

An integrated concurrency control in object-oriented databases

Woochun Jun and Le Gruenwald

School of Computer science
University of Oklahoma

Norman, OK 73019
E-mail : Gruenwal@mailhost.ecn.uoknor.edu

Abstract

In this paper, we present a concurrency control scheme to increase concurrency among methods in Object-Oriented
Databases. We are concerned with all types of access to an object : instance access and class definition access. For
instance access, our work has the following characteristics. First, construction of commutativity relation among
methods can be automated. Second, it provides more concurrency than read and write access modes on methods.
Third, deadlocks due to lock escalation can be reduced. Finally, concurrency is increased further with the use of run-
time information. For class definition access, we allow class definition access methods to run concurrently by taking
fine granularity. We also allow more parallelism between class definition access methods and instance access
methods.

1. Introduction

 In object-oriented database systems (OODBS), a
database is a collection of classes and instances where
classes and instances are called objects. Users can access
objects by invoking methods in OODBS. To make sure
atomicity of user interactions, the traditional transaction
model can be used in OODBS. That is, users can access
OODB by executing transactions, each of which is defined
as a partially ordered set of method invocations on class or
instance objects (Agrawal, 1992).

 Concurrency control involves synchronization of multiple
access to the database, so that the consistency of the
database is maintained (Bernstein, 1987). Like in
conventional databases, concurrency control in OODBS also
requires logical consistency of data and transactions.
Concurrency control requires an application-dependent
correctness criterion to maintain database consistency while
transactions are running concurrently on the same object.
Serializability is a widely used correctness criterion.
Transactions are serializable if the interleaved execution of
their operations produces the same output and has the same
effects on the database as some serial execution of the same
transactions (Bern81, Bern87).

 In OODBS, one of main concerns is to increase
concurrency among methods so that more transactions can

run in parallel. Usually, transactions are long in typical
OODB applications. Thus, aborting a long transaction due to
conflicts wastes system resources. Also, holding resources
by a long transaction may delay other transactions.
Commutativity is a widely used criterion to determine
whether a method can run concurrently with those in
progress on the same object. Two methods commute if their
execution orders do not affect the results of the methods.
Two methods conflict each other if they do not commute.

 In general, there are two types of access to an OODB :
instance access (instance read, instance write) and class
definition access (class definition read, class definition
update) (Cart, 1990). An instance access consists of
consultations and modifications of attribute values in an
instance or a set of instances. A class definition access
consists of consulting class definition, adding/deleting an
attribute or a method, changing the implementation code of a
method or changing the inheritance relationships between
classes, etc.

 In this paper, we present a locking-based concurrency
control scheme to increase concurrency among methods. For
instance access methods, our scheme has several important
characteristics. First, it does not put the burden of
determining commutativity for methods on application
programmers. Second, it provides more concurrency than
read and write access modes on methods. Third, we reduce
deadlocks due to lock escalation, which is a main source of

deadlocks (Malta, 1993). Finally, it takes run-time information
into consideration to improve concurrency. For class
definition access methods, we allow them to run
concurrently by taking fine locking granularity. Also, we
allow more parallelism between class definition access
methods and instance access methods.

 The paper is organized as follows. In the next section, we
review related studies and discuss their advantages and
disadvantages. In section 3, we propose a scheme to increase
concurrency among methods. The paper concludes with
further work in section 4.

2. Previous Work

2.1. Concurrency in instance access

 Several techniques have been proposed to increase
concurrency among instance access methods (Agrawal,
1992; Badrinath, 1988; Badrinath, 1992; Chrysanthis, 1991).
In order to decide commutativity of instance access
methods, they require application programmers to perform
semantic analysis on the methods. In (Agrawal, 1992), they
use right backward commutativity to provide more
concurrency among methods. But, in order to support right
backward commutativity, application programmers need to
know all possible outcomes of each method and recovery
should be based on update-in-place policy. In (Badrinath,
1988), the affected set of each method is adopted to give fine
concurrency. In their work, two methods commute if the
intersection of their affected set is disjoint. But, application
programmers need to know the affected set of each method.
The recoverability is used to provide enhanced concurrency
in (Badrinath, 1992). An operation o1 is recoverable relative
to another operation o2, if o2 returns the same value whether
or not o1 is executed immediately before o2. This work
requires application programmers to know all outcomes of
each method for possible input parameters. A formal scheme
to extract concurrency from method is presented in
(Chrysanthis, 1988). To support this work, application
programmers need to know effects of each method. Also,
dependency relation between each pair of method should be
provided by application programmers.

