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Abstract 

 
In this paper, we present a concurrency control mechanism that deals with three important issues in 
object-oriented databases (OODBs): semantics of methods, nested method invocation and 
referentially shared object. In our scheme, locks are required for the execution of methods instead of 
atomic operations. By doing this, we reduce the locking overhead and deadlocks due to lock escalation. 
Especially, if a method invokes one or more methods on the same object during its execution, our 
scheme does not incur additional overhead for those invoked methods. Also, we provide a way of 
automating commutativity of methods. In addition, we further increase concurrency with the use of run-
time information.  
 
 
1. Introduction 
 
 Object-oriented databases (OODBs) have been adopted for non-standard applications. Examples 

of such applications include computer-aided software engineering (CASE), computer-aided design (CAD), 

and office information systems which require advanced modeling power to handle complex data and 

relationships among such data. 

 OODBs are a collection of classes and instances of these classes. In OODBs, both classes and 

instances are referred  to as objects. A class object consists of a set of attributes and methods through 

which the class's instances are accessed. Users can access objects by invoking methods. In order to make 

sure of the atomicity of user interactions, the traditional transaction model can be used in an OODB. That 

is, users can access an OODB by executing transactions, each of which is defined as a partially ordered 

set of method invocations on a class or an instance object [Agra92]. Commutativity is a criterion widely 

used  to determine whether a method can run concurrently with methods in progress on the same object. 
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Two methods commute if their execution orders do not affect the results. Two methods conflict with each 

other if they do not commute. 

 One of the important characteristics of database systems is manipulation of shared data. That is, 

database systems, including OODBs, allow shared data to be accessed by multiple users at the same time. 

A concurrency control  involves synchronization of access to the database so that the consistency of the 

database is maintained [Ozsu91, Bern87]. Serializability is a widely used criterion of correctness. 

Transactions are serializable if the interleaved execution of their operations produces the same results as 

some serial execution of the same transactions [Bern81]. 

 Supporting concurrency control in an OODB is more complicated than in a relational database for 

the following reasons. First, the semantics of methods on encapsulated objects can be exploited to provide 

better concurrency. That is, when we consider the semantics of two methods, those two methods may run 

concurrently even though they conflict in terms of read and write access modes. But this semantic 

analysis may not be done in an automatic way for many applications since those semantics are drawn only 

by application programmers’ discretion. Second, in an OODB, a method invoked on a higher level object 

can invoke another method defined on a component object of the higher level object. This nested method 

invocation fits naturally with the nested transaction model [Moss85]. This model provides many useful 

features such as increased parallelism, localized failure and reusable partial results. As a result, nested 

transaction models are being used for transaction management in OODBs [Agra92, Muth93, Rese94]. 

Finally, referentially shared objects (RSOs) are a fundamental concern in OODBs since new objects may 

be composed from existing objects. The referentially shared objects may share common subobjects in an 

underlying hierarchy [Herr90]. Thus, method invocations on different objects may not commute due to 

possible conflicts on subobjects. [Rese94] states “such conflict may not be determined a priori and 

defining conflict relationships based on static analysis becomes very conservative”. From this statement, 
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we conclude that  static analysis results in severe degradation in concurrency . Thus, for RSOs, conflict 

relations should be determined  for dynamic method execution. 

 In this work, we present a locking-based concurrency control protocol for OODBs which 

addresses all the issues: semantics of methods, nested method invocations, and RSOs. We reduce 

overhead due to frequent invocation of concurrency control protocol as well as deadlocks due to lock 

escalation. Our locking scheme requires locks for methods only so that we do not need commutativity 

tables for atomic operations invoked during a method execution. We also reduce locking overhead due to 

one or more methods invoked during a method execution on the same object. In addition, we provide a 

way of automating commutativity of methods. Usually, locks by method invocations provide less 

concurrency than locks by atomic operations [Malt93]. We overcome this obstacle by the use of run-time 

information. 

 This paper is organized as follows. In the Section 2, we present previous studies and discuss their 

advantages and disadvantages. In Section 3, we discuss our locking scheme. The paper concludes with 

further work in Section 4. 

