An Optimal Locking Scheme in Object-Oriented Database Systems

Woochun Jun Le Gruenwald
Dept. of Computer Education School of Computer Science
Seoul National Univ. of Education Univ. of Oklahoma
Seoul, Korea Norman, OK 73069
USA
Abstract

In this paper, alocking-based concurrency control scheme is presented for object-oriented databases
(OODBs). It is designed for controlling accesses to class hierarchy, which is important concept in
OODBs. Based on access frequency for each class, the proposed scheme incurs less locking overhead
than existing works, explicit locking and implicit locking, for any OODB environments. In this paper, it is
theoretically proven that the proposed scheme performs better than existing schemes.

1. Introduction

OODBs have been popular for many non-traditional database environments such as computer-
aded design, atificid intelligence, etc. In atypicad OODB, a class object consists of a group of instance
objects and class definition objects. The class definition conssts of a set of attributes and methods that
access atributes of an instance or a set of ingtances. In OODBS, users can access objects by invoking
transactions congsting of a set of method invocations on objects[2].

A concurrency control schemeis used to coordinate multiple accesses to the multi-user database
so that it maintains the consistency of the database. A concurrency control scheme alows multi-access
to a database but incurs an overhead whenever it is invoked. This overheed may affect on the
performance of OODBs where many transactions are long-lived. Thus, reducing the overhead is critica
to improve overdl performance.

The inheritance is very important concept in OODBs. That is, a subclass inherits definitions

defined on its superclass. Also, thereis an is-a relationship between a subclass and its superclass so that

an ingance of a superclassis a generdization of its subclasses [5]. This inheritance relationship between
classes forms a class hierarchy. There are two types of accesses to a class hierarchy, MCA (multiple
class access) and SCA (single class access), respectively [6]. MCA is an operation accessing possibly
more than one dass in the class hierarchy. MCASs are operations such as class definition modification
operation and ingtance access to al or some ingtances of a given class and its subclasses. On the other
hand, SCA is an operation accessing one class in the hierarchy. For example, SCAs are operations
such as class definition read operation and instance access to a single class. Due to inheritance, for a
locking based concurrency control scheme, when a MCA operation is requested on some class, say C,
it may be necessary to get locks for al subclasses of C aswell as C.

In the literature, there are two approaches dealing with dass hierarchy, explicit locking and
implicit locking, which will be discussed in Section 2. These approaches may work wel only for
particular gpplicationsin OODBs. That is, explicit locking incurs less locking overhead for transactions
invoking mostly SCA operations. On the other hand, implicit locking incurs less locking overhead for
transactions invoking mostly MCA operations. Recently a locking-based concurrency control scheme
for class hierarchy in OODBs is presented [6]. The scheme is based on so0 called special class (SC)
and can be used for any applications with less locking overhead than both explicit locking and implicit
locking. In [6], with an assumption that the number of accessis dable for each class, it is shown that the
proposed scheme (caled SC-based scheme) performs better than both explicit locking and implicit

locking. Based on that work, in this paper, a new concurrency control scheme is proposed. Also, it is

proven that the proposed scheme incurs less locking overhead than explicit locking, implicit locking and
the SC-based scheme..

This paper is organized as follows. In Section 2 we review previous works deding with class
hierarchy. In Section 3 a new concurrency control scheme is proposed. In Section 4, it is shown that the
proposed scheme performs better than existing works. The paper concludes with future research issues

in Section 5.

2. Related Work
2.1. Explicit Locking and Implicit L ocking

In the literature, there are two mgor locking-based approaches deding with a class hierarchy:
explicit locking [2,9] and implicit locking [5,7,8]. In explicit locking, for aMCA operation on a class,
say C, alock is et not only on the class C, but aso on each subclass of C in the class hierarchy. For an
SCA operation, alock is set for only the class to be accessed (called target class). Thus, for an MCA,
transactions accessing a class near the leaf in acdlass hierarchy will require fewer locks than transactions
accessing a class near the root in the class hierarchy. Also, another advantage is that it can treet Sngle
inheritance where a dass can inherit the class definition from one superclass, and multiple inheritance
where a class can inherit the dass definition from more than one superclass in the same way. Bu,

explicit locking incurs more locking overhead for transactions accessing a class near the root in a class

hierarchy.

