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Abstract: In a mamn memory database (MMDB), the pri-
mary copy of the database may be stored in a volatile
memory When a crash occurs, a reload of the database
from archive memory to main memory must be performed.
It is essential that an efficient reload scheme be used to
ensure that the expectations of high performance database
systems are met. This implies that the overall performance
measures of any potential reload algorithm should not be
measured simply by reload time, but by its impact on
overall system performance. This paper presents four
different reload algorithms that aim at fast response time of
transactions and high throughput of the overall system.
Simulation studies comparing the algorithms indicate that
the best overall approach is one based on frequency of
access.

1. Introduction

In a main memory database (MMDB) system, all or a
major portion of the database can be placed in main
memory [Eich,1989]. The need for I/O operations to per-
form database applications is eliminated. With memory
costs decreasing and demand for high performance systems
rising, MMDBs become an attractive alternative for data-
base systems and have drawn considerable attention from
many  researchers  ([Ammann,1985], [Corti,1990],
[DeWitt,1984], [Garcia-Mohna,1984), [Hagmann,1986], [Leh-
man,1987|, [Salem,1990], [Son,1989]).

The MMDB model assumed throughout this paper is
shown m Figure 1 and is the basis of the MARS(MAin
memory Recoverable database with Stable log) MMDB sys-
tem design [Eich, 1987]. It assumes that the primary copy
of the database is in a nonvolatile main memory (MM) and
that an archive database existing on secondary storage
(AM) 15 used solely as a backup in the event of main
memory media faillure or system failure. A log is assumed
to exist both on disk and in a nonvolatile memory buffer
All updates take place in a nonvolatile memory (SM) which
acts as a shadow memory.
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At commit time, after-image records (AFIM) are copied
from the shadow memory to MM. The use of this shadow-
copy [Salem,1989] updating approach has been validated by
previous performance studies [Corti,1990] A database pro-
cessor (DP) is used to handle normal database processing,
while a recovery processor (RP) 1s used to perform recovery
processing activities.
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Figure 1 MMDB Model

The AM structure 1s designed using disk striping
[Salem,1986]. Each disk is divided mto two areas' system
data cylinders and user data cylinders The system data
cylinders consist of data pertaining to system information,
such as data dictionary, and address translation tables,
while the user data cylinders contamn the user data only.
The system data cylinders start from cylinder 1 on each
disk Following these cylinders are user data cylinders

In an MMDB environment with transaction
throughput rates approaching 1000 transactions per second
|Gray,1984], performing MMDB reload efficiently 1s crucial
If a system is down for only 1/2 hour then 1,800,000 tran-
sactions may be lost To reduce this down time, 1if the
needed data is known, then the database can be brought
online before all the database is reloaded According to the



80-20 rule, 80% of database accesses go to 20% of the data
[Gray, 1986]. In other words, 1t is often the case that a
transaction can run with only a small portion of the data-
base present in main memory Therefore, it does not make
sense to load the entire AM into MM before bringing the
database online. These two observations are the motiva-
tion for examining the MMDB reload algorithms defined in
this paper.

Our objective is to develop an MMDB reload scheme
that requires few I/Os, resumes transaction processing
quickly and does not degrade the system performance. In
Section 2 four different reload algorithms are introduced.
Section 3 describes results of simulation experiments com-
paring the algorithms. The paper is closed with conclusions
in Section 4.

