
 1

Semantic-Based Concurrency Control in Object-Oriented Databases

Woochun Jun and Le Gruenwald

Dept. of Computer Science
Univ. of Oklahoma

Norman, OK 73019

Abstract

In this paper, we present a concurrency control mechanism that deals with three important issues in
object-oriented databases (OODBs): semantics of methods, nested method invocation and
referentially shared object. In our scheme, locks are required for the execution of methods instead of
atomic operations. By doing this, we reduce the locking overhead and deadlocks due to lock escalation.
Especially, if a method invokes one or more methods on the same object during its execution, our
scheme does not incur additional overhead for those invoked methods. Also, we provide a way of
automating commutativity of methods. In addition, we further increase concurrency with the use of run-
time information.

1. Introduction

 Object-oriented databases (OODBs) have been adopted for non-standard applications. Examples

of such applications include computer-aided software engineering (CASE), computer-aided design (CAD),

and office information systems which require advanced modeling power to handle complex data and

relationships among such data.

 OODBs are a collection of classes and instances of these classes. In OODBs, both classes and

instances are referred to as objects. A class object consists of a set of attributes and methods through

which the class's instances are accessed. Users can access objects by invoking methods. In order to make

sure of the atomicity of user interactions, the traditional transaction model can be used in an OODB. That

is, users can access an OODB by executing transactions, each of which is defined as a partially ordered

set of method invocations on a class or an instance object [Agra92]. Commutativity is a criterion widely

used to determine whether a method can run concurrently with methods in progress on the same object.

 2

Two methods commute if their execution orders do not affect the results. Two methods conflict with each

other if they do not commute.

 One of the important characteristics of database systems is manipulation of shared data. That is,

database systems, including OODBs, allow shared data to be accessed by multiple users at the same time.

A concurrency control involves synchronization of access to the database so that the consistency of the

database is maintained [Ozsu91, Bern87]. Serializability is a widely used criterion of correctness.

Transactions are serializable if the interleaved execution of their operations produces the same results as

some serial execution of the same transactions [Bern81].

 Supporting concurrency control in an OODB is more complicated than in a relational database for

the following reasons. First, the semantics of methods on encapsulated objects can be exploited to provide

better concurrency. That is, when we consider the semantics of two methods, those two methods may run

concurrently even though they conflict in terms of read and write access modes. But this semantic

analysis may not be done in an automatic way for many applications since those semantics are drawn only

by application programmers’ discretion. Second, in an OODB, a method invoked on a higher level object

can invoke another method defined on a component object of the higher level object. This nested method

invocation fits naturally with the nested transaction model [Moss85]. This model provides many useful

features such as increased parallelism, localized failure and reusable partial results. As a result, nested

transaction models are being used for transaction management in OODBs [Agra92, Muth93, Rese94].

Finally, referentially shared objects (RSOs) are a fundamental concern in OODBs since new objects may

be composed from existing objects. The referentially shared objects may share common subobjects in an

underlying hierarchy [Herr90]. Thus, method invocations on different objects may not commute due to

possible conflicts on subobjects. [Rese94] states “such conflict may not be determined a priori and

defining conflict relationships based on static analysis becomes very conservative”. From this statement,

 3

we conclude that static analysis results in severe degradation in concurrency . Thus, for RSOs, conflict

relations should be determined for dynamic method execution.

 In this work, we present a locking-based concurrency control protocol for OODBs which

addresses all the issues: semantics of methods, nested method invocations, and RSOs. We reduce

overhead due to frequent invocation of concurrency control protocol as well as deadlocks due to lock

escalation. Our locking scheme requires locks for methods only so that we do not need commutativity

tables for atomic operations invoked during a method execution. We also reduce locking overhead due to

one or more methods invoked during a method execution on the same object. In addition, we provide a

way of automating commutativity of methods. Usually, locks by method invocations provide less

concurrency than locks by atomic operations [Malt93]. We overcome this obstacle by the use of run-time

information.