 Recently in (Malta, 1993), the process of constructing
commutativity relation from method contents is automated. It
is based on the notion of affected sets of attributes
(Badrinath, 1988). That is, even if two methods conflict in
terms of read or write operations, as long as their access
modes on individual attributes do not conflict, two methods
can run in parallel. Commutativity of methods is determined
at compile-time so that run-time commutativity checking is
avoided. As a preliminary step to construct commutativity
relation among methods, they construct an Direct Access
Vector(DAV) for each method. An DAV is a vector whose
field corresponds to each attribute defined in the class on
which the method operates. Each value composing this

vector denotes the most restrictive access mode used by the
method when accessing the corresponding field. An access
mode of an attribute can have one of three values, N (Null),
R (Read) and W (Write) with N < R < W for their
restrictiveness. Access mode information is syntactically
extracted from the source code of the method at compile-
time. After the construction of DAVs of methods,
commutativity of methods can be constructed as follows :
two methods commute if their corresponding DAVs
commute. In turn, two DAVs commute if their access modes
are compatible for each attribute. This commutativity relation
is defined in the form of a table.

 The above technique takes access mode information
solely from the source code of a method and thus frees the
user from determining commutativity relations. Also, this
approach can provide finer concurrency than mere read and
write conflicts by examining attribute level. Since a DAV of a
method is the union of its own DAV and DAVs of all other
methods defined in that method, deadlocks due to lock
escalation can be reduced by declaring the most exclusive
access mode in a method. However, concurrency
improvement offered by this technique is limited since run-
time information on attributes is not taken into account.

2.2. Concurrency between class definition access

 In existing OODB systems such as Orion, O2 and
Gemstone (Cart, 1990; Kim, 1990; Servio, 1990), a class
definition update (also called schema update or class write)
requires a lock on an entire class object. Thus, no matter
what kind of update operation is performed on a class object,
it blocks all other class definition access operations even if
they need to access disjoint portions of the class object.

 Recently, in (Agrawal, 1992), they provide more
concurrency for class definition updates by providing finer
locking granularity. But, class definition updates in their
work are limited to updates on attributes and methods. For
definition update on method, they classify it into three
categories: 1) add a method to a class 2) delete an attribute
from a class 3) replace the implementation of a method by a
new implementation. For update on attribute, they classify it
into two categories: 1) add an attribute to a class 2) delete an
attribute from a class. Thus, as long as two class definition
update methods access disjoint portions of a class
definition, they can run concurrently. But, they do not
consider any update on class hierarchy relationship. Also, it
is suitable only for OODBS whose schema is continuously
changing. For OODBS whose schema need not be changed
frequently, the overhead may outweigh the concurrency
provided.

2.3. Concurrency between instance access and
class definition access

 In most concurrency control schemes dealing with
class definition update, a class definition update method
blocks every instance methods as well as class definition
read methods (Cart, 1990; Kim, 1990; Servio, 1990; Malta,
1991). Those studies take lock granularity as an entire class
definition. In (Kim, 1990), since it provides a limited set of
lock types, a class definition read does not commute with
any instance write method. On the other hand, a class
definition read method commutes with any instance read or
write method in other studies (Cart, 1990; Servio, 1990;
Malta, 1991).

 Recently, in (Agrawal, 1992), they provide more
concurrency for class definition updates by providing finer
locking granularity. But, class definition updates in their
work are limited to updates on attributes and methods. Also,
each attribute accessed by an instance access method is
also locked. This attribute locking is done individually at
run-time, and thus incurs large overhead.

