

Project3 Presentation

Group 2:

Joshua Shuller Amandeep Gill Celi Sun

Hardware Design

Chassis

- Four-wheeled drive with low center of gravity.
- claw unit with a small motor mounted in the front.

Motors

- Two motors drive powers.
- One small motor drives graper.
- One servo turn CMUCam.

Hardware Design

- Sensors
 - One CMUCam
 - Two encoders detect two rear wheels.
 - Two reflectivity sensors used to line up.

Software Design

- Hybrid/Deliberative
 - Planning :get all cubes to closest goal.
 - code could be described as behaviors being different functions of the code.

For example: goStraight()

turnWithEncoders()

Software Design

Navigation:

- Use CMUCam to turn when there was a cube within 2' of robot .
- Otherwise, use encoders to turn .
- Use encoders for distance travelled measurements.
- Use Reflectivity sensors to align with black tape in a goal location.

- Moderately Successful:
 - 59 Points Got 3 goals and one false positive goal .
 - With sensor type and precision limitations, software did a reasonably good job of navigation.

Summary

- Positive Aspects of Software
 - Sensor Fusion of CMUCam and Encoders to acheive faster turning.
 - Location and Direction correction by Centering itself inside of the Goals.

Summary

- Negative Aspects of Software:
 - Fail to use a cube to be landmark.
 - Can't recover when lost.
 - Memory and Speed constraints more sophisticated path planning.
 - a bunch-o-bugs .