 This paper is organized as follows. In the Section 2, we present previous studies and discuss their

advantages and disadvantages. In Section 3, we discuss our locking scheme. The paper concludes with

further work in Section 4.

2. Related Work

 In earlier attempt for nested method invocations, a locking technique is developed for disjoint and

non-disjoint complex object in [Herr90]. They argue that the traditional approaches dealing with complex

object have the following problems : the granule-oriented problem, protocol oriented problem and

authorization problem. Locking entire complex object may decrease concurrency severely although it

can reduce concurrency control overhead. On the other hand, lock individual object can lead to

tremendous overhead (granule -oriented problem). In non-disjoint complex objects, updating shared object

 4

can lead big overhead since all parent objects of the shared object should be locked (protocol-oriented

protocol). Combining concurrency control and authorization component can achieve higher concurrency

(authorization-oriented problem). For example, if a transaction does not have right to update some object,

an exclusive lock is not required for the object. In order to solve three problems above, for a complex

object type, they created the general lock graph, which is to solve the granule-oriented problem. In turn,

for the general lock graph, the corresponding object-specific lock graph which is to solve protocol-

oriented problem and authorization-oriented problem, is constructed. Although their locking protocol

considers non-disjoint subobject (RSO), they do not exploit any semantics in order to provide higher

concurrency.

 In existing OODBs such as Orion, O2 and Gemstone [Garz88, Cart90, Serv90], they do not exploit

the nested behavior of OODB transaction in order to increase concurrency. This is due to that their

locking is based on standard flat transaction model. But, nested method invocations naturally fit a nested

transaction model as follows: for a nested transaction, there is a top-level transaction which consists of a

sequence of steps, where each step is either a primitive operation or the invocation of a subtransaction.

Each subtransaction may also consist of either or both primitive operations and subtransactions. Thus, in

OODB, a method invocation corresponds to a subtransaction in nested transaction model. For this reason,

the nested transaction model is adopted for nested method invocations.

. The notions of nested transactions for database systems and a nested two-phase locking protocol

are introduced in [Moss85]. In [Moss85], locks are only required for the execution of atomic operations

encountered during a method execution such as reading an attribute. A method execution cannot terminate

until all of its children are terminated. When a method execution terminates, its parent inherits its locks.

Locks are discarded only if the top-level transaction terminates. Their work has simplicity in

implementation, but it does not take advantage of any semantics of methods, which results in limited

concurrency.

 5

 The nested two-phase locking with ordered sharing is proposed in [Agra92]. Their work is based

on nested two-phase locking in [Moss85] and locks are required for each atomic operation. They provide

better concurrency using ordered sharing between locks. Unlike commutativity relationships, when

ordered sharing is adopted, a lock request is never delayed until a transaction holding a conflicting lock

commits or aborts. That is, a lock request is always granted as follows: for a given operation o1, the set of

operations are divided into two categories: the set of operations that commute with o1, and the set of

operations that do not commute with o1. If o1, a lock requester, commutes with some operation o2, a lock

holder, (i.e., o1 has a shared relationship with respect to o2), the lock request is granted and the

execution order between them is not important. But if o1 does not commute with o2 (i.e., o1 has an

ordered shared relationship with o2), a lock request is granted but the execution order should be

preserved by observing so called ordered commit rule: if a transaction Ti (which consists of a set of

operations and the relation ordering conflicting operations in Ti) is granted a lock with an ordered shared

relationship with respect to a lock held by Tj on an object and Tj is a proper descendent of parent of Ti.,

then, Ti cannot commit unless Tj has committed or aborted. Also, like a nested transaction model in

[Moss85], a transaction cannot commit or abort until all its children are terminated, and locks are inherited

by its parent when it commits. Even though [Agra92] increases concurrency among methods by adopting

ordered sharing, they do not exploit semantics of methods.

