Project #5

Computer Science 2334
Fall 2007
User Request: “Develop a historical Hurricane Database.”
Milestones:
1. Use text file I/0 to read and write text files. (10 points)
2. Create custom ADTs that are used to abstract the data, which are stored in lists; (15 points)
and create custom ADTs that abstract the usage of the lists.
3. Implement the Comparable interface and the equals() method in each ADT. (10 points)
4. Use HashMaps and arrays to store, retrieve, and display information related to (15 points)

storms and their positions as described below.

5. Use the sort() and binarySearch() methods from the Collections class to search for (20 points)
information related to the description below.

> Develop and use a proper design. (15 points)
> Use proper documentation and formatting. (15 points)
Description:

An import skill in software design is extending the work you have done in a previous project. For this
project you will rework Project 2, using the Java HashMap class and exception handling.

A database system stores and manages multiple pieces of information. Sometimes this information is
related in simple or complex ways. For this project, you will implement a simple database of storms and
cities. This database will allow you to look-up a list of storms that have come within a user-specified
number of miles from a US City.

Your software will read in two data files that are both comma-delimited (.csv files) and store their
information into the database. One data file holds information about Hurricanes, Tropical Storms, and
Tropical Depressions; the other holds data about cities. For the storm data file, the information includes
the name of the storm, the track of the storm (recorded as a series of latitude and longitude coordinates),
the wind speed and severity (category) of the storm, and the date and time associated with each recorded
location. For the city data file, the information includes the zip code of the city, the name of the city, the
state in which the city is located, the location of the city (its latitude and longitude), its time zone, and
whether the city is on daylight saving time.

Once the files have been read in, your program will enter a loop in which it asks the user for the name of
two more files. This should be done using the technique described in the section below on reading input
from the keyboard. The first of these two additional files will contain a list of queries for which your
program should display information. Each query will be a pair consisting of a zip code and a distance.

For each query, your program will find the city corresponding to the given zip code, then use that city's
latitude and longitude to find all storms that came within the distance (specified by the second component
of the query) to the city. The results will then be written to the screen, using System.out.println(), and
written out to a user-specified output file. This output file will be the second of the two additional files the

CS 2334 Fall 2007 1

user specifies. Each storm that came within the specified search range to the location specified will be
listed in the output of the program, according to how far away the storm was in ascending order, e.g., the
closest storm will be listed first and then by when the storm occurred. Once the results of running the
program have been written to the screen and the output file, the user will be asked if he or she wishes to
continue with the program or exit. If the user asks to continue, your program will return to the point in
the loop at which it asks the user for the name of two more files (the query and output files).

The names of the input files that contain the storm and city data will be supplied on the command line by
the user. The format of the command to run the program will be:

java Project5 <name of stormfile> <name of city data file>

where Pr oj ect 5 is the name of your project, <name of storm fil e> is the name of the file containing
the storm information, and <name of city data fil e> is the name of the file containing the city data.

Learning Objectives:

_, Sorting and Retrieving:

Sorting information can be useful to users because the output may be organized in a way that makes it
easier to use. It can also be useful to software developers because it can improve the efficiency of their
software. Consider finding the cities based on their zip codes. If the data structure holding the city data is
unsorted, you need to do a linear search through it to find a city. However, if the data structure is sorted
based on zip code, you can do a binary search instead. A binary search will, in most cases, take far fewer
comparisons to find the desired entry than a linear search.

To observe this efficiency gain, write three versions of the project. In the first version, leave the data
structure holding the city data unsorted and search through it linearly when the user provides the query
and output file names. In the second, sort this data structure based on zip code, then do binary searches

on it.
‘ You will measure the amount of time the system uses in each case for internalli

handling city data. Internally handling city data for binary search includes

, sorting and searching of it. Do not count the time the system uses for
reading in the city data from the file or carrying out other activities, such as searching through the
storm data or waiting for the user to provide input. Run each version of your program 5 times using
only the sample provided query file one time for each run, record the values for times used for (1)
inserting (2) sorting and (3) retrieving in each version, and present them in a simple table that includes
totals and averages. An example of the table format is shown below.