 In this paper, we provide new commutativity relations
among class definition update methods in order to increase
concurrency. Our scheme includes all types of class
definition updates and class definition read operations. We
also provide a scheme which integrates instance access and
class definition access to give better concurrency.

3. Our Approach

3.1. Concurrency among instance access

 Our work improves the scheme developed in (Malta,
1993) to achieve further increase in concurrency. Our scheme
has four objectives. First, it still automates the process of
commutativity relation construction. Second, it provides
more concurrency than read and write access modes on
methods. Third, it reduces deadlocks due to lock escalation.
Finally, it increases concurrency among methods by
exploiting run-time information.

 Similar to (Malta, 1993), we need a two-phase pre-analysis
which consists of two steps : 1) construction of DAV for
each method and 2) construction of a commutativity table of
methods. In each method, a break point is inserted by a
programmer or a compiler when a conditional statement is
encountered. Every method has a special break point called
first break point before the first statement in the method.
There are three kinds of DAVs in each method : 1) a final
DAV of the first break point, which is a DAV of the entire
method as in (Malta, 1993) 2) an initial DAV of the first break
point, which is a union of access modes of each attribute
used by statements between the first break point and the
next break point and access modes of each attribute used by
statements that are executed regardless of execution paths.
A union operation is equivalent to max, e.g., N + W = W and
3) an initial DAV of every other break point, which contains
access modes of all attributes used by statements between

this break point and the next break point (or end of the
method).
 For example, assume that we have three methods M1, M2
and M3 and an class Y with four attributes a1, a2, a3 and a4.
A, A1, A2, and A3 are breakpoints of M1, B is a breakpoint
of M2, and C, C1, and C2 are breakpoints of M3. A union
operation indicated as ‘⊕’ takes two arguments among N
(null: no operation), R (Read), and W (Write) and selects the
more restrictive one. Table 1 illustrates how the union
operation works.

 N R W

N N R W
R R R W
W W W W

Table 1. Union operation table

The contents and DAVs of each break point in the method
are given below.

method M1
[A]
read a1
If (a1 > 100) then
{[A1]
a2 <= a1
End if
read a2 (*)
If (a2 > 100) then
[A2]
a3 <= a2
End if
read a3 (**)
If (a3 > 100) then
{[A3]
call M2
End if

method M2 method M3
[B] [C]
read a1 read a1
read a4 If (a1 > 100) then
a4 <= a1 {[C1]
 return a1}
 else
 {[C2]
 read a2
 return a2}
 end if
The DAVs constructed for method M1 are :

initial DAV of [A] = {DAV of [A]} ⊕ {DAV of (*)} ⊕
 {DAV of (**)}

 = [R,N,N,N] ⊕ [N,R,N,N] ⊕ [N,N,R,N]
 = [R,R,R,N]
initial DAV of [A1] = [R,W,N,N]
initial DAV of [A2] = [N,R,W,N]
initial DAV of [A3] = final DAV of M2 = [R,N,N,W]
final DAV of [A] = initial DAV of [A] ⊕ initial DAV of
 [A1] ⊕ initial DAV of [A2] ⊕ initial
 DAV of [A3]
 = [R,R,R,N] ⊕ [R,W,N,N] ⊕ [N,R,W,N]

 ⊕ [R,N,N,W]

 = [R,W,W,W]

Similarly, the DAVs for M2 are :

Final DAV of [B] = [R,N,N,W]
initial DAV of [B] = [R,N,N,W]

and DAVs for M3 are

Final DAV of [C] = [R,R,N,N]
initial DAV of [C] = [R,N,N,N]
initial DAV of [C1] = [R,N,N,N]
initial DAV of [C2] = [N,R,N,N]

While in the scheme proposed in (Malta, 1993), the DAVs for
the methods would be:

DAV of M1 = [R,W,W,W]

DAV of M2 = [R,N,N,W]

DAV of M3 = [R,R,N,N]