 In [Muth93], a locking-based concurrency control scheme for OODB is presented. They exploit

the semantics of methods to increase concurrency. In their work, the conflict between lower level

operations or methods can be ignored due to the commutativity of higher level invoked methods in nested

method execution. In their work, a lock is required on an object whenever a method or operation is called

on the object. Also, locks are converted to retained lock at the end of subtransaction. If a top-level

transaction is commits, all the locks held are released. They use semantics of methods as follows: when

two atomic operations conflict with each other, if they have a commutative ancestor pair and the ancestor

 6

of the lock holder commits, the lock request is granted. That is, the lock request is not delayed until top-

level transaction commits so that high degree of concurrency can be achieved. Similarly, when two

methods conflict with each other, the same principle can be applied. But, these authors do not consider

OODBs with RSOs. This is a weakness of their work because RSOs are a fundamental property of

OODBs and are necessary for modular design as indicated in [Rese94].

 A semantic two-phase locking protocol for OODB is presented in [Rese94]. They consider RSOs

and nested method execution. Also, they use semantics of method in order to increase concurrency. In this

work, locks are required only for atomic operations. The protocol works as follows: a subtransaction or

top-level transaction T cannot terminate until all of the children are terminated. When a subtransaction is

committed, its locks are inherited by its parent. On the other hand, when a transaction is aborted or is top-

level and committed, its locks are released. A lock request is granted if one of the three following

conditions are met: (a) no other transaction holds a conflicting lock, (b) if there are conflicting locks, such

locks are held by its ancestors and (c) if there are conflicting locks held by non-ancestors of lock holders,

then one of the ancestors of the lock holders (not including the lock holders) and some ancestors of the

lock requester commute. Locking for each atomic operation incurs an overhead which has a critical effect

on OODBs where many transactions are long-lived. This results in more deadlocks due to lock escalation

which is a main source of deadlock [Malt93]. Note that a lock is said to be escalated if more exclusive

lock is requested for an object by the same transaction during its execution. Also, [Rese94] assumes that

the commutativity relationships between methods are well-defined and can be derived based on semantics

as well as the specification of the class and its methods. But, [Rese94] fails to provide a formal way to

construct commutativity relationships among methods.

3. Our Scheme

 7

 In this section, we present a locking scheme dealing with all three aspects discussed earlier:

semantics of methods, nested method invocation and referentially shared objects.

3.1. Assumption

 We assume that objects are organized in a hierarchy and referential sharing is allowed. Also, we

adopt the following transaction model and method model: a transaction consists of a sequence of method

invocations to objects [Cart90, Agra92]. A method execution consists of a partial order of method

invocations and atomic operations [Hadz91]. Also, we assume that a method in an object can invoke

methods on objects which are lower in the hierarchy [Rese94].

 Consider the following object hierarchy in Fig. 1.a. The database (DB) consists of class Cars.

Each car instance is a tuple object composed of various atomic objects and of component class Orders.

Each order instance is a tuple object composed of atomic objects. In our scheme, referential sharing is

allowed. That is, an instance of class Order can be shared by different instances of class Cars. In this

object hierarchy, we assume that a customer can rent only one car at any time. But a customer can

request multiple car rental orders so that the order is granted by any available car. Fig 1.b shows an

example of a car rental order requested for two cars by a customer.

 DB

 Cars

 Car-id Name Price-To-Rent QOH Orders
 (Quantity-on-hand)

 Order-No Customer-No Status

 8

 Fig. 1.a. An Object Hierarchy

Car:

 i1 Grand-Am $30 4 •

 i2 Grand Prix $50 2 •

 Order: 10 1 new

 Fig. 1.b. An example of the object hierarchy

 Assume that three are three methods Adjust-Price, Check-Out-Rent and Pay-Rent, for class

Cars.

Adjust-Price(i)

// For a car instance i (Car-id), if QOH is greater than 10, price to rent a car is decreased by 10% //

If i.QOH > 10 then

 i.Price-To-Rent <= i.Price-To-Rent * 0.9

End if

End

Check-Out-Rent(i,Order-No)

// For a car instance i, a rent-a-car request by Order-No o is granted if that order is not granted yet //

If Test-status (o) = new then

 call Change-Status (o, granted)

 i.QOH <= i.QOH -1

end if

End

Pay-Rent (i,o)

 9

// Pay rental fee for car i by Order-No o //

read i.Price-To-Rent

read i.QOH

Change-Status (o, paid)

End

 For class Orders, assume that two methods Test-status and Change-status have the following

implementation code, respectively. There are three status for each order: new, granted and paid.