On the other hand, the implicit locking is based on intention locks [3]. The purpose of an intention
lock on aclassindicates that somelock is set on a subclass of the class. Thus, when alock isset on a
class G it is required to set extra locking on a path from C to its root as well as on C. In implict
locking, when a MCA operation is accessed on a class, say G locks are not required for every
subclass of the dass C. It is sufficient to set alock only on the class C (in single inheritance) or locks on
C and its subclasses having more than one superclass (in multiple inheritance) [5]. Thus, for a MCA
access, it can reduce locking overhead than explicit locking. But, implicit locking requires more locking

overhead when atarget classis near the legf in adlass hierarchy due to intention lock overheed.

2.2. The SC-based Scheme
In [6], the SC-based scheme is proposed to incur less locking overhead than existing schemes,

explicit locking and implicit locking. The scheme is based on SC where a SC is a cdlass on which MCA
operations are performed frequently. How to determineif aclassisa SC or not will be discussed later.
The badc idea is summarized as follows. In that scheme, intention locks are set on only SCs.
Thus, locking overhead is reduced than implicit locking requiring intention locks on every superclass of
the target class. Also, in order to have less locking overhead than explicit locking, the following
principle is adopted: for an SCA access, alock is st on only the target class, like explicit locking. For a
MCA access, unlike explicit locking, locks are set on every class from the target class to the first SC
through the subclass chain of the target class. If there is no such SC, then locks are set on leaf classes. If

the target classisan SC it df, then set alock only on the target class.

The scheme is presented as follows. Assume that a lock is requested on class C. For amplicity,
grict two-phase locking [1,4] is adopted.
Step 1) locking on SCs
- For each SC (if any) through the superclass chain of C, check conflicts and set an intention lock if it
commuites. If it does not commute, block the lock requester.
Step 2) Locking on atarget class
- If the lock request is an SCA, check conflicts with locks set by other transactions and set alock on
only the target class C if it commutes and set a lock on an ingance if a method is invoked on the
ingtance and commute. If it does not commute, block the requester.
- If the lock request is an MCA, then, from class C to the first SC (or leaf class if there is no SC)
through the subclass chain of C, check conflicts and set lock on each class if commute. If the dlassC is
an SC, then set alock only on C.
- If class C has more than one subclass, perform the same step 2) for each subclass chain of C.

For SC-based scheme, the following SC assgnment scheme is adopted in [6]. Assuming thet the
number of access to each class is gable and access frequency (of MCA and SCA) to each class is

known in advance, the SC assgnment scheme is congtructed as follows.

//Start from each leaf class until dl classes are checked //

gep 1) If aclassisaledf, then the classis assigned as non-SC.

If aclass, say C, has not been assigned yet and al subclasses of C have been aready assigned,
then do the followings
for class C and dl of the subclasses,
caculate the number of locks (N;) when the dlassis assigned as SC
cdculate the number of locks (N,) when the class is assgned as non-SC
gep 2) Assignit as SC only if N; < N,

For example, consder a smple sngle-inheritance class hierarchy asin Fig 1.a and assume access
frequency information on each class as in Fig. 1.b. Note tha, for MCA operations, the numbers
represent only access initiated a a given class. Thus, the number of MCA accesses initiated & its
superclasses is not counted. The SC assgnment to each cdassisfollows. First C; is assigned as non-SC
sgnce C, isaledf class. At the class G, if G, is assgned as non-SC, the number of locks needed for
class C; and C, are 200 (for C;) and 700 (for C,), respectively, resulting 900 locks. On the other hand,
if C, is as3gned as SC, then locks needed for classes C, and C, are 800 locks, where 400 locks are
for C; (200 locks for MCA and 200 locks for SCA) and 400 locks are for C, (100 locks for MCA
and 300 locks for SCA). Thus, C, becomes SC. Smilarly, two other classes C; and C, become nor+

SCs. Fig. 1.c shows the result of the SC assgnment scheme.

