
 1

An Optimal Locking Scheme in Object-Oriented Database Systems

Woochun Jun Le Gruenwald
Dept. of Computer Education School of Computer Science
Seoul National Univ. of Education Univ. of Oklahoma
Seoul, Korea Norman, OK 73069

 USA

Abstract

In this paper, a locking-based concurrency control scheme is presented for object-oriented databases
(OODBs). It is designed for controlling accesses to class hierarchy, which is important concept in
OODBs. Based on access frequency for each class, the proposed scheme incurs less locking overhead
than existing works, explicit locking and implicit locking, for any OODB environments. In this paper, it is
theoretically proven that the proposed scheme performs better than existing schemes.

1. Introduction

 OODBs have been popular for many non-traditional database environments such as computer-

aided design, artificial intelligence, etc. In a typical OODB, a class object consists of a group of instance

objects and class definition objects. The class definition consists of a set of attributes and methods that

access attributes of an instance or a set of instances. In OODBs, users can access objects by invoking

transactions consisting of a set of method invocations on objects [2].

 A concurrency control scheme is used to coordinate multiple accesses to the multi-user database

so that it maintains the consistency of the database. A concurrency control scheme allows multi-access

to a database but incurs an overhead whenever it is invoked. This overhead may affect on the

performance of OODBs where many transactions are long-lived. Thus, reducing the overhead is critical

to improve overall performance.

 The inheritance is very important concept in OODBs. That is, a subclass inherits definitions

defined on its superclass. Also, there is an is-a relationship between a subclass and its superclass so that

 2

an instance of a superclass is a generalization of its subclasses [5]. This inheritance relationship between

classes forms a class hierarchy. There are two types of accesses to a class hierarchy, MCA (multiple

class access) and SCA (single class access), respectively [6]. MCA is an operation accessing possibly

more than one class in the class hierarchy. MCAs are operations such as class definition modification

operation and instance access to all or some instances of a given class and its subclasses. On the other

hand, SCA is an operation accessing one class in the hierarchy. For example, SCAs are operations

such as class definition read operation and instance access to a single class. Due to inheritance, for a

locking based concurrency control scheme, when a MCA operation is requested on some class, say C,

it may be necessary to get locks for all subclasses of C as well as C.

 In the literature, there are two approaches dealing with class hierarchy, explicit locking and

implicit locking, which will be discussed in Section 2. These approaches may work well only for

particular applications in OODBs. That is, explicit locking incurs less locking overhead for transactions

invoking mostly SCA operations. On the other hand, implicit locking incurs less locking overhead for

transactions invoking mostly MCA operations. Recently a locking-based concurrency control scheme

for class hierarchy in OODBs is presented [6]. The scheme is based on so called special class (SC)

and can be used for any applications with less locking overhead than both explicit locking and implicit

locking. In [6], with an assumption that the number of access is stable for each class, it is shown that the

proposed scheme (called SC-based scheme) performs better than both explicit locking and implicit

locking. Based on that work, in this paper, a new concurrency control scheme is proposed. Also, it is

 3

proven that the proposed scheme incurs less locking overhead than explicit locking, implicit locking and

the SC-based scheme .

 This paper is organized as follows. In Section 2 we review previous works dealing with class

hierarchy. In Section 3 a new concurrency control scheme is proposed. In Section 4, it is shown that the

proposed scheme performs better than existing works. The paper concludes with future research issues

in Section 5.

2. Related Work

2.1. Explicit Locking and Implicit Locking

 In the literature, there are two major locking-based approaches dealing with a class hierarchy:

explicit locking [2,9] and implicit locking [5,7,8]. In explicit locking, for a MCA operation on a class,

say C, a lock is set not only on the class C, but also on each subclass of C in the class hierarchy. For an

SCA operation, a lock is set for only the class to be accessed (called target class). Thus, for an MCA,

transactions accessing a class near the leaf in a class hierarchy will require fewer locks than transactions

accessing a class near the root in the class hierarchy. Also, another advantage is that it can treat single

inheritance where a class can inherit the class definition from one superclass, and multiple inheritance

where a class can inherit the class definition from more than one superclass in the same way. But,

explicit locking incurs more locking overhead for transactions accessing a class near the root in a class

hierarchy.