 

2. Related Work 

 

 In earlier attempt for nested method invocations, a locking technique is developed for disjoint and 

non-disjoint complex object in [Herr90]. They argue that the traditional approaches dealing with complex 

object have the following problems : the granule-oriented problem, protocol oriented problem and 

authorization problem. Locking entire complex object may decrease concurrency severely although it 

can reduce concurrency control overhead. On the other hand, lock individual object can lead to 

tremendous overhead (granule -oriented problem). In non-disjoint complex objects, updating shared object 
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can lead big overhead since all parent objects of the shared object should be locked (protocol-oriented 

protocol). Combining concurrency control and authorization component can achieve higher concurrency 

(authorization-oriented problem). For example, if a transaction does not have right to update some object, 

an exclusive lock is not required for the object.  In order to solve three problems above, for a complex 

object type, they created the general lock graph, which is to solve the granule-oriented problem. In turn, 

for the general lock graph, the corresponding object-specific lock graph which is to solve protocol-

oriented problem and authorization-oriented problem, is constructed. Although their locking protocol 

considers non-disjoint subobject (RSO), they do not exploit any semantics in order to provide higher 

concurrency. 

 In existing OODBs such as Orion, O2 and Gemstone [Garz88, Cart90, Serv90], they do not exploit 

the nested behavior of OODB transaction in order to increase concurrency. This is due to that their 

locking is based on standard flat transaction model. But, nested method invocations naturally fit a nested 

transaction model as follows: for a nested transaction, there is a top-level transaction which consists of a 

sequence of steps, where each step is either a primitive operation or the invocation of  a subtransaction. 

Each subtransaction may also consist of either or both primitive operations and subtransactions. Thus, in 

OODB, a method invocation corresponds to a subtransaction in nested transaction model. For  this reason,  

the nested transaction model is adopted for nested method invocations. 

. The notions of nested transactions for database systems and a nested two-phase locking protocol 

are introduced in [Moss85]. In [Moss85], locks are only required for the execution of atomic operations 

encountered during a method execution such as reading an attribute. A method execution cannot terminate 

until all of its children are terminated. When a method execution terminates, its parent inherits its locks. 

Locks are discarded only if the top-level transaction terminates. Their work has simplicity in 

implementation, but it does not take advantage of any semantics of methods, which results in limited  

concurrency. 
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 The nested two-phase locking with ordered sharing is proposed in [Agra92]. Their work is based 

on nested two-phase locking in [Moss85] and locks are required for each atomic operation. They provide 

better concurrency using ordered sharing between locks. Unlike commutativity relationships, when 

ordered sharing is adopted, a lock request is never delayed until a transaction holding a conflicting lock  

commits or aborts. That is, a lock request is always granted as follows: for a given operation o1, the set of 

operations are divided into two categories: the set of operations that commute with o1, and the set of 

operations that do not commute with o1. If o1, a lock requester, commutes with some operation o2, a lock 

holder, (i.e., o1 has a shared relationship  with respect to o2), the lock request is granted and the 

execution order between them is not important. But if o1 does not commute with o2 (i.e., o1 has an 

ordered shared relationship  with o2), a lock request is granted but the execution order should be 

preserved by observing so called ordered commit rule: if a transaction Ti (which consists of a set of 

operations and the relation ordering conflicting operations in Ti) is granted a lock with an ordered shared 

relationship with respect to a lock held by Tj on an object and Tj is a proper descendent of parent of Ti., 

then, Ti cannot commit unless Tj has committed or aborted. Also, like a nested transaction model in 

[Moss85], a transaction cannot commit or abort until all its children are terminated, and locks are inherited 

by its parent when it commits. Even though [Agra92] increases concurrency among methods by adopting 

ordered sharing, they  do not exploit semantics of methods. 

 In [Muth93], a locking-based concurrency control scheme for OODB is presented. They exploit 

the semantics of methods to increase concurrency. In their work, the conflict between lower level 

operations or methods can be ignored due to the commutativity of higher level invoked methods in nested 

method execution. In their work, a lock is required on an object whenever a method or operation is called 

on the object. Also, locks are converted to retained lock  at the end of subtransaction. If a top-level 

transaction is commits, all the locks held are released. They use semantics of methods as follows: when 

two atomic operations conflict with each other, if they have a commutative ancestor pair and the ancestor 
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of the lock holder commits, the lock request is granted. That is, the lock request is not delayed until top-

level transaction commits so that high degree of concurrency can be achieved. Similarly, when two 

methods conflict with each other, the same principle can be applied. But, these authors do not consider 

OODBs with RSOs.  This is a weakness of their work because RSOs are a fundamental property of 

OODBs and are necessary for modular design as indicated in [Rese94].  