Cs C, : SCA:200, MCA: 100 Cs
C; C;: SCA: 150, MCA: 100 Cs
Co C, : SCA:100, MCA: 300 C,SC

Ci C,: SCA:100; MCA:100 C

Fig. 1.a A class hierarchy

Fig. 1.b. Access frequency for each class

Fig. 1.c. Result of SC
assignment

Basad on the above assignment scheme, condder the following lock requests by two transactions

T, and T, onacdlasshierarchy in Fig. 2.a

1) T,: dass definition modification operation on class C6

2) T,: dassdefinition read on class C4

Let L bealock L st by transaction T;. Assume that class C1, C4, C7 and C10 are SCs. Asin

Fig 2.b, 2.c, and 2.d, 6, 7 and 10 locks are required for T; and T, by the SC-based scheme, explicit

locking, and implicit locking, respectively.

g 'a '2 '8 '] 'P

|8 |8 I\'

'Q
5

cu

Fig 2.aclass hierarchy Fig. 2.b. Locks by
SC-based scheme

3. Proposed class hierar chy locking scheme

CL(SO):Ly;L,

C10(SC)

C11

C10.L,

ClL L,

Fig. 2.c. Locks by

Explicit locking

ClL;L,

C2Ly L,
C3Ly L,
4Ly,
C5L,
c6.L,

c7

C10

C1i

Fig. 2.d. Locks by
Implicit locking

3.1. Background

The proposed scheme is based on the SC-based scheme. The basic idea is that some redundant
locks can be reduced without affecting the correctness of the scheme. Assume that a class C is
accessed so that it needs to be locked. For SC-based scheme, an intention lock is set on every SC
through the superclass chain of C On the other hand, the proposed scheme does not have to set
intention locks on every SC through the superclass chain. That is, only the first SC near root and the last
SC near the class C need to be locked as long as SCs excluding the first SC and the last SC have only

one subclass.

For example, condder the class hierarchy in Fig. 3.a Also, assume the following access by
transaction Tz. Fig 3.b and Fig. 3.c show locks by the SC-based scheme and the proposed scheme,

repectively.

T,: class definition update operation on class C11.

CL(SO)Ls CL(SC)Ls
2 @

c3 s
CA(SCYLs e Ce)
s e

c6 . cs
C7(SC)Ls . CI0)

'8
8

2
2

C10(SC)Ls C10(SO)-Ls
C1L: L C1L: L

Fig. 3.b. Locks by SC-based scheme Fig. 3.c. Locks by the proposed scheme
3.2. A New Class hierarchy L ocking Scheme

Based on idea explained as in Section 3.1, the proposed scheme is as follows. Assume that a

lock is requested on class C. Alsp, it is assumed that the strict two- phaselocking is adopted.

Step 1) locking on SCs

- (casel) a least one of SC excluding the first SC and last SC through the superclass chain of C

has more than one subclass.

For each SC (if any) through the superclass chain of C, check conflicts and set an intention lock f it
commuites. If it does not commute, block the lock requester.

- (casell) Otherwise

For the first SC and the last SC through the superclass chain of C, check conflicts and set an intention
lock if it commutes. If it does not commute, block the lock requester.

Step 2) Locking on atarget class

- If the lock request is an SCA, check conflicts with locks set by other transactions and set a lock on
only the target class C if it commutes and set an a lock on the ingtance to be accessed if a method is
invoked on the instance and commute. If it does not commute, block the requester.

- If the lock request is an MCA, then, from class C to the first SC (or leaf class if there is no SC)
through the subclass chain of C, check conflicts and set alock on each classif commute. If the class C

isan SC, then set alock only on C.

The reason to set alock on each class (besides the first SC) from the class C to the first SC (not
including the SC) is as follows: if alock is set only on the firsg SC, then some conflict may not be
detected. For example, if arequester accesses a subclass of alock holder’s class locked by MCA, then
such a conflict may not be detected.

- If class C has more than one subclass, perform the same step 2) for each subclass chain of C.

For example, consider the class hierarchy asin Fig. 1.a. Also, assume that locks are requests by

T, and T, asfollows.