 After the construction of the breakpoints’ DAVs in all
methods, we create a commutativity relation of methods in
the form of a table. In this table, a lock requester’s entries
contain names of the final DAVs of the first break points in
all methods (denoted as NF where N is the name of the first
break point in each method). For example, AF represents a
final DAV of the first break point A in method M1, which is
[R,W,W,W]. A lock holder’s entries contain names of final
DAV of the first break point (denoted as NF), name of the
initial DAV of the first break point (denoted as NB) and
names of the initial DAVs of other break points (denoted as
Ni where 1 ≤ i ≤ number of breakpoints -1) in each method.
For example, in method M1, AF, AB, A1, A2 and A3 represent
the following DAVs, [R,W,W,W], [R,R,R,N], [R,W,N,N],
[N,R,W,N] and [R,N,N,W], respectively. Since we assume
the worst case access mode for each attribute before
execution, lock requesters always have the most restrictive
access modes (i.e., final DAVs of the first break points). But,
after a method execution, a lock holder may have a less
restrictive access mode (i.e., initial DAV of the first or of the

other break points). Two break points commute if their
corresponding DAVs commute. Two DAVs commute if, for
every attribute, its access mode in the two DAVs commute.
Fig. 1 gives the commutativity tables constructed in our
scheme and in the scheme proposed in (Malta, 1993).

 Our concurrency control is based on two-phase
locking (Eswaren, 1976). When a transaction invokes a
method on an object, it gets a lock containing the final DAV
of the first break point in the method. As the transaction
meets a break point during run-time, the break point is
recorded. After the method execution, the lock is changed
from NF to NB, NJ,...NS where NB is the name of the initial
DAV of the first break point and NJ...NS are the names of the
initial DAVs of other break points encountered during the
method execution. Since the union of DAVs of NB, NJ,...NS
may be less restrictive than the DAV of NF, this can give
more concurrency to other transactions which request locks
on the same object. For example, assume that a transaction
T1 invokes a method M1 on instance i1 of class Y and has
break points AB, A1, and A2 after the execution of M1.
Assume that another transaction T2 comes and invokes a
method M2 on the same instance i1 while T1 still has a lock
on i1. Applying our work gives commutativity between M1
and M2 since a method M2 commutes with each of AI, AB
and A2, by the commutativity table in Fig. 1. On the other
hand, M1 and M2 do not commute by checking the
commutativity table in Fig. 1 if the scheme in (Malta, 1993) is
adopted. Note that O means commute, and X not commute.

Commutativity table of our scheme

lock holder A F A B A1 A2 A3 BF CF CB C1 C2

lock A F X X X X X X X O O X

requester BF X O O O X X O O O O

 CF X O X O O O O O O O

Commutativity table in (Malta, 1993)

lock holder M1 M2 M3

lock M1 X X X

requester M2 X X O

 M3 X O O

Fig. 1. Examples of commutativity tables constructed for our
scheme and for (Malta, 1993)

3.2. Concurrency in class definition access

 Class definition updates can be classified in three
categories in OODBs (Kim, 1990; Zicari, 1991). The first and
second categories are updates to the definition of a class,
that is, to attributes of a class and to methods of a class.

These updates include any changes to the attributes and
methods defined for a class, such as changing the name or
domain of an attribute, adding or dropping an attribute or a
method. The third category is updates to a class-hierarchy
structure. These include adding or dropping a class, and
changing the superclass/subclass relationship between a
pair of classes. We use CA, CM, and CCR to denote
Changes to an attribute, Changes to a method, , and
Changes to the superclass/subclass relationship,
respectively. Likewise, for class definition reads, we use RA,
RM and RCR to denote read to definition of attributes, read
to definition of methods, read to superclass/subclass
relationship, respectively.

 We assume that updating the definition of a method
does not affect the definition of any attribute. On the other
hand, we assume that updating the definition of an attribute
affects the definition of a method. This provides
commutativity between CM and RA. But, we still assume
that updating the definition of a class relationship may affect
three definitions (attribute, method, class relationship) of a
class. Based on these assumptions and the commutativity
among class definition updates and class definition reads in
(Cart, 1990; Kim, 1990), the following figure gives the
commutativity relationships among class definition updates
and class definition reads. The commutativity table defines
relationships between lock requesters and lock holders on
the same class.