Test-status (o)

// test status of an instance o of class Orders //

read (o.status)

return status

End

Change-status(o, value)

// change status of an instance o of class Orders to value //

write (o.status, value)

End

3.2. Automation of commutativity for methods

 In this subsection we present a way to automate commutativity relationships among methods.

Thus, we do not put a burden on application programmers to specify method commutativity. Usually, locks

by methods may provide less concurrency than locks by atomic operations [Malt93]. In order to overcome

this shortcoming, we increase concurrency by making use of dynamic information.

 The automation of commutativity relationships among methods is based on the notion of affected

sets of attributes [Badr88, Jun95]. That is, even if two methods conflict in terms of read or write

operations, as long as their access modes on individual attributes do not conflict, those two methods can

 10

run in parallel. A Direct Access Vector (DAV) [Malt93] is constructed for each method and also for

break points (which will be defined later) in the method. A DAV is a vector whose fields correspond to

attributes defined in the class on which the method operates. Each value composing this vector denotes

the most restrictive access mode used by the method or break point when accessing the corresponding

field. An access mode of an attribute can have one of three values, N (Null), R (Read) and W (Write)

with N < R < W for their restrictiveness. Two methods commute if their corresponding DAVs commute,

that is, their access modes are compatible for each attribute.

 For example, assume that we have two methods MT1 and MT2, and a class Y with four attributes

a1, a2, a3, and a4 as follows.

method MT1 method MT2

read a1 read a1

If (a1 > 100) then read a2

 a3 := a1 If (a1 > a2) then

end if return a1

If (a2 > 10) then else

 a4 := a2 return a2

end if end if

The DAVs constructed for method MT1 and MT2 are: DAV(MT1) = [R,R,W,W] and DAV(MT2) =

[R,R,N,N]. Since access modes are compatible for each attribute, the two methods, MT1 and MT2,

commute.

 We need a two-phase pre-analysis which consists of two steps : 1) construction of DAV for each

method and 2) construction of a commutativity table of methods. In each method, a break point is inserted

by a programmer or a compiler when a conditional statement is encountered. Every method has a special

break point called first break point before the first statement in the method. There are three kinds of

DAVs in each method : 1) a DAV of the entire method, 2) a DAV of the first break point, which is a

 11

union of access modes of each attribute used by statements that are executed regardless of execution

paths 3) a DAV of every other break point, which contains access modes of all attributes used by

statements between this break point and the next break point (or end of the method). A union operation

denoted as ‘⊕’ takes two arguments among N (null: no operation), R (Read), and W (Write) and selects

the more restrictive one.

Table 1 illustrates how the union operation works. Note that, if one or more method for the same object is

defined in a breakpoint, DAV of the breakpoint includes DAV of the method defined.

 N R W
 N N R W
 R R R W
 W W W W

 Table 1. Union operation table

 For example, consider the object hierarchy in Fig. 1.a. For convenience, for class Cars, let four

attributes Car-id, Name, Price-To-Rent and QOH be a1, a2, a3, and a4, respectively. Similarly, for class

Orders, let three attributes Order-No, Customer-No, and Status be b1, b2, and b3, respectively. Assume

that, for class Cars, A and A1 are breakpoints of method Adjust-Price, B and B1 are breakpoints of

method Check-Out-Rent and C is a breakpoint of method Pay-Rent. Likewise, assume that, for class

Orders, let D and E be breakpoint of methods Test-Status and Change-Status, respectively. Also, for

simplicity, we call methods Adjust-Price, Check-Out-Rent and Pay-Rent as M1, M2 and M3,

respectively. Similarly, we call methods Test-status and Change-status as N1 and N2, respectively, for

class Orders.