2. Reload Algorithms

We propose four different algorithms to perform the
MMDB reload process: ordered reload, ordered reload with
prioritization, smart reload, and frequency reload. In the
ordered reload algorithm, data is reloaded according to the
order it 1s stored on the AM to achieve the fastest reload
time. The system is brought up when the entire database
1s reloaded. This algorithm 1s examined as 1t represents the
fastest possible reload time but not necessarily the highest
overall system performance in terms of MMDB throughput
rates. The remaining three algorithms bring the database
online prior to the complete reload of MM. They attempt
to predict what pages will be needed. Use of these algo-
rithms require that normal transaction processing be able
to perform demand paging (page faults) of needed pages in
the event that the pages which were prefetched were not
sufficient. In ordered reload with prioritization, data is
reloaded according to a previously determined priority
order and the system resumes its execution when a certain
amount (percentage) of the database is memory-resident.
The smart reload algorithm also uses a priority policy to
reload the data; however, when data is not reloaded on a
demand basis but on a prefetched basis, the block of the
highest access frequency is searched and brought into MM.
The frequency reload algorithm is similar to the ordered
reload with prioritization except that it requires a special
AM structure. In this structure, data is stored according to
the order of frequency of access so that data of higher
access 18 reloaded before data of lower access. Each algo-
rithm is further discussed in the following subsections. A
more thorough discussion can be found elsewhere
[Gruenwald,1990]

Reload granularity is the smallest unit of data to be
reloaded from AM into MM. During the reload of this unit,
no preemption by a reload of higher priority can take place.
The objective is to reload efficiently without degrading the
transaction performance. The desirable reload granularity,
therefore, should give the best overall system performance
in terms of these two properties. Based on earlier perfor-
mance studies [Gruenwald,1990], cylinder granularty is
assumed for all but the smart reload.

2.1. Ordered Reload

This algorithm does not take reload prioritization,
preemption, or access frequency into account. It reloads
the data according to the order it is stored on AM. Its pur-
pose is to reload the entire database in the shortest amount
of time. This algorithm consists of the following steps:

e Step 1 (performed by DP). Reload the database

into MM following the order in which the database is
stored on AM.

o Step 2 (performed by RP in parallel with step 1):
Copy to the shadow memory all AFIM records of
committed transactions on the log.

e Step 3' Bring the system up.

o Step 4 (performed in parallel with transaction pro-
cessing): Copy the AFIM records mentioned in step 2
from the shadow memory to MM.

Notice that in step 4, the application of AFIMs from the
shadow to pages in MM can be performed after the system
is brought online. This points out an advantage for the
shadow-copy approach During normal transaction process-
ing dual address translation to MM and SM 1s used to
detect if the value of the needed data is in SM. If so, then
it takes precedence over that found in MM [Eich,1987]
Thus for recovery, the AFIM from the log need not be
applied to the checkpointed pages found i AM prior to
bringing the system online

With this algorithm, the database is completely
reloaded before the system is brought onlime. While this
yields the fastest reload time it also requires that all data
be recovered even if there are no transactions which will
use it. Other advantages are that no page faults occur
when the system is brought online and it is simple to 1mple-
ment.

2.2. Ordered Reload with Prioritization

This algorithm does not consider access frequency,
but does consider reload prioritization and preemption. Its
goal is to first reload data that is needed immediately so
that the system can be brought up before the entire data-
base is reloaded. Thus waitinig transaction response time
can be reduced. The algorithm consists of the following
steps:

e Step 1: Identify waiting transactions and their

needed pages. From the information given by the

AM directory, group these pages according to

cylinders. Waiting transactions include not-yet-

committed transactions and backlogged transactions
when the system was down.

o Step 2: Reload system pages into MM.

o Step 3 (performed by DP): Reload the rest of the

database based on the following prioritization until

the reload threshold is reached.
3.1. Priority 1 (highest): Reload pages needed
by waiting transactions on a cylinder basis.
3.2. Priority 2: Reload the rest of the cylinders
on all disks according to the order they are
stored on disks.

e Step 4 (performed by RP in parallel with step 3).

Copy to the shadow memory all AFIM records of

committed transactions which are on the log

e Step 5: Bring the system up when the reload thres-

hold is reached

s Step 6. Reload the rest of the database based on

the following prioritization until the entire database

is in MM:

6.1 Priority 1 (highest priority) Reload pages
needed by executing transactions on a demand
basis. Executing transactions are those which
arrive after the system resumes i1ts execution.
6.2. Priority 2: Reload the rest of pages needed
by waiting transactions on a cylinder basis.
6.3. Priority 3' Reload the rest of the cylinders
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on all disks according to the order they are
stored on disks.
e Step 7 (performed in parallel to Step 6): Copy all
AFIM records mentioned in step 4 to MM.

