
Supporting Fine Concurrency in Object-Oriented Databases

Woochun Jun and Le Gruenwald

School of Computer science

University of Oklahoma

Norman OK 73019

Abstract

In this paper, we present a scheme to increase
concurrency among methods in Object-Oriented
Databases. Our work has the following characteristics.
First, construction of commutativity relation among
methods can be automated. Second, it provides more
concurrency than read and write access modes on
methods. Third, concurrency is increased further with
the use of dynamic information.

1 Introduction

 In Object-Oriented Data Base Systems (OODBS),
one of main concerns is to increase concurrency among
methods so that more transactions can run in parallel.
Since OODB allows arbitrary user-defined methods rather
than simple reads and writes, we may increase
concurrency by exploiting semantics of methods.
Commutativity is a widely used criterion to determine
whether a method can run concurrently with those in
progress on the same object. Two methods commute if
their execution orders do not affect the results of the
methods. Two methods conflict each other if they do not
commute. In this paper, we present a scheme to increase
concurrency among methods. Our scheme has the several
important characteris tics. First, it does not put the burden
of determining commutativity for methods on application
programmers. Second, it provides more concurrency than
read and write access modes on methods. Finally, it takes
dynamic information into consideration to improve
concurrency.

 The paper is organized as follows. In the next
section, we present previous studies and discuss their
advantages and disadvantages. In section 3, we propose
a scheme to increase concurrency. The paper concludes
with further work with in section 4..

2 Previous Work

 Several techniques have been proposed to
increase concurrency among methods[1,2,3]. Usually,
these techniques require application programmers to
specify commutativity of methods. A process of
commutativity relation construction is a serious burden
on application programmers. Recently in [4], they
automate the process of constructing commutativity
relation from method contents. It is based on the notion
of affected sets of attributes [1]. That is, even if two
methods conflict in terms of read or write operations, as
long as their access modes on individual attributes do
not conflict, two methods can run in parallel.

 In their work, commutativity of methods is
determined at compile-time so that run-time
commutativity checking is avoided. They make use of the
concept of Direct Access Vector (DAV) for each method,
which is a vector whose field corresponds to each
attribute defined in the class on which the method
operates. Each value composing this vector denotes the
most restrictive access mode used by the method when
accessing the corresponding field. Access mode
information is syntactically extracted from the source
code of the method at compile-time. Two methods
commute if their corresponding DAVs commute. In turn,
two DAVs commute if their access modes are compatible
for each attribute. This commutativity relation is defined
in the form of a table. This approach can provide finer
concurrency than mere read and write conflicts. However,
this technique does not increase much concurrency since
it is too conservative. That is, it does not use any
dynamic information when a method is executed on an
object.

3 Our Approach

 Our work improves the scheme developed in [4] to
provide better concurrency. Our scheme has two
objectives. First, we still automate the process of

commutativity relation construction. Second, we increase
concurrency among methods by exploiting run-time
information.

 Our work is based on [5,6]. In their work, by pre-
analysis, data sets for transactions can be obtained
where a data set is a set of data items that a transaction
might access. Since the presence of control structures
within a transaction reduces the set of data actually used,
each decision point (conditional statement) makes the
transaction access a subset of its data set. Thus, as the
transaction meets a decision point, its data subset, which
is usually much smaller than its complete data set, is
formed. Using this subset, data conflicts between the
transaction and other transactions requesting data at this
point can be reduced.

 In our work, we need a two-phase pre-analysis : 1)
construction of DAV of each break point and 2)
construction of a commutativity table of DAVs. In each
method, a break point is inserted by a programmer when a
new subset of data can be obtained by executing a
conditional statement. At compile time, the DAV of each
break point is constructed. The construction of a DAV of
a break point in a method has three steps : 1) construct an
initial DAV of each break point where each value of the
initial DAV denotes the most restrictive access mode of
each attribute used by statements between this break
point and the next break point (or end of the method). An
access mode can have three values, N (Null), R (Read) or
W (Write). 2) construct a method tree and an
intermediate DAV of each break point. In an intermediate
DAV, each value denotes the access mode used by
statements from the beginning of the method but before
the next break point though an execution path. Also, a
method tree shows relationships among break points. For
any two break points, say Bi and Bj, Bi is an ancestor of
Bj if Bj can be reached from Bi through a conditional
statement execution. In this case, Bj is called a
descendent of Bi. 3) construct a final DAV of each
method. A final DAV represents join of access modes of
each attribute used by statements before this break point
and the worst case access mode of each attribute used by
statements from this break point to the end of the
method. Thus, the final DAV of the first break point in a
method represents the worst case access mode of
attributes in the method.

 After the construction of final DAVs of break
points, we construct a commutativity relation of methods
in a form of a table. In a commutativity table, a lock
requester’s entry contains the name of the first break
point in each method. A lock holder’s entry contains the
name of all break point in each method. Two methods

commute if their final DAVs commute. Two final DAVs
commute if the access modes of each attribute commute.

 When a transaction invokes a method on a data
object, it gets a lock containing the first break point in the
method. As the transaction meets a break point during
run-time, the lock is changed to contain the name of the
current break point which may have less restrictive final
DAV. Thus, it can give more concurrency to other
transactions which request locks on same data object at
this point.

4 Further Work

In our work, a method may have many break points
depending on the method’s logic. This requires bigger
commutativity tables and also incurs much run-time
overhead for lock change. Thus, we need to devise a way
to reduce the number of break points in a method in order
to reduce space overhead and time overhead for lock
changes during run-time.

References

[1] B. R. Badrinath and krithi Ramamritham,
“Synchronizing Transactions on Objects”, IEEE
Transaction on Computers, Vol. 37, No. 5, May 1988,
pp. 541 - 547.

[2] B. R. Badrinath and Krithi Ramamritham, “Semantic-
Based Concurrency Control : Beyond
Commutativity”, ACM Transactions on Database
Systems, Vol. 17, No. 1, March 1992, pp. 163 - 199.

[3] Panos K. Chrysanthis, S. Raghuram and Krthi
Ramaritham, “Extracting Concurrency from Objects :
A Methodology”, Proc. of the 1991 ACM SIGMOD
Int. Conf. on Management of Data, 1991, pp. 117.

[4] Carmelo Malta and Jose Martinez, "Automating Fine
Concurrency Control in Object-Oriented Database",
Proc. of the 9th Int. Conf. on Data Engineering,
Vienna, Austria, Apr. 1993, pp. 253 - 260.

[5] D. Hong, T. Johnson and S. Charavathy, “Real-Time
Transaction Scheduling : A Cost-Conscious
Approach”, Proc. of the 1993 ACM SIGMOD Int.
Conf. on Management of Data, 1993, pp. 197 - 206.

[6] S. Chakravathy, D. Hong and T. Johnson, “Real-Time
Transaction Scheduling : A Framework for
Synthesizing Static and Dynamic Factors”, Tech.
Report no. 008, Dept. of CIS, Univ. of Florida, 1994.