Version 1 Insert Tine Sort Time Retrieve Tine Total Time
Run 1
Run 2
Run 3

CS 2334 Fall 2007 2

Run 4
Run 5
Aver age
Versi on 2 Insert Tine Sort Time Retrieve Tine Total Tine

2
>
A W DN

If you only use the sample query file, does the first, second, or thitd version of your code spend less time
internally handling city data? Why? If you use many additional query files, do you expect the first,
second, or fhird version of your code to spend less time internally handling city data? Why? Rather than
creating additional query files, try having your system repeatedly process the same query file. Is there
some number of repetitions at which a less efficient version becomes a more efficient version? Is so,
approximately what number is that?

Put the table of data and your answers to all of these questions into MILESTONES.txt under milestone 5.

File Formats:

Storm Input File:
An example set of data from the storm input file is shown below.

" YEAR', " MONTH", " DAY", " TI ME", "I D", " NAME", " LATI TUDE", " LONG TUDE", " W NDSPEED
(KNOTS) ", " PRESSURE", " CATEGORY", " GENERAL LOCATI ON (BASIN) "

1949, 6, 11, "0000Z", 1, " NOTNAMED", 20. 200, - 106. 300, 45,0, " TS", "East-Central Pacific"
1949, 6, 11, "0600Z", 1, " NOTNAMED", 20. 200, - 106. 400, 45,0, " TS", "East-Central Pacific"

1952, 7, 20, "0600Z", 25, "NOTNAMED', 21. 700, - 112. 900, 45,0, " TS", "East-Central Pacific"
1952, 7, 20, "12002", 25, "NOTNAMED', 22. 000, - 113. 600, 45,0, " TS", "East-Central Pacific"

2002, 9, 19, "18002", 1286, "1 S| DORE", 20. 400, - 81. 700, 65, 983, "H1", "North Atlantic"

CS 2334 Fall 2007

|2002,9,20,"OOOOZ",1286,"ISIDCRE",20.700,-82.300,75,979,"H1","hbrth Atlantic"

Fields:

e Year - The year the storm occurred.

e Month - The month the storm occurred.

e Day - The day of the month the storm occurred.

e Time - The time the location and associated information about the storm was captured. Note that each
storm is listed as a sequence of measurements of the storm.
ID - A unique integer ID associated with a storm, ranging from 1 to 1320. Note that ID numbers are
not duplicated.
Name - The name of the storm. Some storms do not have a name, in which case the name is recorded
as NOTNAMED, and some storms have the same name as other storms.
Latitude - The latitude the measurement was taken at.
Longitude - The longitude the measurement was taken at.
Wind speed - The wind speed at the time the measurement was taken at, recorded in Knots.
Pressure - The pressure at the time the measurement was taken at. For some measurements a pressure
measurement was not taken, in which case the pressure is recorded as zero.
Category - The category of the storm: TD for tropical depression, TS for tropical storm, H1 for
Hurricane Category 1, H2 for Hurricane Category 2, H3 for Hurricane Category 3, H4 for Hurricane
Category 4, and H5 for Hurricane Category 5.
e General Location - The oceanic basin where the storm occurred, either North Atlantic or East-Central

Pacific.

City Data File:

An example set of data from the city data file is given below:

"zip","city","state", "l atitude", "l ongitude","tinmezone", "dst"
"00210", "Portsnout h", "NH", "43. 005895", "-71. 013202", "-5", " 1"
"00211", " Portsnouth","NH", "43. 005895", "-71. 013202", "-5", " 1"

Fields:

You should not have to worry about the fields that contain the timezone or daylight savings time (dst)
information. Note that some cities have multiple zip codes. You must store all city and zip code
combinations in case a search is made on an alternate zip code.