 4

 On the other hand, the implicit locking is based on intention locks [3]. The purpose of an intention

lock on a class indicates that some lock is set on a subclass of the class. Thus, when a lock is set on a

class C, it is required to set extra locking on a path from C to its root as well as on C. In implicit

locking, when a MCA operation is accessed on a class, say C, locks are not required for every

subclass of the class C. It is sufficient to set a lock only on the class C (in single inheritance) or locks on

C and its subclasses having more than one superclass (in multiple inheritance) [5]. Thus, for a MCA

access, it can reduce locking overhead than explicit locking. But, implicit locking requires more locking

overhead when a target class is near the leaf in a class hierarchy due to intention lock overhead.

2.2. The SC-based Scheme

In [6], the SC-based scheme is proposed to incur less locking overhead than existing schemes,

explicit locking and implicit locking. The scheme is based on SC where a SC is a class on which MCA

operations are performed frequently. How to determine if a class is a SC or not will be discussed later.

The basic idea is summarized as follows. In that scheme, intention locks are set on only SCs.

Thus, locking overhead is reduced than implicit locking requiring intention locks on every superclass of

the target class. Also, in order to have less locking overhead than explicit locking, the following

principle is adopted: for an SCA access, a lock is set on only the target class, like explicit locking. For a

MCA access, unlike explicit locking, locks are set on every class from the target class to the first SC

through the subclass chain of the target class. If there is no such SC, then locks are set on leaf classes. If

the target class is an SC it self, then set a lock only on the target class.

 5

The scheme is presented as follows. Assume that a lock is requested on class C. For simplicity,

strict two-phase locking [1,4] is adopted.

Step 1) locking on SCs

• For each SC (if any) through the superclass chain of C, check conflicts and set an intention lock if it

commutes. If it does not commute, block the lock requester.

Step 2) Locking on a target class

 •If the lock request is an SCA, check conflicts with locks set by other transactions and set a lock on

only the target class C if it commutes and set a lock on an instance if a method is invoked on the

instance and commute. If it does not commute, block the requester.

• If the lock request is an MCA, then, from class C to the first SC (or leaf class if there is no SC)

through the subclass chain of C, check conflicts and set lock on each class if commute. If the class C is

an SC, then set a lock only on C.

•If class C has more than one subclass, perform the same step 2) for each subclass chain of C.

 For SC-based scheme, the following SC assignment scheme is adopted in [6]. Assuming that the

number of access to each class is stable and access frequency (of MCA and SCA) to each class is

known in advance, the SC assignment scheme is constructed as follows.

//Start from each leaf class until all classes are checked //

step 1) If a class is a leaf, then the class is assigned as non-SC.

 6

If a class, say C, has not been assigned yet and all subclasses of C have been already assigned,

then do the followings

 for class C and all of the subclasses,

 calculate the number of locks (N1) when the class is assigned as SC

 calculate the number of locks (N2) when the class is assigned as non-SC

step 2) Assign it as SC only if N1 < N2

 For example, consider a simple single-inheritance class hierarchy as in Fig 1.a and assume access

frequency information on each class as in Fig. 1.b. Note that, for MCA operations, the numbers

represent only access initiated at a given class. Thus, the number of MCA accesses initiated at its

superclasses is not counted. The SC assignment to each class is follows. First C1 is assigned as non-SC

since C1 is a leaf class. At the class C2, if C2 is assigned as non-SC, the number of locks needed for

class C1 and C2 are 200 (for C1) and 700 (for C2), respectively, resulting 900 locks. On the other hand,

if C2 is assigned as SC, then locks needed for classes C1 and C2 are 800 locks, where 400 locks are

for C1 (200 locks for MCA and 200 locks for SCA) and 400 locks are for C2 (100 locks for MCA

and 300 locks for SCA). Thus, C2 becomes SC. Similarly, two other classes C3 and C4 become non-

SCs. Fig. 1.c shows the result of the SC assignment scheme.

 C4 C4 : SCA:200, MCA: 100 C4
 ↓ ↓

C3 C3 : SCA: 150, MCA: 100 C3
 ↓ ↓

C2 C2 : SCA:100, MCA: 300 C2:SC
 ↓ ↓

C1 C1: SCA:100; MCA:100 C1

 7

Fig. 1.a. A class hierarchy Fig. 1.b. Access frequency for each class Fig. 1.c. Result of SC
 assignment

 Based on the above assignment scheme, consider the following lock requests by two transactions

T1 and T2 on a class hierarchy in Fig. 2.a

1) T1: class definition modification operation on class C6

2) T2: class definition read on class C4

 Let Li be a lock L set by transaction Ti. Assume that class C1, C4, C7 and C10 are SCs. As in

Fig 2.b, 2.c, and 2.d, 6, 7 and 10 locks are required for T1 and T2 by the SC-based scheme, explicit

locking, and implicit locking, respectively.