1) T,: class definition update operation on class C6

2) T,: dassddfinition update operation on class C7

Asin Fg 4.4, 4.b, 4.c and 4.d, 6, 7 11 and 13 locks are required for T, and T, by the proposed

scheme, SC-based scheme, explicit locking, and implicit locking, repectively.

CUSO)LyiLe CLSO)LsiLe c1 CLLsL,

92 92 B c2 B C2L;L,
(_33 B C3 B C3 B C3Ly L,
94(8(3):L1 94(SC):L1; L, B (07} B CAL; L,
95 95 B c5 B C5L,L,
96:L1 EZG:L1 _CG:Ll B CeLy L,
97(8(3): Ly Ly 97(SC):L1; L, B CrL; L, B CrL,
(_38 (_38 B C8L;;L, B C8

o o CoLste o

CI0(SC): CI0(s0) _ CloLsL, C10

c11 C11 C11: Ly;L, c11

10

Fg4.a Locks by Fig. 4.b. Locks by Fig. 4.c. Locks by Fig. 4.d. Locks by
Proposed scheme SC-based scheme Explicit locking Implicit locking

4. Performance Evaluation of the Proposed Scheme

In this Section, we will show that the proposed scheme performs better than existing works,
explicit locking, implicit locking and the SC-based scheme. It is shown that the SC-based scheme
performs better than both explicit locking and implicit locking in [6]. Thus, it is sufficient to show that the
proposed scheme performs better than only the SC-based scheme. Based on the discusson from
Section 3.2, the proposed scheme incurs less than or equa number of locks than the SC-based scheme
for any kinds of accesses to OODBs. Thus, in this Section, it is sufficient to prove that the proposed
scheme is correct, tha is, it satisfies seridizability [1]. We prove this by showing that, for any lock
requester, its conflict with a lock holder (if any) is dways detected. With this proof, since our class
hierarchy locking scheme is based on two-phase locking, it is guaranteed that the proposed scheme
stisfies seridizability.

Depending on the lock requester’s type, lock holders can be divided as follows. If alock
requester is an SCA, then itslock holders (whose lock modes need to be checked for conflict with lock
requester) consist of transactions holding locks on the target class and al SCs in the superclass chain of
the target class. If alock requester is an MCA, then its lock holders include those defined above plus
transactions holding locks on each class from the target class to the first SC in the subclass chain of the

target class.

There are four cases depending on the types of lock requesters and holders.

11

case 1) the lock holder isan SCA
the lock requester isan SCA

If alock holder (H) and alock requester (R) access different classes, there is no conflict. If alock
holder and a lock requester access the same class, the possble conflicts can be detected on the
target class. Thisis due to the reason that there is no conflict on al SCs through the superclass chain
of the target class since intention locks on SCs can be compatible with R.
case 2) thejock holder isan SCA
the lock requester isan MCA
Let Cr and Cy be two classes on which the R requests a lock and the H [holds a lock, respectively. If

Cy isasuperclass of Cg, thereis no confligt snce the R does not access the Cy,. If the C is Gy itsdf or

its subclass, then there are two subcases. If there exists a SC which is a superclass of both Gz and G,
then conflict is detected on the SC. (case 2.1). That is, in Fg. 5.4, the possible conflict is detected on
SC1 since both R and H must have locks on SC1. Otherwise, the conflict is detected as follows. Asin
Fig5.b,incase 2.2, if thereisa SC between Ci and Cy, the conflict is detected on SC1 since Gz and
Ch must have locks on SC1 based on the proposed scheme. On the other hand, if there is no such SC

between Cr and Cy asin Fig. 5.c, the conflict is detected on Cy sSince R must have alock on Cy.

. SC1 . Cr .
. Cr . .Cr

- SC2 - SC1 .