When the reload (restart) threshold is reached, the system
resumes its execution and priority 1 ensues. At this point,
reload preemption is in effect to ensure data of higher
reload priority is brought into MM before data of lower
reload priority. Since a cylinder reload granularity is used,
reload preemption will not take place until the entire
cylinder which is being reloaded is brought into MM.

This algorithm has several advantages over the
ordered reload. Only a portion of the database needs to be
reloaded before the system can resume its execution.
Reload prioritization and reload preemption are taken into
account which allow executing transactions to be given
immediate attention. The response time of waiting tran-
sactions is reduced since data needed by them are reloaded
before data that is not needed by any transactions. How-
ever, there are still disadvantages. This algorithm is more
complicated and requires use of reload prioritization and
reload preemption. Identification of waiting transactions
and their needed pages adds an overhead to the reload pro-
cess

2.3. Smart Reload

This algorithm uses prioritization, preemption, and
access frequency. Its purpose is not only to reload data
that is needed immediately before other data but also to
reload data that is accessed more frequently before data
that is accessed less frequently. Its motivation is to take
advantage of Aot spots which have been demonstrated to
exist in many database applications ([Chou,1985], [Gawl-
ick,1985|, [Stalin,1990]). A hot set (or hot spot) is a subset
of the database that is frequently accessed. A hot set is a
set of pages that have been accessed most frequently in all
history of transaction processing.

To reload in the precise order of frequency of access,
this algorithm uses a block (page) as the reload granularity.
This algorithm consists of the following steps:

o Step 1: Identify waiting transactions and their

needed pages the same way as with the ordered

reload with prioritization algorithm.

e Step 2: Reload system pages into MM on a cylinder

basis.

o Step 3 (performed by DP): Reload the rest of the

database based on the following prioritization until

the reload threshold is reached:
3.1. Priority 1 (highest priority). Reload pages
needed by waiting transactions according to
the decreasing order of access frequency of
these pages.
3.2. Priority 2: Reload the rest of the database
according to the access frequency.

o Step 4 (performed by RP in parallel with step 3):

Copy to the shadow memory the AFIM records of

committed transactions on the log.

e Step 5 Bring the system up when the reload thres-

hold is reached.

e Step 6: Reload the rest of the database based on

the following prioritization until the entire database

is memory resident-
6.1. Priority 1 (highest priority): Reload pages
needed by executing transactions on a demand

basis.
6.2. Priority 2: is the one assigned priority 1 in
step 3.1.
6.3 Priority 3: is the one assigned priority 2 in
step 3.2
o Step 7 (performed in parallel to Step 6): Copy all
AFIM records in step 4 to MM.

This algorithm has all the advantages of the ordered
reload with prioritization algorithm. In addition, the block
granularity reduces the waiting time for transactions and
the more frequently accessed pages are reloaded before the
less frequently accessed pages There is extra overhead
added to transaction processing due to frequency count cal-
culation. We assume that a frequency counter is associated
with each page and that it is updated each time the page is
accessed. Since accessing a page requires address transla-
tion, this calculation can be implemented as part of the
hardware address translation scheme. The block reload
granularity requires more seek time and latency time than
the one incurred in the cylinder reload granularity Thus
the total reload time will be higher.

