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Abstract 

 

In this paper, we present a scheme to increase 
concurrency among methods in Object-Oriented 
Databases. Our work has the following characteristics. 
First, construction of commutativity relation among 
methods can be automated. Second, it provides more 
concurrency than read and write access modes on 
methods. Third, concurrency is increased further with 
the use of dynamic information. 

 

1        Introduction 

 In Object-Oriented Data Base Systems (OODBS), 
one of main concerns is to increase concurrency among 
methods so that more transactions can run in parallel. 
Since OODB allows arbitrary user-defined methods rather 
than simple reads and writes, we may increase 
concurrency by exploiting semantics of methods. 
Commutativity is a widely used criterion to determine 
whether a method can run concurrently with those in 
progress on the same object. Two methods commute if 
their execution orders do not affect the results of the 
methods. Two methods conflict each other if they do not 
commute. In this paper, we present a scheme to increase 
concurrency among methods. Our scheme has the several 
important characteris tics. First, it does not put the burden 
of determining commutativity for methods on application 
programmers. Second, it provides more concurrency than 
read and write access modes on methods. Finally, it takes 
dynamic information into consideration to improve 
concurrency. 

 The paper is organized as follows. In the next 
section, we present previous studies and discuss their 
advantages and disadvantages. In section 3, we propose 
a scheme to increase concurrency. The paper concludes 
with further work with in section 4.. 

 

 

2        Previous Work 

 Several techniques have been proposed to 
increase concurrency among methods[1,2,3]. Usually, 
these techniques require application programmers to 
specify commutativity of methods. A process of 
commutativity relation construction is a serious burden 
on application programmers. Recently in [4], they 
automate the process of constructing commutativity 
relation from method contents. It is based on the notion 
of affected sets of attributes [1]. That is, even if two 
methods conflict in terms of read or write operations, as 
long as their access modes on individual attributes do 
not conflict, two methods can run in parallel. 

 In their work, commutativity of methods is 
determined at compile-time so that run-time 
commutativity checking is avoided. They make use of the 
concept of Direct Access Vector (DAV) for each method, 
which is a vector whose field corresponds to each 
attribute defined in the class on which the method 
operates. Each value composing this vector denotes the 
most restrictive access mode used by the method when 
accessing the corresponding field. Access mode 
information is syntactically extracted from the source 
code of the method at compile-time. Two methods 
commute if their corresponding DAVs commute. In turn, 
two DAVs commute if their access modes are compatible 
for each attribute. This commutativity relation is defined 
in the form of a table. This approach can provide finer 
concurrency than mere read and write conflicts. However, 
this technique does not increase much concurrency since 
it is too conservative. That is, it does not use any 
dynamic information when a method is executed on an 
object. 

 

3        Our Approach 

 Our work improves the scheme developed in [4] to 
provide better concurrency. Our scheme has two 
objectives. First, we still automate the process of 



commutativity relation construction. Second, we increase 
concurrency among methods by exploiting run-time 
information. 

 Our work is based on [5,6]. In their work, by pre-
analysis, data sets for transactions can be obtained 
where a data set is a set of data items that a transaction 
might access. Since the presence of control structures 
within a transaction reduces the set of data actually used, 
each decision point (conditional statement) makes the 
transaction access a subset of its data set. Thus, as the 
transaction meets a decision point, its data subset, which 
is usually much smaller than its complete data set, is 
formed. Using this  subset, data conflicts between the 
transaction and other transactions requesting data at this 
point can be reduced. 

 In our work, we need a two-phase pre-analysis : 1) 
construction of DAV of each break point and 2) 
construction of a commutativity table of DAVs. In each 
method, a break point is inserted by a programmer when a 
new subset of data can be obtained by executing a 
conditional statement. At compile time, the DAV of each 
break point is constructed. The construction of a DAV of 
a break point in a method has three steps : 1) construct an 
initial DAV of each break point where each value of the 
initial DAV denotes the most restrictive access mode of 
each attribute used by statements between this break 
point and the next break point (or end of the method). An 
access mode can have three values, N (Null), R (Read) or 
W (Write). 2) construct a method tree and an 
intermediate DAV of each break point. In an intermediate 
DAV, each value denotes the access mode used by 
statements from the beginning of the method but before 
the  next break point though an execution path. Also, a 
method tree shows relationships among break points. For 
any two break points, say Bi and Bj, Bi is an ancestor of 
Bj if Bj can be reached from Bi through a conditional 
statement execution. In this case, Bj is called a 
descendent of Bi. 3) construct a final DAV of each 
method. A final DAV represents join of access modes of 
each attribute used by statements before this break point 
and the worst case access mode of each attribute used by 
statements from this break point to the end of the 
method. Thus, the final DAV of the first break point in a 
method represents the worst case access mode of 
attributes in the method.  

 After the construction of final DAVs of break 
points, we construct a commutativity relation of methods 
in a form of a table. In a commutativity table, a lock 
requester’s entry contains the name of the first break 
point in each method. A lock holder’s entry contains the 
name of all break point in each method. Two methods 

commute if their final DAVs commute. Two final DAVs 
commute if the access modes of each attribute commute.  

 When a transaction invokes a method on a data 
object, it gets a lock containing the first break point in the 
method. As the transaction meets a break point during 
run-time, the lock is changed to contain the name of the 
current break point which may have less restrictive final 
DAV. Thus, it can give more concurrency to other 
transactions which request locks on same data object at 
this point. 

 

4        Further Work 

In our work, a method may have many break points 
depending on the method’s logic. This requires bigger 
commutativity tables and also incurs much run-time 
overhead for lock change. Thus, we need to devise a way 
to reduce the number of break points in a method in order 
to reduce space overhead and time overhead for lock 
changes during run-time. 
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