Adjust-Price (also called M1)

[A]

 12

If i.QOH > 10 then

[A1]

 i.Price-To-Rent := i.Price-To-Rent*0.9

End if

End

Check-Out-Rent(i,Order-No) (also called M2)

[B]

If Test-status (o) = new then

[B1]

 call Change-Status (o, granted)

 i.QOH := i.QOH - 1

end if

End

Pay-Rent (i,o) (also called M3)

 [C]

read i.Price-To-Rent

read i.QOH

Change-Status (o, paid)

End

 Based on our definition of breakpoints and DAVs, for the object hierarchy in Fig. 1.a, we have the

following breakpoints and DAVs for the methods. Let DAV(x) represent DAV of a breakpoint x or a

method x.

 13

 Note that, in this example, a method Check-Out-Rent or Pay-Rent includes another nested

method invocation (Test-status or Change-status). But, this nested method invokes another object so that

its DAV is not included in the DAV of method Check-Out-Rent or Pay-Rent.

The DAVs constructed for method M1 are:

DAV (M1) = [R,N,W,R]; DAV (A) = [R,N,N,R]; DAV (A1) = [R,N,W,N]

Similarly, the DAVs for M2 and M3 are:

DAV (M2) = [R,N,N,W]; DAV (B) = [R,N,N,N]; DAV (B1) = [R,N,N,W]

DAV (M3) = [R,N,R,R]

Similarly, for class Orders, we have DAVs of each break point in the method as follows.

Test-status (o) (also called N1)

[D]

read (o.status)

End

Change-status(o, value) (also called N2)

[E]

write (o.status, value)

End

DAV (N1) = [R,N,R]; DAV (N2) = [R,N,W]

 Note that, for class Orders, two methods do not have conditional statements so that DAVs of the

methods are the same as DAVs of the first breakpoints. In our work, we do not include DAVs of the first

break point for such a case.

 After the construction of the breakpoints’ DAVs in all methods, we create a commutativity

relation of methods in the form of a table. In this table, a lock requester’s entries contain names of DAVs

of all methods (denoted as D(Mi) where Mi is the name of the method). For example, D(M1) represents a

 14

DAV of the method M1, which is [R,N,W,R]. A lock holder’s entries contain names of DAV of each

method (denoted as D(Mi)), name of the DAV of the first break point in Mi (denoted as D(K) if K is the

first breakpoint) and names of the DAVs of other break points (denoted as D(Kj) if Kj is the breakpoint

other than first break point in Mi). For example, in method M1, D(M1), D(A), and D(A1) represent the

following DAVs [R,N,W,R], [R,N,N,R] and [R,N,W,N], respectively. Since we assume the worst case

access mode for each attribute before execution, lock requesters always have the most restrictive access

modes (i.e., DAVs of methods). But, after a method execution, a lock holder may have a less restrictive

access mode (i.e., DAV of the first and/or other break points). Two break points commute if their

corresponding DAVs commute. Two DAVs commute if, for each attribute, its access modes in the two

DAVs commute. Fig. 2 gives the commutativity tables constructed in our scheme. Note that Y means

commute, and N not commute.

 lock holders
 D(M1) D(A) D(A1) D(M2) D(B) D(B1) D(M3)

lock D(M1) N Y N N Y N N
requester D(M2) N N Y N Y N N
 D(M3) N Y N N Y Y Y

Figure 2.a. A commutativity table for class Cars

 lock holders
 D(N1) D(N2)

lock D(N1) Y N
requester D(N2) N N

Fig. 2.b. A commutativity table for class Orders

 15

 Our concurrency control is based on two-phase locking [Eswa76]. When a transaction invokes a

method on an object, a lock is required for the method (i.e., D(Mi) lock is required). As the transaction

meets a break point during run-time, the break point is recorded in a transaction manager. After the

method execution, the lock is changed from D(Mi) to D(K), D(K1),...D(Kn) where D(K) is the name of

the DAV of the first break point in Mi and D(K1),,,D(Kn) are the names of the DAVs of other break

points encountered during the method execution Mi. Since the union of DAVs of D(K), D(K1),...D(Kn)

may be less restrictive than the DAV of Mi, that is, D(Mi), this can give more concurrency to other

transactions which request locks on the same object. For example, assume that a transaction T1 invokes a

method M1 on instance i1 of class Cars and has break points A after the execution of M1. Assume that

another transaction T2 comes and invokes a method M3 on the same instance i1 while T1 still has a lock

on i1. Applying our technique gives commutativity between M1 and M3 since D(M3) commutes with