2.4. Frequency Reload

This algorithm takes reload prioritization, preemp-
tion, and access frequency into account. Its purpose is to
reduce the total reload time as well as to improve
throughput by trying to minimize the movement of disk
heads, reloading data that is needed immediately before
other data, and taking advantages of hot spots. This algo-
rithm works similarly to the smart reload algorithm except
that it chooses cylinder instead of block to be its reload
granularity and calls for a special AM structure, which is
named frequency AM structure. Its intent is to approximate
the smart reload but reduce the overhead and increase
reload performance. With the frequency AM structure,
user data cylinders are arranged based on the decreasing
order of page access frequency. Striping of data across
disks is still used, with the most accessed data stored on
track 1 of all disks, the next highest frequency of access is
stored on all tracks 2, etc. Once data is placed on the disks
in the correct order, the frequency reload algorithm works
the same as the ordered reload with prioritization algorithm

This algorithm 1s exactly the same as the ordered
reload with prioritization, except that 1t 1s applied on the
frequency AM structure, and it assumes that the frequency
count information is available in the AM directory This
algorithm has all the advantages of the ordered reload with
prioritization plus it takes advantage of hot spots and also
of minimal seek time and latency time of cylinder reload
granularity. However, the computation of access frequency
adds an overhead to the reload process and to transaction
processing. More nonvolatile memory is used to store the
frequency information. Reorganization of the AM structure
needs to take place at some point in time since the fre-
quency information does not always remain the same even
though the environment is assumed to be nonvolatile. We
assume that reorganization takes place when a backup for
the AM is created. The backup copy is formed by copying
pages from the current AM to a new AM and inserting the
pages in the correct locations on the new AM to meet the
requirement of a frequency AM structure When the
backup process is completed, the RP will switch to the
backup AM to perform any subsequent checkpoint. If a sys-
tem crash occurs at this point, the backup AM is used to
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reload the data into MM

3. Performance Analysis

In this section we report on a series of simulation
experiments performed to compare the four reload algo-
rithms. All experiments were performed on an IBM 3081
using the SLAM II simulation language. The objective 1s
not to reload the database the fastest, but to obtain the
best overall performance as measured by transaction
throughput and response time.

3.1. Model Description

Figure 2 shows a general diagram of the simulation
model The model contains four components. initialization,
transaction processing, checkpointing, and reloading. In
the initialization component, there are three major phases:
1) mitialization of dynamic and static parameters and array
rows, 2) frequency collection and priority queue construc-
tion, and 3) organization of the mitial MM and AM struc-
tures to be used before a system failure occurs. During the
operation processing phase, each operation of a transaction
15 processed until completion (no abnormal aborts are
assumed to exist). The DP preprocesses an operation and
performs SM (Shadow Memory) and MM (Main Memory)
address translations in parallel for the page on which the
operation is performed. Note that when applied to the

frequency and smart algorithms, this phase also ncurs a
frequency calculation overhead. In the transaction commit
phase, the RP performs transaction committing and logging
activities. When the number of transactions committed is
equal to the number of transactions committed before the
system failure parameter, the system 1s brought down to
simulate a system failure The reload component then
takes place at this point. In the reload component, there
are three different phases initial work upon a system
failure, reloading due to prefetch, and reloading due to
page faults.

Each transaction 1s represented as an entity in
SLAM II and consists of a transaction identifier, a multipro-
gramming number, the transaction creation time, and a
number of operations. Each operation within a transaction
1s described with an operation type (read or write) and the
page number being accessed Pages are generated by using
either an exponential distribution or uniform distribution
which is selected before running the simulation Two-phase
locking concurrency control is implemented with page level
locking and preclaiming of all resources Fuzzy checkpoint-
ing is directed by a bit map which indicates modified pages

Tables 1 and 2 show the dynamic and static parame-
ters used in the simulation models. The parameter of ran-
dom distribution type for page usage indicates the distribu-
tion function selected for generating page numbers used by
transactions in a simulation run (1:Exponential, 2:Uniform)
This function is either exponential or uniform.
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Parameter Default Value ;| Range
Number of AM disks 2 1.5
Number of Pages 1800 calculated
Write Probability 20% 0%..100%
Read Probability 80% 100%-Write Prob
Multiprogramming Level 10 1..20
Total Transactions Examined 200 20.,1000
Reload Threshold Percentage 80% 10%..100%
Number of Cylinders per Disk 30 12..60
Blocks per Cylinder 30 15..60
Page Size 23476 bytes 11476..47476 bytes
Transactions Committed Before | 50% 10%..95%
System Failure
Transfer Time 7.46 ms 3.65..15.00 ms
Random Distribution Type 1 1,2
for Page Usage