: . Cq -Ch

- SC3 - - SC1
: . SC2
- SC4 SC2

. Cy

Figh.a case2.1 Fig. 5.b. case 2.2 Fig. 5.c. tase 2.3

case 3) the]ock holder isanMCA
theflock requester isan SCA

If the O, is a subclass of the Gy, there is no conflict. If G, is Gy itsdf or superclass of G, then

there are two cases in which conflicts will be detected. If there exists a SC, which is a superclass of
both Cr and C, asin Fig. 6.a, then conflict is detected on the SC. (case 3.1). Thisis due to that H
and R must alock on the SC according to our scheme. Otherwise, there are two subcases. At firdt,
if there exists a SC between Cy, and Cg, the possible conflict is detected on the first SC through the
subclass chain of Cy. For example, in Fig. 6.b. the conflict can be detected on SCL1. If thereis no

SC between C,; and Cr asin Fig. 6.c, the conflict is detected on Cr since Cy must set alock on the

class Cr.
- SC1 - Cqy :
. Cq . -Cyq
SC2 SC1 :
. . -Cr
- SC3 - - SC1
.Cr -Cr .
. . . SC2
- SC4 - SC2 :
. . SC3
Fig6.a case 3.1 Fig. 6.b. case 3.2 Fig. 6.c. case 3.3

cae 4) thelock holder isan MCA
the lock requester isan MCA

13

If the Cy is Cr itsdf or superclass of Cg, the conflict is detected as in case 3. Otherwise, the conflict

is detected asin case 2.
From cases 1), 2), 3) and 4), we can conclude that, for any lock requester, it is guaranteed that
its conflict with alock holder (if any) is dways detected. Also, since the proposed scheme is based on
two-phase locking, seridizability is guaranteed [1]. In turn, this means that the proposed scheme

performs better than existing schemes, explicit scheme, implicit scheme and the SC-based scheme.

5. Further work

In this paper, a locking-based concurrency control scheme is presented for object-oriented
databases (OODBS). It is designed for controlling accesses to dass hierarchy, which is important
concept in OODBs. Basaed on access frequency for each class, the scheme incurs less locking
overhead than existing works, explicit scheme and implicit scheme and the SC-based scheme, for any
OODB environments. In this paper, it is theoreticaly proven that the proposed scheme performs better
than exidting schemes.

Currently we are developing a concurrency control scheme for controlling access to composite
object hierarchy, which is dso mgor aspect in OODBs. Our god is to combine our class hierarchy
scheme with composite object scheme. Also, we will conduct the performance evaluation study in order

to compare our work with existing schemes usng e@ther smulation or anaytica modd.

References

14

[1] Bernstein P, Hadzilacos V and Goodman N, Concurrency Control and Recovery in Database
Systems, (Addison-Wedey, 1987).

[2] Cat M and Ferrie J, Integrating Concurrency Control into an Object-Oriented Database System,
2nd Int. Conf. on Extending Data Base Technology, Venice, Italy, (Mar. 1990), 363 - 377.

[3] Date, C., An Introduction to Database Systems Val. |1, (Addisorn-Wed ey, 1985).

[4] Eswvaran K, Gray J, Lorie R and Traiger |, The notion of consstency and predicate locks in a
database system, Communication of ACM, Val. 19, No. 11, (Nov., 1976), 624 - 633.

[5] Garza J and Kim W, Transaction Management in an Object-Oriented Database System, ACM
SIGMOD Int. Conf. on Management of Data, Chicago, Illinois, (Jun., 1988), 37 - 45.

[6] Jun W and Gruenwdd L, An Effective Class Hierarchy Concurrency Control Technique in Object-
Oriented Database Systems, Journd of Information And Software Technology, Val. 40. No. 1,
(Apr. 1998) 45-53.

[7] Lee L ad Liou R, A Multi-Granularity Locking Mode for Concurrency Control in Object-
Oriented Database Systems, |EEE Trans. on Knowledge and Data Engineering, Val. 8, No. 1,
(Feb. 1996), 144 - 156.

[8] Mdta C and Martinez J, Controlling Concurrent Accessesin an Object- Oriented Environment, 2nd
Int. Symp. on Database Systems for Advanced Applications, Tokyo, Japan, (Apr., 1992) 192 -
200.

[9] Mdta C and Martinez J, Automating Fine Concurrency Control in Object-Oriented Databases,

oth IEEE Conf. on Data Engineering, Vienna, Audtria, (Apr., 1993), 253- 260.

15

16