D(A) by the commutativity table in Fig. 2.a. This commutativity would not be possible if we adopted

method commutativity relationship without run-time information checking. In our work, when a DAV of a

method or breakpoint, say M, contains DAV of other methods, say M1 ,,, Mn for the same object, we do

not have to request locks for methods M1 ,,, Mn. That is, one lock request by M is enough for the object so

that we can reduce the lock overhead.

 In our work, a method may have many breakpoints depending on the method’s logic. This results

in larger commutativity tables and incurs much run-time overhead for lock changes and conflict checking.

Ways to reduce the number of breakpoint are presented in [Jun95].

3.3. Considering semantics, nested method invocation and RSO

 In this subsection, we present a way of dealing with three aspects of our concurrency control:

semantics of methods, nested method invocation and RSO (Referentially Shared Object).

 16

 At first, based on automated commutativity relationships presented in Section 3.2, we allow

application programmers to define commutativity relationships for some methods by making use of

semantics of methods as in [Muth93, Rese94]. Thus, though these two methods do not commute in terms

of read and write access modes, they may commute semantically at the discretion of an application

programmer. For example, for class Cars, two methods Check-Out-Rent and Pay-Rent may commute

semantically, that is, customer may check out first and then pay the rental fee or vice versa. If two

methods, say, M1 (requester) and M2 (holder), commute semantically, then we give S commutativity

relationship between M1 (and all breakpoints of M1) and M2 (and also all breakpoints of M2) where S

means semantically commute. Then, we can have a new commutativity table for class Cars as in Fig. 3.

In the commutativity table, Y means commute (unconditionally). That is, if two methods (one is a lock

requester and the other is a lock holder) have Y relationship, a lock requester can get a lock at any time. If

two methods have N relationship, a lock requester can get a lock only if the lock holding transaction is

committed or aborted. On the other hand, if two methods have S relationship, a lock requester can get a

lock if a holder’s method execution is finished. That is, the requester does not have to wait until the lock

holding transaction is committed or aborted.

 lock holders
 D(M1) D(A) D(A1) D(M2) D(B) D(B1) D(M3)

lock D(M1) N Y N N Y N N
requester D(M2) N N Y N Y N S
 D(M3) N Y N S S S Y

 Figure 3. A commutativity table for class Cars

 For nested method invocations, we have the following principles: each method invocation is

associated with a lock. Before any method invocation, a lock is requested and granted. Also, when a

method execution is finished, the lock is inherited by its parent. Then, the lock is said to be retained by its

 17

parent [Rese94]. If a transaction is finished, its locks are discarded. For two methods which commute

semantically, two methods commute only if both execute atomically. That is, for such methods, a requester

cannot get a lock until a holder’s method execution is finished so that the requester can get a lock only if a

holder’s lock is inherited by its parent. Thus, unlike N commutativity relationship, a lock request is not

delayed until the lock holding transaction commits.

 Finally, for RSOs, method invocations on different objects may result in conflicts since those

methods may invoke methods on the same subobject. In our scheme, conflicts are determined dynamically

for each subobject as in [Rese94] since such a conflict may not be detected a priori based on the static

analysis. If such a conflict is defined statically, concurrency may be decreased severely.

3.4. Our concurrency control scheme

 Our concurrency control scheme is based on two-phase locking [Eswa76]. Based on our

discussion in Section 3.3, we have the following locking scheme.

1. Lock is required only for method execution and is granted before method execution. After method

execution, lock is changed (i.e., it reflects the breakpoints executed)

2. A method execution cannot terminate until all of its children are terminated. When a method execution

m terminates:

a. there exits parent of m and m commits : locks held by m are inherited by its parent (i.e., locks are

retained by its parent)

b. either there exits parent of m and m aborts or there is no parent of m: locks held by m are discarded.