Table 1 Dynamic Parameters

Parameter Meaning Default Value
SM.ACCESS Access an SM word 0.00011 ms
ALLOC.TM Allocate a MM page 0.05 ms
AMREQ_TM Request an 1/O from AM | 0.02 ms
PRETRAN Preprocess a transaction 1.25 ms
PREOP Preprocess an operation 0.005 ms
RELEASE_TM ! Release an MM page 0.056 ms
BMAP_TM Read until 1 in bit map 0.00011 ms
MM_ACCESS Access an MM word 0.0001 ms
SM_SEAR AM address translation 0.5*MM_ACCESS
MM_SEAR MM address translation 3*MM_ACCESS
MSEEK Minimum seek time 3 ms
REC_SZ SM or log record 12 bytes
ET.TM End transaction 1.26 ms
INTIO_TM Initiate log I/O -0.01 ms
LOGIO_TM Write a log page 12 ms
LOGPG.SZ Log page size 2000 bytes
WORD_SZ Bytes per word 4 bytes
TRACKS_CYL | Tracks per Cylinder 15
SEEK Average seek time 16 ms
LATENCY Average latency 8.3 ms
INDN_TM Initial down time 5 ms
LOCK.TM Get one lock 0.026 ms
UNLK.TM Release one lock 0.025 ms
NUM_AFIMS Number of committed 10

AFIMS in log
CPU_POWER | Processor power 2 MIPS

Table 2. Static Parameters

Most of these static parameters are adopted from
existing literature. To simulate AM disks, the IBM 3380
disks are used [IBM,1984]. Time to allocate/release an MM
page comes from [Salem,1987]. Time to request an I/O and
log page size are used in [Lehman,1986]. Time to perform
SM address translation is discussed in [Corti,1990]. Time
to perform MM address translation is computed for the
worst case in which 3 MM accesses are needed to access the
segment table, page table, and to calculate the offset. The
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actual update of a frequency counter is assumed to take 3
instructions. To update a frequency counter, 2 accesses to
SM must be done to get the previous value of the frequency
counter and record its new value. The rest of the parame-
ters are adopted from [Fan,1988] with changes made to
reflect the difference i1n CPU power. The time to request
AM 1/0 1s twice that of the time to initiate log 1/O since
log access is always sequential while AM access is random
based on where the AM record to be accessed is located.

To study the performance of the proposed reload
algorithms, the following measurements are obtained for
each simulation run.

o Reload Time. Total elapsed time an algorithm
needs to reload the entire database into MM. If the
system is brought online prior to completing the
reload it will include some time during which tran-
sactions are being executed

o System Unavailability. Time during which the sys-
tem is down

o Page Faults. Number of page faults incurred by
each algorithm.

e Transaction Response Time: Mean transaction
response time.

e System Throughput: Number of transaction com-
mitted per second.

Among these measurements, the last two are the most cru-
cial because they indicate overall system performance.

3.2. Simulation Results

In the following subsections we highlight the results
of the simulation experiments [Gruenwald,1990]

3.2.1. Vary Number of Pages

The number of pages is varied between 600 to 5400
In Figure 3, the reload time incurred in each of the reload
algorithm as the number of pages is varied is plotted. The
smart algorithm yields the highest reload time since it
reloads data based on the block granularity approach
which may require a number of arm movements to locate a
desired block. On the average, the reload times incurred in
the ordered reload with prioritization, frequency, and smart
reload algorithms are 4%, 5.5%, and 182%, respectively,
higher than the one in the ordered algorithm.