 A semantic two-phase locking protocol for OODB is presented in [Rese94]. They consider RSOs 

and nested method execution. Also, they use semantics of method in order to increase concurrency. In this 

work, locks are required only for atomic operations. The protocol works as follows: a subtransaction or 

top-level transaction T cannot terminate until all of the children are terminated. When a subtransaction is 

committed, its locks are inherited by its parent. On the other hand, when a transaction is aborted or is top-

level and committed, its locks are released. A lock request is granted if one of the three following 

conditions are met: (a) no other transaction holds a conflicting lock, (b) if there are conflicting locks, such 

locks are held by its ancestors and (c) if there are conflicting locks held by non-ancestors of lock holders, 

then one of the ancestors of the lock holders (not including the lock holders) and some ancestors of the 

lock requester commute. Locking for each atomic operation incurs an overhead which has a critical effect 

on OODBs where many transactions are long-lived. This results in more deadlocks due to lock escalation 

which is a main source of deadlock [Malt93]. Note that a lock is said to be escalated if more exclusive 

lock is requested for an object by the same transaction during its execution. Also, [Rese94] assumes that 

the commutativity relationships between methods are well-defined and can be derived based on semantics 

as well as the specification of the class and its methods. But, [Rese94] fails to provide a formal way to 

construct commutativity relationships among methods. 

 

3. Our Scheme  
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 In this section, we present a locking scheme dealing with all three aspects discussed earlier: 

semantics of methods, nested method invocation and referentially shared objects. 

 

3.1. Assumption 

 We assume that objects are organized in a hierarchy and referential sharing is allowed. Also, we 

adopt the following transaction model  and method model: a transaction consists of a sequence of method 

invocations to objects [Cart90, Agra92]. A method execution consists of a partial order of method 

invocations and atomic operations [Hadz91]. Also, we assume that a method in an object can invoke 

methods on objects which are lower in the hierarchy [Rese94]. 

 Consider the following object hierarchy in Fig. 1.a. The database (DB) consists of class Cars. 

Each car instance is a tuple object composed of various atomic objects and of component class  Orders. 

Each order instance is a tuple object composed of atomic objects. In our scheme, referential sharing is 

allowed. That is, an instance of class Order can be shared by different instances of class Cars. In this 

object hierarchy, we assume that a customer can rent only one car at any time. But a customer can 

request multiple car rental orders so that the order is granted by any available car. Fig 1.b shows an 

example of a car rental order requested for two cars by a customer. 

 

 

              DB 

             Cars 

 

  Car-id           Name     Price-To-Rent     QOH              Orders 
    (Quantity-on-hand)   
 
        Order-No     Customer-No      Status 
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                Fig. 1.a. An Object Hierarchy 

 

 

Car: 

    i1     Grand-Am    $30    4   • 

                i2     Grand Prix    $50    2   • 

     Order: 10    1    new 

                     Fig. 1.b. An example of the object hierarchy 

 Assume that three are three methods Adjust-Price, Check-Out-Rent and Pay-Rent, for class 

Cars. 

 

Adjust-Price(i) 

// For a car instance i (Car-id), if QOH is greater than 10, price to rent a car is decreased by 10% // 

If i.QOH > 10 then 

 i.Price-To-Rent <= i.Price-To-Rent * 0.9 

End if 

End  

 

Check-Out-Rent(i,Order-No) 

// For a car instance i, a rent-a-car request by Order-No o is granted if that order is not granted yet //  

If Test-status (o) = new then 

 call Change-Status (o, granted) 

             i.QOH <= i.QOH -1 

end if 

End 

 

Pay-Rent (i,o) 
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// Pay rental fee for car i by Order-No o // 

read i.Price-To-Rent 

read i.QOH 

Change-Status (o, paid) 

End 

 

 For class Orders, assume that two methods Test-status and Change-status have the following 

implementation code, respectively. There are three status for each order: new, granted and paid. 

