
EXTENDING DATABASES TO SUPPORT IMAGE EDITING

Greg Speegle, Allen M. Gao, Shaowen Hu

Department of Computer Science
Baylor University
Waco, TX. 76798

speegle@cs.baylor.edu

Le Gruenwald

School of Computer Science
University of Oklahoma

Norman, OK 73019
gruenwal@cs.ou.edu

ABSTRACT

In order to understand similarity between images, recent
research has focused on adaptable searches [9] and fuzzy
queries [4]. However, one of the best means for determin-
ing similarity between images is to know how the image was
created [2]. If the image is a combination of other images in
the database, then there is a great deal of similarity between
the base images and the created one. This requires extend-
ing the database to support image editing operations. We
have built a preliminary system which does this by using a
web-based image editor and a image server. The editor and
the server understand a logical model language that repre-
sents images. This paper then explores the issues of perfor-
mance for deriving images from a sequence of operations.

1. INTRODUCTION

We have built a prototype of an object-oriented multimedia
database management system (MMDBMS). Our MMDBMS
stores the editing operations, collectively called transforms,
used to create media objects, instead of the objects them-
selves. This provides three advantages. First, since the
editing operations require 170 bytes of space on average,
this method significantly reduces storage requirements for
already compressed data [10]. Second, the transforms can
be used to improve similarity search by providing semantic
information about the image [2]. Third, the history of the
development of an image can be captured in the database.

However, our MMDBMS requires support by multime-
dia editing tools in order to be successful. Since different
editors use different operations, a mapping from the oper-
ations performed to a common editing language is needed.
Our system uses the logical model language, denoted LML,
which captures the basic image editing functions. A web-
based image editor called Ritet translates user operations
into LML operations. The collection of all LML operations
which are used to create an imaged are stored by the image
server as a transform. When Ritet requests an image that
is stored as a transform, the instantiation subroutine creates

the image from the list of operations and delivers it to the
editor. Thus, our system provides all of the basic services
of an image server with support for image editing.

Ideas similar to our work can be found in [3] and [8].
In [3], multimedia objects are treated as binary large ob-
jects (BLOBs). Editing of media objects is translated into
operations on BLOBs. Handles to BLOBs are stored in a
relational database. Unfortunately, BLOB operations are
not sufficient to perform all required media object opera-
tions. For example, there is no way to describe the dithering
needed to double the size of an image. In [8], a notion sim-
ilar to transforms is presented. There, scripts are passed to
image editing tools in order to create new images. How-
ever, their approach performs these operations outside the
database itself. This can lead to problems with deleted ref-
erences and inefficient specifications, both of which can be
solved by including the transforms within the database.

The rest of the paper is organized as follows. Section 2
presents the LML and our meta-structure. Section 3 presents
implementation details for creating images from lists of op-
erations. Section 4 concludes this work and outlines the rest
of our project. It should be noted that this paper focuses on
images, but we will apply this work to other media types.

2. THE MODEL

The database must have a mechanism to support image edit-
ing. This mechanism controls insertion and deletion of trans-
forms and images in the database, and creates images from
transforms. This requires a meta-structure for the data and a
language for modeling image editing operations. The meta-
structure consists of a transform-dag which represents the
history of the transform. An arc in a transform-dag from o 1

to o2 means that o1 is used to create o2. In this case, o1 is
called the base image, and o2 is called the derived image.
As its name suggests, a transform-dag is a directed acyclic
graph. The roots of every transform-dag are stored objects.

The arcs in the transform-dag represent changes made
to one image in order to create another. Those changes are



2
4

cos � � sin � xr(1� cos �) + yr(sin �)

sin � cos � yr(1� cos �)� xr(sin �)

0 0 1

3
5

Figure 1: The Mutate Matrix for �o counter-clockwise ro-
tation

enumerated in a specification. The specification consists of
a sequence of simple operations which capture all of the
editing commands performed by users. Thus, for this work
we use five operations–Merge, Define, Mutate, Modify and
Combine. These operations form a natural set of basic oper-
ations for image manipulations in systems which do not add
information to images by techniques such as drawing. Such
a “nothing gets added” system would prohibit the user from
drawing a bird into a picture, but it would allow copying
a picture of a bird from one image and putting it into an-
other. Adding information, manipulating the color palette
and channel operations are needed in a complete set of im-
age editing tools. Finally, this restricted model is designed
only for RGB (red-green-blue) color models. For simplic-
ity, we present the Mutate operation in detail. The other
operations are defined in [10].