An interesting result occurs when examining the
effect of the number of page faults incurred by the reload
algorithms Figure 4 shows that as the number of pages
increases, the number of page faults in the ordered reload
with prioritization algorithm also increases. This is due to
the fact that this algorithm does not take frequency of
access into consideration. As the database size grows, the
probability that transactions access the pages beyond the
reload threshold also grows. The ordered reload, as
expected, incurs no page faults at all because this algorithm
must reload the entire database before bringing the system
online. The frequency and smart algorithms both experi-
ence a drop in the number of page faults. The frequency
algorithm effectively has no page faults with 1800 pages in
the database while the smart one reaches this state with
3000 pages. Recall that these algorithms continue to reload
the database after transaction processing is resumed. Since
the most frequently referenced data is reloaded first, when
these algorithms are used the background reload processes
will have time to bring in data before it is needed. The



advantage that the frequency algorithm has over the smart
one is that with each page faults more data (cylinder vs.
page) is loaded into memory.
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Figure 4. Effect of Number of Pages
on Page Faults

The effect of the number of pages on the mean tran-
saction response time is shown in Figure 5. As seen in this
figure, the smart reload algorithm gives the highest tran-
saction response time. This is due to the fact that its sys-
tem unavailability is the highest among the four proposed
algorithm. The ordered reload and ordered reload with
prioritization algorithms have comparable transaction
response time. The ordered reload algorithm, even though
1t incurs higher system unavailability than the ordered
reload with prioritization, has no page faults at all while
the latter incurs quite a few page faults. Since the latter
uses time to bring in faulted pages, it does not not yield
better response time than the plain ordered reload. With

the frequency algorithm, fewer page faults are incurred,
therefore the response time is lower than in the other algo-
rithms. When the number of pages is small, 600 pages, the
response times in the smart, ordered with prioritization,
and ordered reload algorithms are respectively 111%, 10%,
and 6% higher than that of the frequency reload algorithm.
When the number of pages is large, 5400 pages, these
figures also become higher: 146%, 60%, and 59%, respec-
tively. Similar results were found when examining transac-
tion throughput.
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0
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Figure 5. Effect of Number of Pages
on Transaction Response Time

3.2,2. Vary Reload Threshold Percentage

The reload threshold percentage dictates the number
of pages (as in the smart reload algorithm) or the number
of cylinders (as in the ordered reload with prioritization and
the frequency reload algorithms) to be reloaded before the
system can be brought up. In this testing set, this percen-
tage is varied from 10% to 100%. Note that this testing
set is not applied to the ordered reload algorithm since this
algorithm always requires the reload threshold percentage
to be 100%. As seen in Figure 6, the frequency reload algo-
rithm gives better transaction response time than the
smart and the ordered reload with prioritization algo-
rithms. When the reload threshold reaches 1009, the fre-
quency reload and the ordered reload with prioritization
algorithms give the same results. As the reload threshold
increases, the smart reload algorithm increasingly gives the
worst results. Even though, the number of page faults in
this algorithm keeps decreasing when the reload threshold
increases, the decrease in system unavailability due to later
restart outweighs the savings gained in the number of page
faults. Similar results were found for transaction
throughput.

The ordered reload with prioritization is not very
sensitive to the reload threshold while the frequency and
smart reload algorithms are quite affected by this parame-
ter. In general, the higher reload threshold used, the higher
1s system unavailability and, hence, there is less benefit
from wusing access frequency. The worst transaction
response time and system throughput are then obtained.
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However, when the reload threshold is too small, many
page faults might be incurred with the frequency algorithm.
This could outweigh the gain in system availability, and in
turn degrade transaction response time and system
throughput obtained from this algorithm. Therefore, to
take advantage of access frequency, the reload threshold
must be selected carefully, and should be a small number.
below 50%. The loss in system performance when choosing
a too small reload threshold is much less than the loss when
choosing a too big reload threshold.