 C1 C1(SC):L1;L2 C1 C1:L1;L2

 ↓ ↓ ↓ ↓
 C2 C2 C2 C2:L1;L2

 ↓ ↓ ↓ ↓
 C3 C3 C3 C3:L1;L2

 ↓ ↓ ↓ ↓
 C4 C4(SC):L1;L2 C4:L2 C4:L1;L2

 ↓ ↓ ↓ ↓
 C5 C5 C5 C5:L1
 ↓ ↓ ↓ ↓
 C6 C6:L1 C6:L1 C6:L1

 ↓ ↓ ↓ ↓
 C7 C7(SC):L1 C7:L1 C7
 ↓ ↓ ↓ ↓
 C8 C8 C8:L1 C8
 ↓ ↓ ↓ ↓
 C9 C9 C9:L1 C9
 ↓ ↓ ↓ ↓
 C10 C10 (SC) C10:L1 C10
 ↓ ↓ ↓ ↓
 C11 C11 C11: L1 C11

Fig 2.a class hierarchy Fig. 2.b. Locks by Fig. 2.c. Locks by Fig. 2.d. Locks by
 SC-based scheme Explicit locking Implicit locking

3. Proposed class hierarchy locking scheme

 8

3.1. Background

 The proposed scheme is based on the SC-based scheme. The basic idea is that some redundant

locks can be reduced without affecting the correctness of the scheme. Assume that a class C is

accessed so that it needs to be locked. For SC-based scheme, an intention lock is set on every SC

through the superclass chain of C. On the other hand, the proposed scheme does not have to set

intention locks on every SC through the superclass chain. That is, only the first SC near root and the last

SC near the class C need to be locked as long as SCs excluding the first SC and the last SC have only

one subclass.

 For example, consider the class hierarchy in Fig. 3.a. Also, assume the following access by

transaction T3. Fig 3.b and Fig. 3.c show locks by the SC-based scheme and the proposed scheme,

respectively.

T1: class definition update operation on class C11.

 C1(SC):L3 C1(SC):L3

 ↓ ↓
 C2 C2

 ↓ ↓
 C3: C3:

 ↓ ↓
 C4(SC):L3 C4(SC)

 ↓ ↓
 C5 C5
 ↓ ↓
 C6: C6

 ↓ ↓
 C7(SC):L3 C7(SC)
 ↓ ↓
 C8 C8
 ↓ ↓
 C9 C9

 9

 ↓ ↓
 C10 (SC):L3 C10(SC):L3
 ↓ ↓
 C11: L3 C11: L3

 Fig. 3.b. Locks by SC-based scheme Fig. 3.c. Locks by the proposed scheme
3.2. A New Class hierarchy Locking Scheme

 Based on idea explained as in Section 3.1, the proposed scheme is as follows. Assume that a

lock is requested on class C. Also, it is assumed that the strict two-phase locking is adopted.

Step 1) locking on SCs

• (case I) at least one of SC excluding the first SC and last SC through the superclass chain of C

has more than one subclass.

 For each SC (if any) through the superclass chain of C, check conflicts and set an intention lock if it

commutes. If it does not commute, block the lock requester.

• (case II) Otherwise

For the first SC and the last SC through the superclass chain of C, check conflicts and set an intention

lock if it commutes. If it does not commute, block the lock requester.

Step 2) Locking on a target class

 •If the lock request is an SCA, check conflicts with locks set by other transactions and set a lock on

only the target class C if it commutes and set an a lock on the instance to be accessed if a method is

invoked on the instance and commute. If it does not commute, block the requester.

• If the lock request is an MCA, then, from class C to the first SC (or leaf class if there is no SC)

through the subclass chain of C, check conflicts and set a lock on each class if commute. If the class C

is an SC, then set a lock only on C.

 10

 The reason to set a lock on each class (besides the first SC) from the class C to the first SC (not

including the SC) is as follows: if a lock is set only on the first SC, then some conflict may not be

detected. For example, if a requester accesses a subclass of a lock holder’s class locked by MCA, then

such a conflict may not be detected.

•If class C has more than one subclass, perform the same step 2) for each subclass chain of C.

