
Robot Code Documentation for Project 3
April 30, 2003

Team 4 – Justin Fuller, Rahul Kotamaraju, Matthew Lawrence

1.0 Overview
The software used for the third project was designed to incrementally

incorporate the robot’s sensor array and accomplish the tasks necessary for efficient
completion of the assignment. The architecture is almost completely deliberative, but
it does include a small amount of reactive behavior in the alignment routines. The
main algorithm consists of three major tasks: obtain the closest block, move to the
closest destination location, and drop off the block. The robot repeats these three
tasks until it obtains and delivers all known blocks. Additionally, the software
structure allows for a world model that can be arbitrarily modified before runtime.

2.0 World Model
The team designed the world model after determining which facets of the

project environment are necessary for the robot to function properly. The world
model includes four major categories: block position, destination position, block
population, and robot position. Though the code does not explicitly store it in any
data structure, the code assumes an arena representation of an 8 foot by 12 foot grid
with resolution of one half foot. There is a special function, acceptInputWM, the
purpose of which is to incorporate user-defined input values into the operational
world model.

2.1 Block Position
There may be anywhere from zero to sixteen blocks in the arena during any

given run. The world model allows for an x and y coordinate for each of sixteen
blocks. The world model assumes every orange block is a point. For those blocks
that don’t exist, negative 1s are placed in the model input, as specified by the
instructor, Dr. Hougen. The robot replaces these negative 1s with 9999s, essentially
erasing the block from the world model by making it infinitely far away.

2.2 Destination Position
The arena may contain as many as four destination locations, but no less than

one. As with blocks, the world model designates each destination location as a single
point, which represents its center. The six-inch margin, which black electrical tape
demarcates, is assumed in robot operation. However, there is no allowance for this
margin in code.

2.3 Block Population
The code determines how many blocks are present in the world based on input

at design time. This value is used for comparison with a counter that is incremented
each time a block is delivered; in this way, the robot knows when it has delivered the
expected number of blocks.

2.4 Robot Position
The robot’s position is a necessary item for determining the best way to

interact with blocks and destinations. A combination of location and direction, the

robot constantly updates its own position when the navigate function is called (see
code).

3.0 Tasks
The robot accomplishes three complex tasks using the world model. Though

all of them share particular functions, such as navigate and cage, they are very
different conceptually.

3.1 Obtain Nearest Block
The robot uses its world model to find out which of the sixteen possible blocks

is supposedly closest (the findClosestBlock function). This involves several distance
calculations, and the robot is not moving when it performs these computations. Once
a candidate is selected, the robot first “erases” the block from the world model by
giving it impossibly large coordinates, and then it navigates to the block location from
its current position. In order to account for a possible dislocation of about one half
foot, the robot then calls the CorrectError function and navigates forward an
additional five inches to ensure that the block is in the cage. The robot then locks the
cage in preparation for the next step.

3.2 Move to the Closest Destination Location
The robot again uses its world model to find out which destination location is

closest to its current position (using findClosestDest). After determining the best
destination, the robot navigates there, recording its movement. Once the action is
complete, the cage is placed in the release position.

3.3 Drop Off the Block
After the block is released, the robot performs alignAxle, which uses two

independent threads that poll the IR sensors. The robot responds to black tape in
reactive fashion to make slight adjustments to the vehicle’s orientation. The robot
then determines if it is in the north or south side of the arena, and navigates a safe
distance toward the other side before signaling delivery and opening its cage.

4.0 Conclusion
Though there are many aspects of the code that are quite complex, the robot

still errs on the side of simplicity. There are many factors that it doesn’t take into
account, and this leads to a lack of efficiency. However, even in these cases, the robot
reacts reasonably and should make a fairly high score due to its redundancy and
resilience to unexpected conditions.