 

Test-status (o) 

// test status of an instance o of class Orders // 

read (o.status) 

return status 

End 

 

Change-status(o, value) 

// change status of an instance o of class Orders to value // 

write (o.status, value) 

End 

 

3.2. Automation of commutativity for methods 

 In this subsection we present a way to automate commutativity relationships among methods. 

Thus, we do not put a burden on application programmers to specify method commutativity. Usually, locks 

by methods may provide less concurrency than locks by atomic operations [Malt93]. In order to overcome 

this shortcoming, we increase concurrency by making use of dynamic information.  

 The automation of commutativity relationships among methods is based on the notion of affected 

sets of attributes [Badr88, Jun95]. That is, even if two methods conflict in terms of read or write 

operations, as long as their access modes on individual attributes do not conflict, those two methods can 
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run in parallel. A Direct Access Vector (DAV) [Malt93] is constructed for each method and also for 

break points (which will be defined later) in the method. A DAV is a vector whose fields correspond to 

attributes defined in the class on which the method operates. Each value composing this vector denotes 

the most restrictive access mode used by the method or break point when accessing the corresponding 

field. An access mode of an attribute can have one of three values, N (Null), R (Read) and W (Write) 

with N < R < W for their restrictiveness. Two methods commute if their corresponding DAVs commute, 

that is, their access modes are compatible for each attribute. 

 For example, assume that we have two methods MT1 and MT2, and a class Y with four attributes 

a1, a2, a3, and a4 as follows. 

 

method MT1    method MT2  

read a1     read a1   

If (a1 > 100) then   read a2   

   a3 := a1        If (a1 > a2 ) then   

end if         return a1  

If (a2 > 10) then    else   

   a4 := a2         return a2   

end if     end if   

 

The DAVs constructed for method MT1 and MT2 are: DAV(MT1) = [R,R,W,W] and DAV(MT2) = 

[R,R,N,N]. Since access modes are compatible for each attribute, the two methods, MT1 and MT2, 

commute. 

 We need a two-phase pre-analysis which consists of two steps : 1) construction of DAV for each 

method and 2) construction of a commutativity table of methods. In each method, a break point is inserted 

by a programmer or a compiler when a conditional statement is encountered. Every method has a special 

break point called first break point before the first statement in the method. There are three kinds of 

DAVs in each method : 1) a DAV of the entire method, 2) a DAV of the first break point, which is a 
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union of access modes of each attribute used by statements that are executed regardless of execution 

paths 3) a DAV of every other break point, which contains access modes of all attributes used by 

statements between this break point and the next break point (or end of the method). A union operation 

denoted as ‘⊕’ takes two arguments among N (null: no operation), R (Read), and W (Write) and selects 

the more restrictive one.  

 

Table 1 illustrates how the union operation works. Note that, if one or more method for the same object is 

defined in a breakpoint, DAV of the breakpoint includes DAV of the method defined. 

 
    N R W 
   N N R W 
   R R R W 
   W      W W W 

       Table 1. Union operation table  

 

 For example, consider the object hierarchy in Fig. 1.a. For convenience, for class Cars, let four 

attributes Car-id, Name, Price-To-Rent and QOH be a1, a2, a3, and a4, respectively. Similarly, for class 

Orders, let three attributes Order-No, Customer-No, and Status be b1, b2, and b3, respectively. Assume 

that, for class Cars, A and A1 are breakpoints of method Adjust-Price, B and B1 are breakpoints of 

method Check-Out-Rent and C is a breakpoint of method Pay-Rent. Likewise, assume that, for class 

Orders, let D and E be breakpoint of methods Test-Status and Change-Status, respectively. Also, for 

simplicity, we call methods Adjust-Price, Check-Out-Rent and Pay-Rent as M1, M2 and M3, 

respectively. Similarly, we call methods Test-status and Change-status as N1 and N2, respectively, for 

class Orders. 

Adjust-Price (also called M1) 

[A] 
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If i.QOH > 10 then 

[A1] 

 i.Price-To-Rent := i.Price-To-Rent*0.9 

End if 

End 

 

 

 

Check-Out-Rent(i,Order-No) (also called M2) 

[B] 

If Test-status (o) = new then 

[B1] 

 call Change-Status (o, granted) 

 i.QOH := i.QOH - 1 

end if 

End 

 

Pay-Rent (i,o) (also called M3) 

 [C] 

read i.Price-To-Rent 

read i.QOH 

Change-Status (o, paid) 

End 

 

 Based on our definition of breakpoints and DAVs, for the object hierarchy in Fig. 1.a, we have the 

following breakpoints and DAVs for the methods. Let DAV(x) represent DAV of a breakpoint x or a 

method x. 
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 Note that, in this example, a method Check-Out-Rent or Pay-Rent includes another nested 

method invocation (Test-status or Change-status). But, this nested method invokes another object so that 

its DAV is not included in the DAV of method Check-Out-Rent or Pay-Rent. 