The Mutate operation is used to alter the form of an im-
age or a region of an image. The mutation is accomplished
by mapping an image into a form where every pixel is a
5-tuple, (x,y,r,g,b), where (x,y) is the coordinate location
of the pixel and (r,g,b) is the color component. Each (x,y)
component is put into a 3 x 1 vector (where the last element
in the vector is usually 1). This vector is then multiplied by
a 3x3 matrix in order to get a desired effect. An example
of a �

o counter-clockwise rotation is in Figure 1. Mutate
operations can also move a region to a new location within
the image (Figure 2), or change the size of the image (Fig-
ure 3). Note that in the case of increasing the size of the
image, there are pixels which have no color value. Inter-
polation is needed to fill in the missing values. Likewise,
non-integer coordinates require interpolation in order to get
the pixel values for the integer coordinates. The resulting
image is then mapped back to pixel format, with the order
of the pixels defined by their location in the file. Note the
examples presented here assume the origin is in the lower
lefthand corner. Slightly different matrices are used for im-
ages where the origin is in the upper lefthand corner.

A challenge in shape recognition is invariance under ro-
tation, sizing and other differences which can be captured
by the Mutate operation [7]. Clearly, by knowing that the
image is a rotation, or size change of a known shape, it is ob-
vious that the shape is maintained. Similar benefits related
to other problems can be solved by knowing the derivation
of the image [2].

2
4

1 0 X

0 1 Y

0 0 1

3
5

Figure 2: The Mutate Matrix to move all pixels X to the
right and up Y

2
4

X 0 0

0 Y 0

0 0 1

3
5

Figure 3: The Mutate Matrix to increase the size by factor
of X height and Y width

3. IMPLEMENTATION ISSUES

Each of the basic operations has been implemented to de-
termine the time required to perform the operation and the
space required to store the specification. We simplified the
implementation by restricting defined regions to rectangles.
Experiments were carried out on a lightly loaded dual pro-
cessor Pentium II running at 300 MHz with 512MB RAM
running Solaris 2.6. In order to simulate the overhead of
a database system, each specification entry was stored as
a separate file which had to be opened and read for each
operation. The image files were all JPEG images. The im-
plementation uses a Java applet front-end called Ritet (pro-
nounced “write it”) which stands for Remote Image Trans-
form Editing Tool [6]. This Java applet supports simple
editing operations on images and translates them into the
LML. The LML operations are stored on a server.

The backend server manages the specifications and in-
stantiates the images on demand. It is composed of two
parts, DBProxy and DBServer. DBProxy handles commu-
nication with Ritet and DBServer, including graceful termi-
nation on timeouts. The use of DBProxy allows us to update
either the server or Ritet without interfering with the other
component. We have implemented DBProxy in Java and
DBServer in C++. DBServer instantiates the specifications.
The current implementation simply writes the created image
to a file, and then sends the URL to Ritet.

The instantiation code for each operation has been com-
pleted. The Define operation allocates the memory needed
for the selected region, and copies the pixels into the loca-
tions. All other operations are then performed within this
memory until another Define operations is performed. The
most complex operation on a single image is Mutate. There
are four cases for the Mutate operation. The easiest case
simply moves the relative location of the defined region.



Operation Msec Relative
Define 0.00189 1.00
Modify 0.00042 0.22
Mutate 0.00570 3.02

Combine 0.00372 1.97

Figure 4: Time of LML Operations

This requires virtually no time. Case 2 involves pasting the
defined region back into the picture. If no additional space
is needed in the picture, this requires only the time to mod-
ify memory values. Case 3 occurs when the new region ex-
tends beyond the bounds of the current image. In this case,
the image size is increased to hold the new pixels. Note this
is not always done in image editing software, but this pre-
vents loss of data values. The allocation of memory causes
case 3 to be up to 5 times slower than case 2. The fourth
case for the Mutate operation is a rotation. If the rotation is
not 90 degrees, then additional memory must be allocated.
The pixels in this new memory are set to “transparent” so
that they will not be seen if pasted back into the original
picture. Combinations of Mutate operations can be found
by multiplying the mutation matrices.