 CA CM CCR RA RM RCR

CA X X X X X O

CM X X X O X O

CCR X X X X X X

RA X O X O O O

RM X X X O O O

RCR O O X O O O

Fig. 2. Commutativity relationships among class definition
updates and class definition reads

 Using the above commutativity relationships, for
class definition access methods, we get finer granularity
locks and thus provide better concurrency than
conventional OODBS such as Orion (Kim, 1990) and O2 (Cart,
1990) do. The lock granularity in our work is one of CA, CM
and CCR (for class definition update) and RA, RM. RCR (for
class definition read). Whenever a class definition access
method is invoked, we need to check commutativity
between a lock holder and a lock requester using the
commutativity table in Fig. 2 and grant a lock if they
commute. The lock table format is of [trans-name, lock-type]

where trans-name is a transaction holding a lock and lock-
type is a class definition access lock type ∈ {CA, CM, CCR,
RA, RM, RCR}. For example, consider the following
transactions on class Y.

(transactions) T1 T2

--

(time)

t CM (delete a method)

t+1 RA (read an attribute)

t+2 RA (read an attribute)

t+3 CA (delete an attribute)

 The following table shows the locks obtained , at
each time step, during the executions of transactions T1 and
T2 in our scheme. We assume that the first execution occurs
at time t.

time locks obtained by each transaction

t Y : [T1,CM]

// T1 can get a CM lock since no other transaction has a lock
on class Y //

t+1 Y : [T1,CM] [T2,RA]

// T2 can get an RA lock since CM and RA commute using
the table in Fig. 2 //

t+2 Y : [T1,CM] [T2,RA] [T1,RA]

// T1 can get an RA lock since RA and RA commute //

t+3 Y : [T1,CM] [T2,RA] [T1,RA]

// T2 cannot get a CA lock since CA does not commute with
RA //

3.3. Concurrency between class definition access
and instance access

 For each class, when it is accessed for the first time
by either an attribute definition access method or instance
access method, an attribute access vector (AAV) is created.
Also, when each class is accessed for the first time by a
method definition access method or instance access method,
a method access vector (MAV) is created. An AAV is to
give parallelism between attribute definition access methods
and between attribute definition access methods and
instance access methods. Likewise, an MAV is to give
parallelism between method definition access methods, and

between method definition access methods and instance
access methods. Each field in the AAV represents an
attribute. For each attribute field, a value can have one of
three values: W (update, set by CA), R (read, set by RA or
RM or CM or instance access method), and N (null). Each
field in MAV represents a method. For each method field, a
value can have one of three values: W (update, set by CM),
R (read, set by RM or instance access method), and N (null).
These vectors are updated when a class definition access on
attribute (or method) or instance access method is granted a
lock.

 The use of these vectors to increase concurrency is done
as follows.

• Lock requester is an CCR method: if lock is set by other
transactions, block it. Otherwise, set CCR lock.

• Lock requester is an RA or CA method: if CCR lock is set,
block it. Otherwise, commutativity is checked by using AAV
and sets R (for RA) or W (for CA) on the corresponding
attribute in AAV if, for each attribute to be accessed by the
lock requester’s method, the lock modes of the requester and
holders are compatible.

• Lock requester is an RM or CM method: if CCR lock is set,
block it. Otherwise, the commutativity checking consists of
two steps. Assume that the definition access to the method
M1 is requested.

a) commutativity is checked by comparing AAV with
the M1’s DAV as follows: for each attribute whose
value is R or W in the DAV of M1, check if the attribute
is W locked in AAV. If so, block the lock request on
M1. Otherwise, perform step b) as below.

b) check if the method field of M1 is W locked in MAV.
If so, block the lock request on M1. Otherwise, set R (for
RM) or W (for CM) lock in MAV, and R lock (in AAV)
for each attribute whose value is R or W in DAV of M1.