 For example, consider the class hierarchy as in Fig. 1.a. Also, assume that locks are requests by

T1 and T2 as follows.

1) T1: class definition update operation on class C6

2) T2: class definition update operation on class C7

As in Fig 4.a, 4.b, 4.c and 4.d, 6, 7 11 and 13 locks are required for T1 and T2 by the proposed

scheme, SC-based scheme, explicit locking, and implicit locking, respectively.

 C1(SC):L1;L2 C1(SC):L1;L2 C1 C1:L1;L2

 ↓ ↓ ↓ ↓
 C2 C2 C2 C2:L1;L2

 ↓ ↓ ↓ ↓
 C3 C3 C3 C3:L1;L2

 ↓ ↓ ↓ ↓
 C4(SC):L1 C4(SC):L1;L2 C4 C4:L1;L2

 ↓ ↓ ↓ ↓
 C5 C5 C5 C5:L1;L2
 ↓ ↓ ↓ ↓
 C6:L1 C6:L1 C6:L1 C6:L1;L2

 ↓ ↓ ↓ ↓
 C7(SC):L1;L2 C7(SC):L1;L2 C7:L1;L2 C7:L2

 ↓ ↓ ↓ ↓
 C8 C8 C8:L1;L2 C8

 ↓ ↓ ↓ ↓
 C9 C9 C9:L1;L2 C9
 ↓ ↓ ↓ ↓
 C10(SC): C10 (SC) C10:L1;L2 C10
 ↓ ↓ ↓ ↓
 C11 C11 C11: L1;L2 C11

 11

Fig 4.a. Locks by Fig. 4.b. Locks by Fig. 4.c. Locks by Fig. 4.d. Locks by
 Proposed scheme SC-based scheme Explicit locking Implicit locking

4. Performance Evaluation of the Proposed Scheme

 In this Section, we will show that the proposed scheme performs better than existing works,

explicit locking, implicit locking and the SC-based scheme. It is shown that the SC-based scheme

performs better than both explicit locking and implicit locking in [6]. Thus, it is sufficient to show that the

proposed scheme performs better than only the SC-based scheme. Based on the discussion from

Section 3.2, the proposed scheme incurs less than or equal number of locks than the SC-based scheme

for any kinds of accesses to OODBs. Thus, in this Section, it is sufficient to prove that the proposed

scheme is correct, that is, it satisfies serializability [1]. We prove this by showing that, for any lock

requester, its conflict with a lock holder (if any) is always detected. With this proof, since our class

hierarchy locking scheme is based on two-phase locking, it is guaranteed that the proposed scheme

satisfies serializability.

Depending on the lock requester’s type, lock holders can be divided as follows. If a lock

requester is an SCA, then its lock holders (whose lock modes need to be checked for conflict with lock

requester) consist of transactions holding locks on the target class and all SCs in the superclass chain of

the target class. If a lock requester is an MCA, then its lock holders include those defined above plus

transactions holding locks on each class from the target class to the first SC in the subclass chain of the

target class.

 There are four cases depending on the types of lock requesters and holders.

 12

case 1) the lock holder is an SCA
 the lock requester is an SCA

If a lock holder (H) and a lock requester (R) access different classes, there is no conflict. If a lock

holder and a lock requester access the same class, the possible conflicts can be detected on the

target class. This is due to the reason that there is no conflict on all SCs through the superclass chain

of the target class since intention locks on SCs can be compatible with R.

case 2) the lock holder is an SCA
 the lock requester is an MCA

Let CR and CH be two classes on which the R requests a lock and the H holds a lock, respectively. If

CH is a superclass of CR, there is no conflict since the R does not access the CH. If the CH is CR itself or

its subclass, then there are two subcases. If there exists a SC which is a superclass of both CR and CH,

then conflict is detected on the SC. (case 2.1). That is, in Fig. 5.a, the possible conflict is detected on

SC1 since both R and H must have locks on SC1. Otherwise, the conflict is detected as follows. As in

Fig 5.b, in case 2.2, if there is a SC between CR and CH, the conflict is detected on SC1 since CR and

CH must have locks on SC1 based on the proposed scheme. On the other hand, if there is no such SC

between CR and CH as in Fig. 5.c, the conflict is detected on CH since R must have a lock on CH.