3. A lock can be granted if either of the following conditions is satisfied.

a. no other method holds or retains a conflicting lock

 18

b. if conflicting locks are held, such locks are retained by ancestors of the requesting method

c. (for semantic commutativity) if conflicting locks are retained by non-ancestors, then one of the

ancestors of the retainer (not including the retainer itself) and an ancestor of the requester commute

 In rule 3.b, when we allow ancestor/descendent parallelism, we do not let a parent see

uncommitted results of the child method. For example, assume that a parent T initiates a method M, which

accesses some data item X, and continues to do its own work. When T needs to access data item X so

that it requires a conflicting lock on X, T can get a lock only if the lock held by M is retained by T.

 In rule 3.c, we implement semantically commutativity relationships. As we discussed for the two

methods which commute semantically, two methods commute only if both execute in an atomic way.

Thus, we let a lock requester get a lock only if a holder’s method execution is finished (i.e., its lock is

inherited by an ancestor). In additions, for two methods commuting semantically, a requester’s descendent

can also get a lock if a holder’s method execution is finished.

 Fig. 4 shows that two transactions T1 and T2 invoke the same method M1 on instance car1 of

class Car and M2 (by T1)and M3 (by T2) on car2 (and on order2 of class Orders), and the same method

M2 on car3 (and on order3 of class Orders). Assume that, only the first breakpoint [A] has been executed

in two method invocations of M1 by T1 and T2 on an instance car1 and breakpoints [B] and [B1] have

been executed on an instance car3 in method invocations of M2 by T1 and T2.

 T1 T2

M1 M1 M2 M3 M2 M2
 car1 car2 car3

 N1 N2 N2 N1 N2 N1 N2
 Order2 Order3

 19

 time

 Fig. 4. A possible execution of transactions in our scheme

 In the above example, two method invocations of M1 on car1 commute by adopting dynamic

information. This commutativity would not be possible if we used static commutativity relationships for

methods as in [Malt93]. Also, two methods M2 and M3 on instance car2 commute semantically so that the

method invocation on M3 by T2 can be executed only after M2 invoked by T1 is finished, that is, after the

lock held by M2 is inherited by T1. This guarantees atomic execution of method invocation M2 by T1..

Without the semantics of methods, the method execution M3 by T2 is blocked until entire transaction T1 is

committed. In our scheme, the method execution is delayed only until method M2 invoked by T1 is

committed. Thus, we can increase concurrency by adopting semantic information. Also, a lock request by

method invocation M2 of T2 on car3 is not granted since a conflicting lock is held by T1. Thus, the method

invocation M2 of T2 can be executed after T1 is committed. For method invocations on instance car3,

consider the following execution which requires locks by atomic operations as in [Rese94]. This results in

deadlock situation as in Fig. 5. In our scheme, we can avoid such a deadlock situation by adopting locks

for the execution of the methods.

 T1 T2

 car3: M2 M2

 Test-status Test- status Change-status Change-status
 Order3

 time

 Fig. 5. A possible execution by a scheme requiring locks for atomic operations

 20

 For the correctness of our protocol, we can prove it as follows: for every execution resulted from

our protocol, we always can find an equivalent serial execution by a series of two transformations:

substitution and commutativity-based reversal [Beer89, Rese94]. We start from the bottom level of

execution and apply transformations so that we have only serial top-level transactions. The formal proof is

similar to the technique in [Rese94] and for that reason we omit here.

4. Further Work

 In this paper, we present a locking-based concurrency control scheme in OODBs. Our scheme

deals with three important issues in OODB concurrency control: semantics of methods, nested method

invocations, and referentially shared object. In our scheme, locks are required for each method

invocation so that we reduce the locking overhead and possible deadlock due to lock escalation. In order to

overcome the problem of less concurrency due to locks by method invocations, we adopt a scheme to

provide run-time information to increase concurrency.