In order to develop a formula to estimate the processing
cost of instantiating images, the operations are applied to
various images ranging from 100 x 100 to 900 x 900, with
a comparable percentage of each image selected as the de-
fined region. Figure 4 contains the actual and relative speeds
of the operations in msec per pixel. Each operation is part
of a longer specification which was performed ten times.
In all cases, times farthest from the mean were eliminated
until the standard deviation was less than 5% of the mean.
No more than 2 samples were eliminated by this approach,
and all were clearly “outliers” caused by system loading or
other external factors. The means were plotted against the
defined region size, and the data indicated highly linear rela-
tionships. The coefficients were generated using the method
of least squares.

Figure 4 indicates a nearly linear relationship between
the time to perform the operations (e.g., a Mutate operation
takes 3 times as long as a Define). This allows a simple
mechanism to tune the database with respect to storing ei-
ther the transform or the actual image. A simple regression
test can determine the time to perform the Define opera-
tion for a system. Once that is known, for any specification,
the total time required for instantiation can be approximated
with the formula

T =

kX
i=0

(1 + 2 � Ci + 3 �Mi + 0:2 � Fi) � Pi � S (1)

where T is the total time for the operation, i is the number of

the defined regions,Ci is the number of Combine operations
on that region,Mi is the number of Mutate operations on the
region, Fi is the number of Modify operations on the region,
Pi is the number of pixels in the region, and S is the time to
perform a Define operation for a region of 1 pixel.

For example, let S = 0:00189, as found in Figure 4.
Assume the transformation consists of defining a region of
1833 bytes. Let the region be modified to more green, then
blurred (Combine), then rotated. Next, assume a region of
93,810 bytes is defined. This region is made more red, then
sharpened (Combine) The estimated time for instantiation
would be

6:2 � 1833 � 0:00189+ 3:2 � 93; 180 � 0:00189 = 585 (2)

By experimentation, the actual time to perform this trans-
formation is 596 msec. The simple approximation can be
used to determine if the time to dynamically instantiate the
image is acceptable, or if the image should be instantiated
off-line.

One operation omitted from Figure 4 is Merge. The
Merge operation requires a source image to be instantiated
and then pasted into the target image. The paste operation
is exactly the same as the Mutate case 2 and 3 mentioned
before (in fact, the exact same code is used). The dura-
tion of the Merge operation depends on the time required
to instantiate the source, and to a lesser extent, on the time
required to paste in the image. There is also a small amount
of overhead time needed to find the base image required by
the specification for the transform. Thus, each Merge oper-
ation is approximately as complex as an entire specification
without Merges. To determine if a transform with a Merge
operation should be dynamically instantiated or stored in
the database as an image, the time required to instantiate
the Merge must be added to the time required to perform
the other operations.

Finally, before an image can be returned to the user, the
system must read the base images from the database. If the
images are compressed, they must be decompressed. The
time required to read and decompress images is not included
in the instantiation estimates. Our current implementation
also recompresses the data before sending the information
to the editing tool. We are working on methods to eliminate
this additional time delay.

4. CONCLUSION AND CURRENT STATUS

By extending databases to handle image editing operations,
it is possible to store a sequence of editing operations in the
database instead of the image itself. Sequences save space,
maintain a history of images and provide additional infor-
mation for similarity search. We have defined a common
language to be used by image editing tools in order to cap-
ture these operations. This paper explores the implemen-



tation issues related to the time for instantiation of images.
Every multimedia database system will have different re-
quirements with respect to the time required to instantiate
images. For example, a studio which does touch-ups on
images will not need high performance, but will store very
large, high-resolution images. Such a system would be best
tuned to have very high thresholds for the time to instanti-
ate an image. On the other hand, an online museum would
have few changes (perhaps none) and would have very low
thresholds for instantiating images. Figure 4 indicates a lin-
ear relationship exists between the time to define a region
and the time to perform operations on it. This allows sim-
ple database tuning to determine if an image or a transform
should be sorted in the database. Merge operations require
as much time as instantiating an image.