1400 — ----  Prioritisation

1200 — — Frequency 5 '

1000 ~ “oe Smart

800 — RPN TIRREY U v

Response
(ms)

800 —|

400 —]

T T T 1T 1 1T T 1T T7
10 20 30 40 50 60 70 80 90 100
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Figure 6. Effect of Reload Threshold Percentage
on Transaction Response Time

3.2.3. Vary Number of Transactions

Experiments were performed which varied the
number of transactions executed from 20 to 1000. These
experiments predict the performance as the mean time
between failure increases. As the number of transactions
increases the number of page faults in the smart algorithm
increases while in the frequency and ordered reload algo-
rithms, this number is relatively constant with the fre-
quency algorithm always being less. When examining tran-
saction response time, we find that the frequency algorithm
clearly gives better results when the number of transactions
examined is less than 500. From that point on comparable
results are found for the frequency, ordered reload, and
prioritization  algorithms. Examining the system
throughput, the frequency reload algorithm always gives
the best results, and the smart algorithm the worst.

3.2.4. Suppose No Hot Spots?

In this testing set, pages accessed by transactions are
generated using a uniform distribution function. This simu-
lates no hot spots in actual processing. The simulation
shows that the smart algorithm gives the highest reload
time, highest system unavailability, highest transaction
response time, and lowest system throughput. The fre-
quency algorithm gives the lowest transaction response
time, and the highest system throughput. The reload time
is the same for both frequency and ordered reload with
prioritization algorithms. The ordered reload gives the
lowest reload time, and no page faults at all. It also gives
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better transaction response time and system throughput
than the ordered reload with prioritization algorithm. The
number of page faults incurred in the latter is the highest
in all algorithms. This testing also indicates that when
changing the distribution function for page usage, the
results are very much unchanged from those found with an
exponential distribution.

Table 3 shows the performance of the algorithms
when generating pages using an exponential distribution
function and using a uniform distribution function. Even
though the relative order in reload time, transaction
response time, and system throughput remains the same
across all algorithms, the frequency algorithm performs
worse when using the uniform distribution function than
when using the exponential distribution. This is expected
because the hot spots get referenced more often in the
latter case. Reloading of data that is stored on AM disks
using the frequency AM structure is therefore more advan-
tageous. The smart algorithm, on the otherhand, when
using the uniform distribution gives fewer number of page
faults and better transaction response time and
throughput. This is due to fact that the hot spots now are
distributed more evenly over all disks. The reload of data
in strictly decreasing order of frequency in parallel from all
disks is therefore advantageous. The table also shows that
the distribution has no effect on the ordered reload algo-
rithm and very little effect on the ordered with prioritiza-
tion. As mentioned earlier, the ordered reload algorithm
reloads the entire database before bringing the system up.
Hot spots have no effect on it. Therefore, the algorithm is
not affected by the distribution function selected for gen-
erating pages. The ordered reload with prioritization also
does not take frequency of access into consideration, and
hence is similarly unaffected by the distribution.

Measurements Ordered! Prior | Freq Smart
Unif. Reload 11100 11600 | 11600 | 32900
Expo. Reload. 11100 11500 ; 11800 | 34600
Unif. Page Faults 0 50 9 24
Expo. Page Faults | 0 49 0 55
Unif. Response 531 561 390 811
Expo. Response 531 545 341 878
Unif. Throughput 17.1 16.3 21 11
 Expo. Throughput | 17.1 16.3 26.7 10.3

Table 3. Exponential Distribution vs. Uniform Distribution

3.2.5. Effect of Inaccurate Prediction of Reference
Behavior

Simulation results reported so far show that the fre-
quency reload algorithm yields the best transaction
response time, and system throughput. These results
reflect the situation when data referencing behavior 1is
predicted accurately. This is due to the fact that the fre-
quency information was collected only for those pages that
are going to be referenced by the examined transactions.
‘What would happen if the prediction is not accurate? To
answer this question, another testing set 1s performed. In
this experiment, the number of transactions generated for
frequency collection is varied from 200 to 5000, and the




number of transactions to be examined in the simulation
run remains at its default value of 200.