The DAVs constructed for method M1 are: 
 
DAV (M1) = [R,N,W,R]; DAV (A) = [R,N,N,R]; DAV (A1) = [R,N,W,N] 
 
Similarly, the DAVs for M2 and M3 are: 
 
DAV (M2) = [R,N,N,W]; DAV (B) = [R,N,N,N]; DAV (B1) = [R,N,N,W] 
 
DAV (M3) = [R,N,R,R] 
 
Similarly, for class Orders, we have DAVs of each break point in the method as follows. 

Test-status (o) (also called N1) 

[D] 

read (o.status) 

End 

 

Change-status(o, value) (also called N2) 

[E] 

write (o.status, value) 

End 

DAV (N1) = [R,N,R]; DAV (N2) =  [R,N,W] 

  

 Note that, for class Orders, two methods do not have conditional statements so that DAVs of the 

methods are the same as DAVs of the first breakpoints. In our work, we do not include DAVs of the first 

break point for such a case.  

 After the construction of the breakpoints’ DAVs in all methods, we create a commutativity 

relation of methods in the form of a table. In this table, a lock requester’s entries contain names of DAVs 

of all methods (denoted as D(Mi) where Mi is the name of the method). For example, D(M1) represents a 
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DAV of the method M1, which is [R,N,W,R]. A lock holder’s entries contain names of DAV of each 

method (denoted as D(Mi)), name of the DAV of the first break point in Mi (denoted as D(K) if K is the 

first breakpoint) and names of the DAVs of other break points (denoted as D(Kj) if Kj is the breakpoint 

other than first break point in Mi). For example, in method M1, D(M1), D(A), and D(A1) represent the 

following DAVs [R,N,W,R], [R,N,N,R] and [R,N,W,N], respectively. Since we assume the worst case 

access mode for each attribute before execution, lock requesters always have the most restrictive access 

modes (i.e., DAVs of methods). But, after a method execution, a lock holder may have a less restrictive 

access mode (i.e., DAV of the first and/or other break points). Two break points commute if their 

corresponding DAVs commute. Two DAVs commute if, for each attribute, its access modes in the two 

DAVs commute. Fig. 2 gives the commutativity tables constructed in our scheme. Note that Y means 

commute, and N not commute. 

 
 
      lock holders 
                                    D(M1)    D(A)     D(A1)   D(M2)     D(B)      D(B1)   D(M3)              

lock            D(M1)         N            Y           N          N             Y           N          N 
requester    D(M2)          N            N          Y           N            Y            N          N 
                  D(M3)          N            Y          N           N            Y            Y          Y 
 
Figure 2.a. A commutativity table for class Cars                     
 
 
 
 
 
   lock holders 
                                     D(N1)         D(N2)  

 
lock             D(N1)         Y                  N 
requester     D(N2)           N                  N 
 
Fig. 2.b. A commutativity table for class Orders 
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 Our concurrency control is based on two-phase locking [Eswa76]. When a transaction invokes a 

method on an object, a lock is required for the method (i.e., D(Mi) lock is required). As the transaction 

meets a break point during run-time, the break point is recorded in a transaction manager. After the 

method execution, the lock is changed from D(Mi) to D(K), D(K1),...D(Kn) where D(K) is the name of 

the DAV of the first break point in Mi and D(K1),,,D(Kn) are the names of the DAVs of other break 

points encountered during the method execution Mi. Since the union of DAVs of D(K), D(K1),...D(Kn) 

may be less restrictive than the DAV of Mi, that is, D(Mi), this can give more concurrency to other 

transactions which request locks on the same object. For example, assume that a transaction T1 invokes a 

method M1 on instance i1 of class Cars and has break points A after the execution of M1. Assume that 

another transaction T2 comes and invokes a method M3 on the same instance i1 while T1 still has a lock 

on i1. Applying our technique gives commutativity between M1 and M3 since D(M3) commutes with 

D(A) by the commutativity table in Fig. 2.a. This commutativity would not be possible if we adopted 

method commutativity relationship without run-time information checking. In our work, when a DAV of a 

method or breakpoint, say M, contains DAV of other methods, say M1 ,,, Mn for the same object,  we do 

not have to request locks for methods M1 ,,, Mn. That is, one lock request by M is enough for the object so 

that we can reduce the lock overhead. 