The MMDBMS is now based on the Postgres object-
relational database system [11]. Base images are stored as
large objects within the database and derived images are
stored as simple tuples. The specifications are stored in ta-
bles with a foreign key linking them to the derived images.
DBProxy and Ritet are unchanged. The image instantiation
routine is an external routine, and the images are still passed
as URLs to the editor. New experiments are underway to de-
termine if the linear relationship between operations holds
in the database environment. An automated feature extrac-
tion routine has been added as a trigger to the MMDBMS.
The trigger is fired whenever a new derived image is saved
in the database. Open issues related to implementation in-
clude optimization [12] and extended the LML to eliminate
the restrictions noted in Section 2.

Despite the presence of an automated feature extraction
routine, it is still an open question as how to best use the
specifications to perform similarity search. For example,
certain characteristics of shape similarity, such as rotation
and scale invariance, are difficult in traditional automatic
feature extraction [7], but are easy when it is known that the
shape is simply part of a Mutate operation [1]. However, it
is also possible to use the semantic information contained
in the view-dag to help with the k-nearest neighbor problem
[2], but the appropriate metrics are currently unknown.

Finally, the work done on images should be extended to
other, larger media sources such as audio and video. The
MPEG-7 [5] initiative is an attempt to standardize the op-
erations which can be performed on a video object. If suc-
cessful, this can lead to a LML for video. Once that is es-
tablished, a meta-structure very similar to the one presented
here can be used to provide direct database support for video
editing.

5. REFERENCES

[1] Mike Aars. Automatic feature extraction for edited
images. Master’s thesis, Baylor University, 1999.

[2] L. Brown, L. Gruwnwald, and G. Speegle. Issues in
using specifications to improve content-based search
of multimedia data. In 1999 International Symposium
on Database Applications in Non-Traditional Environ-
ments, pages 195–202, November 1999.

[3] J. Cheng, N. Mattos, D. Chamberlin, and L. DeMi-
ciel. Extending relational database technology for new
applications. IBM Systems Journal, 33(2):264–279,
1994.

[4] R. Fagin. Fuzzy queries in multimedia database
systems. In Proceedings of the 17th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 1–9, June 1998.

[5] International Organization for Standaridiza-
tion. Mpeg-7:context and objectives.
ISO/IEC/JTC1/SC29/WG11, 1998. Available on
www.cselt.it/mpeg/standards/mpeg-7/mpeg-7.htm.

[6] Minghui Gao. Technical manual for ritet, a remote
image transform editing tool for a mulimedia object-
oriented database server. Master’s thesis, Baylor Uni-
versity, 1999.

[7] G. Lu and A. Sajjanhar. Region-bassed shape repre-
sentation and similarity measure suitable for content-
based image retireval. Multimedia Systems, 7(2):165–
174, 1999.

[8] G. Schloss and M. Winblatt. Building temporal struc-
tures in a layered multimedia data model. Proceedings
of ACM Multimedia 94, pages 271–278, October 1994.

[9] T. Seidl and H.-P. Kriegel. Efficient user-apatbale
similiarity search in large multimedia databases. In
Proceedings of the Twenty-third International Confer-
ence on Very Large Databases, pages 506–515, Au-
gust 1997.

[10] G. Speegle, X. Wang, and L. Gruenwald. A meta-
structure for supporting multimedia editing in object-
oriented databases. Lecture Notes in Computer Sci-
ence, 1405:89–102, July 1998. Proceedings of the
16th British National Conference on Databases.

[11] Ting Zhou. Automatic image feature extraction in a
multimedia database system. Master’s thesis, Baylor
Univeristy, 2000.

[12] Harold Zou. Technical manual for optimizing im-
age specifications. Master’s thesis, Baylor University,
1998.