 • SC1 • CR •
 • CR • •CR

 • SC2 • SC1 •

 • • CH •CH

 • SC3 • • SC1
 • • •
 • • • SC2
 • SC4 • SC2 •
 • CH • •

 13

 Fig 5. a. case 2.1 Fig. 5.b. case 2.2 Fig. 5.c. case 2.3

case 3) the lock holder is an MCA
 the lock requester is an SCA

If the CH is a subclass of the CR, there is no conflict. If CH is CR itself or superclass of CR, then

there are two cases in which conflicts will be detected. If there exists a SC, which is a superclass of

both CR and CH as in Fig. 6.a, then conflict is detected on the SC. (case 3.1). This is due to that H

and R must a lock on the SC according to our scheme. Otherwise, there are two subcases. At first,

if there exists a SC between CH and CR, the possible conflict is detected on the first SC through the

subclass chain of CH. For example, in Fig. 6.b. the conflict can be detected on SC1. If there is no

SC between CH and CR as in Fig. 6.c, the conflict is detected on CR since CH must set a lock on the

class CR.

 • SC1 • CH •
 • CH • •CH

 • SC2 • SC1 •

 • • •CR

 • SC3 • • SC1
 •CR •CR •
 • • • SC2
 • SC4 • SC2 •
 • • • SC3

 Fig 6. a. case 3.1 Fig. 6.b. case 3.2 Fig. 6.c. case 3.3

case 4) the lock holder is an MCA
 the lock requester is an MCA

 14

If the CH is CR itself or superclass of CR, the conflict is detected as in case 3. Otherwise, the conflict

is detected as in case 2.

 From cases 1), 2), 3) and 4), we can conclude that, for any lock requester, it is guaranteed that

its conflict with a lock holder (if any) is always detected. Also, since the proposed scheme is based on

two-phase locking, serializability is guaranteed [1]. In turn, this means that the proposed scheme

performs better than existing schemes, explicit scheme, implicit scheme and the SC-based scheme.

5. Further work

In this paper, a locking-based concurrency control scheme is presented for object-oriented

databases (OODBs). It is designed for controlling accesses to class hierarchy, which is important

concept in OODBs. Based on access frequency for each class, the scheme incurs less locking

overhead than existing works, explicit scheme and implicit scheme and the SC-based scheme, for any

OODB environments. In this paper, it is theoretically proven that the proposed scheme performs better

than existing schemes.

 Currently we are developing a concurrency control scheme for controlling access to composite

object hierarchy, which is also major aspect in OODBs. Our goal is to combine our class hierarchy

scheme with composite object scheme. Also, we will conduct the performance evaluation study in order

to compare our work with existing schemes using either simulation or analytical model.

References

 15

[1] Bernstein P, Hadzilacos V and Goodman N, Concurrency Control and Recovery in Database

Systems, (Addison-Wesley, 1987).

[2] Cart M and Ferrie J, Integrating Concurrency Control into an Object-Oriented Database System,

2nd Int. Conf. on Extending Data Base Technology, Venice, Italy, (Mar. 1990), 363 - 377.

[3] Date, C., An Introduction to Database Systems, Vol. II, (Addison-Wesley, 1985).

[4] Eswaran K, Gray J, Lorie R and Traiger I, The notion of consistency and predicate locks in a

database system, Communication of ACM, Vol. 19, No. 11, (Nov., 1976), 624 - 633.

[5] Garza J and Kim W, Transaction Management in an Object-Oriented Database System, ACM

SIGMOD Int. Conf. on Management of Data, Chicago, Illinois, (Jun., 1988), 37 - 45.

[6] Jun W and Gruenwald L, An Effective Class Hierarchy Concurrency Control Technique in Object-

Oriented Database Systems, Journal of Information And Software Technology, Vol. 40. No. 1,

(Apr. 1998) 45-53.

[7] Lee L and Liou R, A Multi-Granularity Locking Model for Concurrency Control in Object-

Oriented Database Systems, IEEE Trans. on Knowledge and Data Engineering, Vol. 8, No. 1,

(Feb. 1996), 144 - 156.

[8] Malta C and Martinez J, Controlling Concurrent Accesses in an Object-Oriented Environment, 2nd

Int. Symp. on Database Systems for Advanced Applications, Tokyo, Japan, (Apr., 1992) 192 -

200.

[9] Malta C and Martinez J, Automating Fine Concurrency Control in Object-Oriented Databases,

9th IEEE Conf. on Data Engineering, Vienna, Austria, (Apr., 1993), 253- 260.

 16