 In our work, a method may have many breakpoints depending on the method’s logic. This results 

in larger commutativity tables and incurs much run-time overhead for lock changes and conflict checking. 

Ways to reduce the number of breakpoint are presented in [Jun95].  

 
3.3. Considering semantics, nested method invocation and RSO 

 

 In this subsection, we present a way of  dealing with three aspects of our concurrency control: 

semantics of methods, nested method invocation and RSO (Referentially Shared Object). 
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 At first, based on automated commutativity relationships presented in Section 3.2, we allow 

application programmers to define commutativity relationships for some methods by making use of 

semantics of methods as in [Muth93, Rese94]. Thus, though these two methods do not commute in terms 

of read and write access modes, they may commute semantically at the discretion of an application 

programmer. For example, for class Cars, two methods Check-Out-Rent and Pay-Rent may commute 

semantically, that is, customer may check out first and then pay the rental fee or vice versa. If two 

methods, say, M1 (requester) and M2 (holder), commute semantically, then we give S commutativity 

relationship between M1 (and all breakpoints of M1) and M2 (and also all breakpoints of M2) where S 

means semantically commute. Then, we can have a new commutativity table for class Cars as in Fig. 3. 

In the commutativity table, Y means commute (unconditionally). That is, if two methods (one is a lock 

requester and the other is a lock holder) have Y relationship, a lock requester can get a lock at any time. If 

two methods have N relationship, a lock requester can get a lock only if the lock holding transaction is 

committed or aborted. On the other hand, if two methods have S relationship, a lock requester can get a 

lock if a holder’s method execution is finished. That is, the requester does not have to wait until the lock 

holding transaction is committed or aborted. 

 

                                                                lock holders 
                                   D(M1)     D(A)       D(A1)      D(M2)    D(B)       D(B1)      D(M3)       

lock            D(M1)        N            Y             N             N           Y            N            N 
requester    D(M2)         N            N            Y             N           Y            N             S 
                  D(M3)        N             Y            N             S            S            S             Y 
 
                                  Figure 3. A commutativity table for class Cars 
 

 For nested method invocations, we have the following principles: each method invocation is 

associated with a lock. Before any method invocation, a lock is requested and granted. Also, when a 

method execution is finished, the lock is inherited by its parent. Then, the lock is said to be retained by its 
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parent [Rese94]. If a transaction is finished, its locks are discarded. For two methods which commute 

semantically, two methods commute only if both execute atomically. That is, for such methods, a requester 

cannot get a lock until a holder’s method execution is finished so that the requester can get a lock only if a 

holder’s lock is inherited by its parent. Thus, unlike N commutativity relationship, a lock request is not 

delayed until the lock holding transaction commits. 

 Finally, for RSOs, method invocations on different objects may result in conflicts since those 

methods may invoke methods on the same subobject. In our scheme, conflicts are determined dynamically 

for each subobject as in [Rese94] since such a conflict may not be detected a priori based on the static 

analysis. If such a conflict is defined statically, concurrency may be decreased severely.  

 

3.4. Our concurrency control scheme  

 

 Our concurrency control scheme is based on two-phase locking [Eswa76]. Based on our 

discussion in Section 3.3, we have the following locking scheme. 

 

1. Lock is required only for method execution and is granted before method execution. After method 

execution, lock is changed (i.e., it reflects the breakpoints executed) 

2. A method execution cannot terminate until all of its children are terminated. When a method execution 

m terminates: 

a. there exits parent of m and m commits : locks held by m are inherited by its parent (i.e., locks are 

retained by its parent) 

b. either there exits parent of m and m aborts or there is no parent of m: locks held by m are discarded. 