The effects of the number of transactions generated
for frequency collection on transaction response time in the
frequency and ordered reload algorithms is shown in Figure
7. The reload time incurred by the frequency algorithm
remains higher than the one in the ordered reload algo-
rithm. The difference in the reload time between the two
algorithms is about 7%. When more transactions are gen-
erated for frequency collection than those examined, more
page faults tend to occur. The transaction response time
therefore keeps increasing and system throughput keeps
decreasing. At some point, when the number of transac-
tions generated for frequency is large enough, for example
1000 in this case, the frequency algorithm and the ordered
reload yield comparable performance. The throughput and
response time do not change very much after this point
even though the number of page faults is still changing.
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400 — ——  Ordered Reload
>—u Frequency
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100 —
0 I T T I 1
1000 2000 3000 4000 5000

Number of Transactions Generated to Collect Frequency

Figure 7. Effects of Transactions Generated to
Collect Frequency on Transaction Response Time

The next question posed is what would happen if the
prediction about data accessing behavior of transactions
has no bearing on the actual access frequency collection
and the hot spots do not exist at all. A simulation run is
performed to answer this question. In this simulation run,
a uniform distribution function is used to generate pages
for frequency collection. Transactions that are created for
execution have their pages generated using an exponential
distribution function with a random stream that is different
from the one used in the uniform distribution for frequency
collection. This experiment examines the behavior of the
frequency algorithm in the worst case. Table 4 shows the
performance of the frequency and ordered reload algo-
rithms in this testing case where time is measured in mil-
liseconds, and system throughput is the number of transac-
tions committed per second.
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Measurements Frequency | Ordered
Reload Time 11500 11100
Page Faults 45 0
System Unavailability 6880 11100
Transaction Response Time 561 531
System Throughput 16.4 17.1

Table 4. Frequency vs. Ordered
When There are no Hot Spots

Table 4 shows that the frequency algorithm gives
worse transaction response time and system throughput
than those in the ordered reload algorithm. This is due to
the fact that the former incurs a high number of page
faults because of a lack in hot spots. However, the table
also shows that the differences in the reload time, transac-
tion response time, and system throughput are extremely
small: 4%, 6%, and 4%, respectively. This simulation there-
fore substantiates the results from the previous testing case
that even in the worst case when there is no knowledge of
frequency of access, the frequency algorithm is comparable
to the ordered reload algorithm.

4. Conclusion

Four reload algorithms have been proposed: ordered
reload, ordered reload with prioritization, frequency reload,
and smart reload. Simulation results showed that the
ordered reload always gives the minimum reload time
because there is no processing interfering with its reload
process. However, the behavior of ordered reload with
prioritization and frequency reload approaches are very
close. The difference in reload time across these three algo-
rithms is only about 5%. The smart algorithm, due to
many arm movements that it must perform to locate a
desired block for reload, yields about 200% higher reload
time than the other algorithms. In terms of transaction
response time and system throughput, the smart algorithm
1 always give the worst performance while the frequency
almost always give better performance than the other three
algorithms. In the best case, when the knowledge of data
referencing behavior is accurate, the frequency algorithm
yields 36%, 37%, and 61% less transaction response time
and 56%, 64%, and 159% higher system throughput than
the ordered reload, ordered reload with prioritization, and
smart reload algorithms, respectively. When there are no
hot spots on the database and transactions to be executed
in the simulation are entirely independent of the access fre-
quency collection on hot spots, the frequency algorithm
results in only 6% higher transaction response time and 4%
lower system throughput than the ordered reload algo-
rithm.

The objective of this research was not to discover the
fastest database reload algorithm, but to find a way to
reload the database in such a way that the system can
resume its execution quickly to achieve high performance in
terms of transaction response time and system throughput.
The simulation results showed that the frequency algorithm
then is the algorithm of choice.

t Perhaps we should have named this the “dumb’ not the smart al-
gorithm,
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