Overall, the feedback was positive, with the experts
expressing satisfaction with the tool’s ability to explore
protein sequences and identify motif candidates. They
particularly appreciated the Projection view, allowing
them to quickly identify groups of protein sequences.
One expert noted that the Sequence view was helpful
in detecting outliers in the sequences. They also appre-
ciated the Sequence view, as the deep-learning-based
system effectively identified motifs. One expert men-
tioned that displaying saliency values in the Sequence
view provides an additional level of classification be-
yond existing alignment and classification methods.

In the Clustering view, the experts were able to
identify and differentiate the unique characteristics
and locations of each cluster. They found the tool
helpful in comparing regions across different groups,
providing insights into the differences among them.
The Sequence view also aided in this understand-
ing. Additionally, the Distribution view was deemed
especially useful when analyzing proteins with varied
sequence lengths. The experts expressed interest in
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using the tool to classify proteins based on whether
they are from pathogenic or non-pathogenic bacteria
and identify motifs that distinguish pathogenic vs. non-
pathogenic bacterial proteins. Finally, they suggested
adding displays for other parameters related to amino
acids, such as hydrophobicity scales and transfer free
energy, to enhance the tool’s usefulness.

Discussion

Impact on Motif Identification
Motif identification for groups of protein sequences
involves two steps: clustering and motif discovery.
Most existing methods or tools using Matlab, R, or
Python libraries or web applications (e.g., MEME20)
that domain experts use in their daily practices for
these tasks create text files or static plots. Moreover,
these tools/methods require checking the result of
each step manually and running a motif identification
method for each detected group separately. During the
interview with domain experts, they expressed that as
compared to these tools/methods, idMotif is a powerful
tool with multiple linked views for clustering protein
sequences, investigating different aspects of groups of
protein sequences, and discovering motif candidates
interactively. They also mentioned that idMotif provides
an overview and the details of groups of protein se-
quences and motif candidates, which are useful for
discovering outliers and refining motif candidates for
groups of protein sequences.

Limitations
Although our proposed framework is effective for iden-
tifying motifs in protein sequences, it has some limi-
tations. Firstly, it may not be suitable for other genetic
data, such as DNA and RNA sequences, as it uses a
pre-trained model specifically for protein sequences,
ProtBert. To address this issue, we plan to explore
other pre-trained models that are appropriate for dif-
ferent types of genetic data.

Secondly, the maximum length of protein se-
quences in the Cas1 dataset is 310, which can make
visualizing and exploring large datasets with long se-
quences challenging, despite the various overview and
filtering methods we provide. To solve this issue, we
will investigate alternative approaches, such as hierar-
chical grouping/clustering, to offer a better overview of
the data.

Lastly, in the fine-tuning process, to compute
saliency values of amino acids, idMotif requires ground
truth labels for protein sequences, i.e., all the protein
sequences should be classified into one of the target

protein groups. Unfortunately, obtaining ground truth
labels is not always possible in some datasets. How-
ever, after the fine-tuning process is done on a protein
dataset, the fine-tuned model can be applied to similar
protein sequence datasets without labels.

CONCLUSION
We introduced idMotif, a visual analytics framework
for exploring protein sequences and discovering motif
candidates interactively. Through the use of a deep-
learning model and a local explanation model, we
were able to accurately compute the contributions of
amino acids and offer several linked views for analyzing
individual and groups of protein sequences. Based on
the presented case study and qualitative feedback from
domain experts, we conclude that idMoitf is able to
assist domain experts in understanding the character-
istics of individual and groups of protein sequences
and the relationship between protein sequences and
motif candidates. DNA and RNA sequences consist
of a chain of nucleotides, and each nucleotide can
have one of the four bases, similar to there being
20 amino acids in protein sequences. Thus, we can
generalize our framework to DNA and RNA sequences
by replacing ProtBert with a pre-trained model for
DNA/RNA sequences. In the future, we plan to use our
framework for DNA/RNA sequences to discover their
motifs.
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