3. A lock can be granted if either of the following conditions is satisfied. 

a. no other method holds or retains a conflicting lock 
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b. if conflicting locks are held, such locks are retained by ancestors of the requesting method 

c. (for semantic commutativity) if conflicting locks are retained by non-ancestors, then one of the 

ancestors of the retainer (not including the retainer itself) and an ancestor of the requester commute 

 In rule 3.b, when we allow ancestor/descendent parallelism, we do not let a parent see 

uncommitted results of the child method. For example, assume that a parent T initiates a method M, which 

accesses some data item X, and continues to do its own work. When T needs to access data item X so 

that it requires a conflicting lock on X, T can get a lock only if the lock held by M is retained by T.   

 In rule 3.c, we implement semantically commutativity relationships. As we discussed for the two 

methods which commute semantically, two methods commute only if both execute in an atomic way. 

Thus, we let a lock requester get a lock only if a holder’s method execution is finished (i.e., its lock is 

inherited by an ancestor). In additions, for two methods commuting semantically, a requester’s descendent 

can also get a lock if a holder’s method execution is finished. 

 Fig. 4 shows that two transactions T1 and T2 invoke the same method M1 on instance car1 of 

class Car and M2 (by T1)and M3 (by T2) on car2 (and on order2 of class Orders), and the same method 

M2 on car3 (and on order3 of class Orders). Assume that, only the first breakpoint [A] has been executed 

in two method invocations of  M1 by T1 and T2 on an instance car1 and breakpoints [B] and [B1] have 

been executed on an instance car3 in method  invocations of M2 by T1 and T2. 

 

   T1                    T2 

 

 

M1             M1            M2        M3                         M2        M2 
      car1                            car2                                      car3 
 
 
                              N1    N2      N2                        N1     N2    N1    N2 
                                     Order2                                     Order3  
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                                                                                                                              time 

               Fig. 4. A possible execution of transactions in our scheme 

 

 In the above example, two method invocations of M1 on car1 commute by adopting dynamic 

information. This commutativity would not be possible if we used static commutativity relationships for 

methods as in [Malt93]. Also, two methods M2 and M3 on instance car2 commute semantically so that the 

method invocation on M3 by T2 can be executed only after M2 invoked  by T1 is finished, that is, after the 

lock held by M2 is inherited by T1. This guarantees atomic execution of method invocation M2 by T1.. 

Without the semantics of methods, the method execution M3 by T2 is blocked until entire transaction T1 is 

committed. In our scheme, the method execution is delayed only until method M2 invoked by T1 is 

committed. Thus, we can increase concurrency by adopting semantic information. Also, a lock request by 

method invocation M2 of T2 on car3 is not granted since a conflicting lock is held by T1. Thus, the method 

invocation M2 of T2 can be executed after T1 is committed. For method invocations on instance car3, 

consider the following execution which requires locks by atomic operations as in [Rese94]. This results in 

deadlock situation as in Fig. 5. In our scheme, we can avoid such a deadlock situation by adopting locks 

for the execution of the methods. 

 

   T1    T2 

 

                                       car3:        M2        M2 
                 
 
                           Test-status  Test- status   Change-status   Change-status 
                                                           Order3 
 

                                                                                                                                  time 

 Fig. 5. A possible execution by a scheme requiring locks for atomic operations 
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 For the correctness of our protocol, we can prove it as follows: for every execution resulted from 

our protocol, we always can find an equivalent serial execution by a series of  two transformations: 

substitution and commutativity-based reversal [Beer89, Rese94]. We start from the bottom level of 

execution and apply transformations so that we have only serial top-level transactions. The formal proof is 

similar to the technique in [Rese94] and for that reason we omit here. 

 

4. Further Work 

 

 In this paper, we present a locking-based concurrency control scheme in OODBs. Our scheme 

deals with three important issues in OODB concurrency control: semantics of methods, nested method 

invocations, and referentially shared object. In our scheme, locks are required for each method 

invocation so that we reduce the locking overhead and possible deadlock due to lock escalation. In order to 

overcome the problem of less concurrency due to locks by method invocations, we adopt a scheme to 

provide run-time information to increase concurrency.  

 In our scheme, we do not consider inheritance hierarchy in which a subclass inherits or redefines 

definitions of superclass of the subclass. Currently, we are developing an integrated concurrency control 

for both object hierarchy and inheritance hierarchy. We will also consider class definition modification in 

our scheme. 
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