 In our scheme, we do not consider inheritance hierarchy in which a subclass inherits or redefines

definitions of superclass of the subclass. Currently, we are developing an integrated concurrency control

for both object hierarchy and inheritance hierarchy. We will also consider class definition modification in

our scheme.

5. References

[Agra92] D. Agrawal and A. E. Abbadi, “A Non-restrictive Concurrency Control for Object-Oriented

Databases”, 3rd Int. Conf. on Extending Database Technology, Vienna, Austria, Mar. 1992, pp. 469 - 482.

 21

[Bard88] B. Badrinath and K. Ramamritham, “Synchronizing Transactions on Objects”, IEEE Transaction

on Computers, Vol. 37, No. 5, pp. 541 - 547, 1988

[Beer89] C. Beeri, P. A. Bernstein, and N. Goodman, “A Model for Concurrency in Nested Transactions

Systems”, Journal of the ACM, Vol. 36, No. 2, Apr. 1989, pp. 230 - 269.

[Bern81] P. A. Bernstein and N. Goodman, “Concurrency Control in Distributed Database Systems”,

ACM Computing Surveys, Vol. 13, No. 2, Jun. 1981, pp. 185 - 221.

[Bern87] P.A. Bernstein, V. Hadzilacos and N. Goodman, Concurrency Control and Recovery in

Database Systems, Addison-Wesley, 1987.

[Cart90] M. Cart and J. Ferrie, “Integrating concurrency control into an object-oriented database system”,

2nd Int. Conf. on Extending Data Base Technology, Venice, Italy, Mar. 1990, pp. 363 - 377.

[Eswa76] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger, “The notion of consistency and

predicate locks in a database system”, Communication of ACM, Vol. 19, No. 11, Nov. 1976, pp. 624 -

633.

[Garz88]. J. F. Garza and W. Kim, “Transaction Management in an Object-Oriented Database System”,

ACM SIGMOD Int. Conf. on Management of Data, Chicago, Illinois, Jun. 1988, pp. 37 - 45.

[Hadz91] Thanasis Hadzilacos and Vassos Hadzilacos, “Transaction Synchronization in Object Bases”,

Journal of Computer and System Sciences, Vol. 43, No. 1, pp. 2 - 24.

[Herr90] U. Herrmann, P. Dadam, K. Kuspert, E. A. Roman and G. Schlageter, “A Lock Technique for

Disjoint and Non-Disjoint Complex Objects”, 2nd Int. Conf. on Extending Data Base Technology, Venice,

Italy, Mar. 1990, pp. 219 - 237.

[Jun95] Woochun Jun and Le Gruenwald, “Automation of Fine Concurrency in Object-Oriented

Databases”, Proc. of the ISCA 8th Int. Conf. on Computer Applications in Industry and Engineering,

Nov., 1995, pp. 72 - 75.

 22

[Malt93] Carmelo Malta and Jose Martinez, “Automating Fine Concurrency Control in Object-Oriented

Databases”, 9th IEEE Conf. on Data Engineering, Vienna, Austria, Apr. 1993, pp. 253- 260.

[Moss85] J. E. B. Moss, Nested Transactions : An Approach to Reliable Distributed Computing, MIT

Press, Cambridge, 1985.

[Muth93] P. Muth, T. C. Rakow, G. Weikum, P. Brossler, and C. Hasse, “Semantic Concurrency Control

in Object-Oriented Database Systems”, Proc. of the 9th IEEE Int. Conf. on Data Engineering, Apr. 1993,

pp. 233 - 242.

[Ozsu91] M. T. Ozsu and Patrick Valduriez, Principles of Distributed Database Systems, Prentice Hall,

1991.

[Rese94] R. F. Resende, D. Agrawal, and A. E. Abbadi, “Semantic Locking in Object-Oriented Database

Systems”, Proc. of OOPSLA 94, Portland, OR, USA, Oct. 1994, pp. 388 - 402.

[Serv90] Servio Logic Corp, “Chap. 16: Transaction and Concurrency Control”, in Gemstone Product

Overview, Alameda, CA., 1990.