Output Format:

The text written to the screen and the output file for each storm matching the search criteria must follow

the following output format.
Line 1: Zip code searched for

Line 2: Name of city and state

Line 3: An empty line

Line 4: Name of storm found

Line 5: Distance from zip code

Line 6: Basin the storm occurred in

Line 7 through n: Latitude, longitude of the storm along with the time, day, month,

and year the storm occurred, and the wind speed, pressure and severity (one line per
measurement).

Line n+l: Repeat Lines 3-n for the next storm found.

Storms should be listed according to how close they are to the zip code specified, in ascending order, and
then by date in ascending order.

CS 2334 Fall 2007 4

Sample Output (this is an example based on partially made up values):

Zip Code searched for: 70341
City and State: Belle Rose, LA

Andr ew

10 Ml es

North Atlantic

10. 800 -35.500 0200 16-08-1992 25 1010 Tropical Depression
11.200 -37.400 1200 17-08-1992 30 1009 Tropical Depression
11.700 -39.600 1300 17-08-1992 30 1008 Tropical Depression
18.000 -56.900 1000 19-08-1992 45 1005 Tropical Storm
25.600 -67.000 1400 22-08-1992 65 994 Hurricane Category 1
25.700 -69.700 1600 22-08-1992 95 0969 Hurricane Category 2
25.600 -71.100 1000 23-08-1992 110 961 Hurricane Category 3
25.500 -72.500 1300 23-08-1992 130 947 Hurricane Category 4
25.400 -74.200 1600 23-08-1992 145 0933 Hurricane Category 5
29.200 -91.300 1000 26-08-1992 120 955 Hurricane Category 4

Design Issues:

Class size:

Beginning programmers tend to have a small number of classes with very large methods. The most
extreme version of this is the programmer who puts everything in the main method of the program
(sometimes to avoid using parameter passing). This is a disastrous approach. The main program becomes
so large and unwieldy that it's hard to find and understand the code. Weird interactions between
unrelated things can start happening, and pretty soon the program is impossible to understand and debug.
This is an example of inadequate (or in the extreme case, missing) design.

Experienced programmers tend to have a large number of classes with small methods. The reason is that
experienced programmers know that it's easier to debug smaller methods than large ones. An experienced
programmer's main method will often be only 5-7 lines long. It will show the overall structure and
organization of the application, and leave all of the details in the methods.

As you are programming, you need to make a conscious effort to work towards better structure and
design. Focusing on making smaller methods and classes is usually a good step for most beginning
programmers. Of course, the classes should be coherent and self contained, and not randomly organized.
Additionally, interactions between classes should be minimized. Pairs of classes with lots of interactions
are often a sign of poor class construction.

If you don't know how to pass parameters reliably and properly in Java, learn how to do it now. If you need
help, come to office hours. It is impossible to program well if you can't pass parameters properly.

Implementation Issues:

File 1/0:
To perform output to a file, use the FileWriter class with the BufferedWriter class as follows.
import java.io.*;

FileWriter outfile = new FileWriter("filename");
BufferedWriter bw = new BufferedWriter(outfile);
bw.write("Any string can go here");

bw.newLine();

When you have finished writing to a file, you must remember to close it, or the file won't be saved.

CS 2334 Fall 2007 5

bw.close();

If you fail to close the file, it will be empty!

Reading Input from the Keyboard:
In order to get the location information from the user, you need to read input from the Keyboard. This

can be done using the InputStream member of the System class, that is named in. When this input stream
is wrapped with a BufferedReader object, the readLine method of the BufferedReader class can be used to
read and store all of the characters typed by the user into a String. Note that readLine will block until the
user presses the Enter key, i.e., the method call to readLine will not return until the user presses the Enter
key.

The following code shows how to wrap and read strings from System.in using an InputStreamReader and a
BufferedReader.

import java.io.*;
BufferedReader inputReader = new BufferedReader (
new InputStreamReader(System.in));

e

System.out.print(“Type some input here: “);

String input = inputReader.readLine(); /* readline will not return until
* the user presses Enter. */

System.out.println(“You typed: “ + input);

You need to add 'throws IOException' to the signature of any method that uses or that directly or indirectly
calls a method that uses a BufferedReader or InputStreamReader.