• Lock requester is an instance method: if CCR lock is set,
block it. Otherwise, the commutativity checking consists of
two steps.

a) commutativity is checked by comparing AAV with
the lock requester’s DAV as follows: for each attribute
whose value is R or W in the DAV of the instance
access method, check if the attribute is W locked in
AAV. If so, block the lock request by the instance
access method. Otherwise, perform step b) as follows.

b) check if the method field is W locked in MAV. If so,
block the lock request by the instance method.
Otherwise, set R lock (in MAV) in the corresponding
method’s field, and R lock (in AAV) for each attribute
whose value is R or W in DAV of the instance access
method.

• Whenever an CA or RA is committed by its invoking
transaction, the vector AAV is reset.

• Whenever an CM or RM or instance access method is
committed by its invoking transaction, the vectors MAV and
AAV are reset.

 The following table gives the commutativity relationships
among class definition updates (CA,CM,CCR), class
definition reads (RA,RM,RCR), and instance access methods
(denoted by I) where ∆ means that two methods commute as
long as they are accessing disjoint portions of an object.

 CA CM CCR RA RM RCR I

CA ∆ ∆ X ∆ ∆ O ∆

CM ∆ ∆ X O ∆ O ∆

CCR X X X X X X X

RA ∆ O X O O O O

RM ∆ ∆ X O O O O

RCR O O X O O O O

I ∆ ∆ X O O O ∆

 Fig. 3. Commutativity relationship among class
definition access and instance access

 For example, with class Y defined in Section 3.1, consider
the following method invocations by transactions T1, T2
and T3. The following shows the locks obtained and
changes in the vectors AAV and MAV, at each time step,
during the execution of transactions T1, T2 and T3. We
assume that the first execution occurs at time t.

(transactions) T1 T2 T3

(time)

t CA (a3)

t+1 M2 on I1

t+2 M3 on I1

t+3 RA(a2) (M1)

time locks obtained by each transaction

t : Y : AAV [a1:N, a2:N, a3:W(T1), a4:N]

// Lock CA requested by T1 is granted since no other
transaction has a lock on Y. Thus, T1 needs to create AAV
and sets W on a3 field. //

t+1 : Y : AAV [a1:R(T2), a2:N, a3:W(T1), a4:R(T2)]

 MAV[a1:N, a2:R(T2), a3:N]

 I1 : [M2(BF), T2]

// T2 invokes M2 on I1; check AAV if, for each attribute
accessed by M2, there is an incompatible attribute access
mode using DAV of M2. Also check the M2 field in MAV if
some other transaction is updating M2. Since M2 does not
access attribute a3 and the definition of M2 is not updated,
the values of AAV and MAV are changed and M2 can get a
lock on instance I1.//

t+2: Y: AAV[a1:R(T2,T3),a2:R(T3),a3:W(T1),a4:R(T2)]

 MAV[a1:N, a2:R(T2), a3:R(T3)]

 I1 : [M2(BF), T2], [M3(CF), T3]

// Repeat the work done in step t+1 for T3. By using
commutativity table in Fig. 1, M2 request by T2 is granted
on I1. //

 Assume that break points CB and C2 are met during the
execution of M3 //

t+3: Y:AAV[a1:R(T2,T3),a2:R(T2,T3),a3:W(T1),a4:R(T2)]

 MAV[a1:N, a2:R(T2), a3:R(T3)]

 I1 : [M2(BF), T2], [M3(CB, C2), T3]

// Check a2 field in AAV if another transaction is already
updating a2.. If so, block the requester. Otherwise, set R on a2
in AAV. Since a2 is not being updated by any transaction,
RA lock requested by T2 is granted. //

 Note that the instance access requests by T2 and T3 are
blocked if we adopt the locking schemes in (Cart, 1990; Kim,
1990). In our work, we can increase concurrency among class
definition access and instance access by taking finer
granularity locks on class definition access.