Calculating the Distance between two positions represented in Latitude and Longitude:
A short supplement will be posted on the class website along with this Project Requirements Handout on

how to calculate the distance between two positions represented using latitude and longitude
measurements.

Extra Credit Features:

Finally, I suggest that you visit with the instructor if you have an idea for an extra credit feature in order
to make sure it is acceptable.

Due Dates and Notes:

1. Your revised design and detailed Javadoc documentation are due on Wednesday, November 28™.
Submit your revised UML design on engineering paper or using UML layout software at the beginning
of class. Submit the “stubbed” source code using the submit tool on codd.cs.ou.edu by 9:00pm. This
submission counts as part of the design and documentation portions of the project grade. The commands

CS 2334 Fall 2007 6

for submitting your “stubbed” Java source code on codd.cs.ou.edu are:
cd design2
/opt/cs2334/bin/submit ¢s2334-010 project5-design <.java filenames>

where <. java filenames> is a list of the . java files you are submitting.

2. The final version of the project is due on Wednesday, December 5". Submit your final UML design on
engineering paper or using UML layout software at the beginning of class. Submit your source code files
and the COMPILATION.txt, EXECUTION.txt, and MILESTONES.txt files using the submit tool on
codd.cs.ou.edu by 9:00pm. The commands for submitting your final project on codd.cs.ou.edu are:

cd project5

/opt/cs2334/bin/submit ¢s2334-010 project5-final <.java filenames>
where <. java filenames> is a list of the .java files you are submitting. Make sure that the
COMPILATION.txt, EXECUTION.txt, and MILESTONES.txt files are present in the directory along with all
of your .java source files.

3. The Get Out of Jail Free due date for this project is Friday, December 7". Submit your final UML design
on engineering paper or using UML layout software at the beginning of class. Submit your source code
files and the COMPILATION.txt, EXECUTION.txt, and MILESTONES.txt files using the submit tool on
codd.cs.ou.edu by 9:00pm. The commands for submitting your final project on codd.cs.ou.edu using Get
Out of Jail Free are:

cd project5

/opt/cs2334/bin/submit ¢s2334-010 project5-goojf <.java file names>
where <. java filenames> is a list of the .java files you are submitting. Make sure that the
COMPILATION.txt, EXECUTION.txt, and MILESTONES.txt files are present in the directory along with all
of your .java source files.

4. You are not allowed to use the StringTokenizer class. Instead you must use String.split() and a regular
expression that specifies the delimiters you wish to use to “tokenize” or split each line of the file.

5. You may write your program from scratch or may start from programs for which the source code is
freely available on the web or through other sources (such as friends or student organizations). If you do
not start from scratch, you must give a complete and accurate accounting of where all of your code came
from and indicate which parts are original or changed, and which you got from which other source.
Failure to give credit where credit is due is academic fraud and will be dealt with accordingly.

6. As noted in the syllabus, you are required to work on this programming assignment in a group of at
least two people. It is your responsibility to find other group members and work with them. The group
should turn in only one (1) hard copy and one (1) electronic copy of the assignment. Both the electronic
and hard copies should contain the names and student ID numbers of all group members. If your group
composition changes during the course of working on this assignment (for example, a group of five splits
into a group of two and a separate group of three), this must be clearly indicated in your write-up,
including the names and student ID numbers of everyone involved and details of when the change
occurred and who accomplished what before and after the change.

Each group member is required to contribute equally to each project, as far as is possible. You must
thoroughly document which group members were involved in each part of the project. For example, if
you have three functions in your program and one function was written by group member one, the second
was written by group member two, and the third was written jointly and equally by group members three
and four, both your write-up and the comments in your code must clearly indicate this division of labor.

CS 2334 Fall 2007 7