 One may argue that updating AAV and MAV whenever
an instance access method is invoked incurs too much
overhead. This is true especially for OODB systems whose
schema need not be changed frequently. In this case, the
overhead imposed by the technique proposed here may
outweigh the concurrency increased. For such OODB
systems, we take granularity as all attributes for RA or CA
and all methods for RM or CM rather than individual
attribute or method. Also, for instance access methods, we
use RA and RM locks on class, instead of using AAV and
MAV. That is, we adopt the following protocol, which is
based on the technique discussed in Section 3.2.

• When a transaction invokes an instance access method,
get RA and RM locks and check commutativity among
instance access methods.

• When a transaction which has invoked an instance access
method is committed, release RA and RM locks.

4. Further Work

 This paper presents an integrated concurrency
control scheme to enhance concurrency among methods in
OODBS. The scheme deals with concurrency among
instance access, among class definition access, and among
class definition access and instance access. Especially, for
better concurrency among class definition access and
instance access, our scheme provides different treatments
for two types of object-oriented databases : one whose
schema is continuously changing, and one whose schema
needs not be changed frequently.

 In our work, an instance access method may have many
break points depending on the method’s logic. This requires
larger commutativity tables and also incurs much run-time
overhead for lock changes and commutativity checking.
Thus, we need a way to reduce the number of break points in
a method in order to reduce space and time overhead for lock
changes and commutativity checking during run-time. In this
paper, we do not include the techniques used to reduce
break points. Also, in this study, we do not consider class
hierarchy, which is an important property in OODBS. Due to
inheritance, a query-type access or class definition access
may involve a class and all its subclasses. Currently, we are
developing a scheme, which incorporates class hierarchy
into our current work, aiming at less locking overhead on
class hierarchy.

References

Agrawal, D. and Abbadi, A. E. (1992). A Non-Restrictive
Concurrency Control for Object-Oriented Databases. In
Proc. of the 3rd Int. Conf. on Extending Data Base
Technology (pp. 469--482), Vienna, Austria.

Badrinath, B. R. and Ramamritham, K. (1988). Synchronizing
Transactions on Objects. IEEE Transaction on Computers,
37(5), 541--547.

Badrinath, B. R. and Ramamritham, K (1992). Semantic-Based
Concurrency Control : Beyond Commutativity. ACM
Transactions on Database Systems, 17(1), 163--199.

Bernstein, P. A. and Goodman, N. (1981). Concurrency
Control in Distributed Database Systems. ACM
Computing Surveys. 13(2), 185--221.

Bernstein, P. A., Hadzilacos, V. and Goodman, N. (1987).
Concurrency Control and Recovery in Database Systems.
Addison-Wesley.

Cart, M and Ferrie, J, Integrating (1990). Concurrency
Control into an Object-oriented Database System 2nd Int.
Conf. on Extending Data Base Technology (pp. 363--377).
Venice, Italy.

Chrysanthis, P. K., Raghuram, K, and Ramaritham K. (1991)
Extracting Concurrency from Objects : A Methodology
Proc. of the 1991 ACM SIGMOD Int. Conf. on
Management of Data (pp. 108--117).

Eswaren, K. P., Gray, J. P., Lorie, R. A., and Traiger, I. L.
(1976). The Notions of Consistency and Predicate Locks in
a Database System Communications of the ACM. 19(11),
624--633.

Kim, W (1990). Introduction to Object-Oriented Databases.
The MIT Press

Malta, C. and Martinez, J. (1991). Controlling Concurrent
Accesses in an Object-Oriented Environment. 2nd Int.
Symp. on Database Systems for Advanced Applications.
Tokyo, Japan, (pp. 192 - 200)

Malta, C. and Martinez, J. (1993) Automating Fine
Concurrency Control in Object-Oriented Database. Proc.
of the 9th Int. Conf. on Data Engineering. Vienna, Austria.
(pp. 253 - 260)

Servio Logic Corp. (1990). Chap. 16 : Transactions and
Concurrency Control. in Gemstone Product Overview.
Alameda, CA.

Zicari, R. (1991) A Framework for Schema Updates in An
Object-Oriented Database System. 7th IEEE Int. Conf. on
Data Engineering. Kobe, Japan. (pp. 2--13)

