
RECOVERY IN MAIN MEMORY DATABASES

Le Gruenwald� Margaret H: Dunhamy

Jing Huang� Jun-Lin Lin
y

Ashley Cha�n Peltiery

Dept of Computer Science Dept of Computer Science and Engineering

University of Oklahoma Southern Methodist University

Norman, Oklahoma 73019-0631 Dallas, Texas 75275-0122

fgruenwal,jhuangg@mailhost.ecn.uoknor.edu fmhd,jun,peltierg@seas.smu.edu

Abstract

With Main Memory DataBases (MMDB) the primary copy of the data resides in volatile main

memory. Thus an MMDB is more vulnerable to failures than conventional Disk Resident DataBases

(DRDB). This plus the fact that MMDB systems are targeted to high throughput applications, such

as phone switching databases, complicates recovery. In this paper we provide an overview of the issues

associated with MMDB recovery and briey examine some of the solutions.

1 Introduction

In a Main Memory Database (MMDB) all or a major portion of the database is placed in main memory.

What is important is the perception of where data resides. With an MMDB the DBMS software is designed

assuming the data is memory resident. With a Disk Resident Database (DRDB) the DBMS is designed

assuming the data is stored on disk and I/O is required to access the data. MMDB systems are targeted to

applications which require high throughput and fast response time. Examples of such applications include

ATM bank account information, telephone switching, certain airline reservation applications, and real-time

systems.

�Supported in part by the National Science Foundation under Grant Number IRI-9201596.
ySupported in part by the National Science Foundation under Grant Number IRI-9201643.

1

Figure 1: MMDB Architecture

Telephone switching applications of today require sophisticated switching hardware and software.

Switching of phone calls is directed by the contents of a switching database or routing table. Without

the use of MMDB systems, such advanced telephone activities as 800 numbers and call forwarding would

not be possible. For example, using Advanced Intelligent Network services, a phone customer can dial a

�ve-digit number to access an 800 number. The mapping between the two numbers must be done within

few milliseconds. The memory residency assumption provides not only the required speed, but also the

predictability of access time (response time) that is needed.

Mobile computing applications of today center around cellular telephones and applications with limited

database processing. We envision mobile computing in the next decade to involve more data intensive

applications with the ability of mobile users to request the execution of long lived database transactions.

While execution of these transactions will be performed at DBMS systems (either DRDB or MMDB) in

the �xed network, the management of these transactions including communicating transaction results to

the user at a mobile unit will be performed by a Base Station, also called aMobile Support Station [4]. The

data needed to manage these mobile transactions will reside in an MMDB at the Base Station to provide

fast response. Again, an MMDB provides the speed and predictability needed to access this data.

Figure 1 presents a general MMDB architecture. The MMDB is composed of the Main Memory (MM)

implemented via a standard RAM memory, and an (optional) nonvolatile memory, Stable Memory (SM).

The primary copy of the database resides in MM, and transaction execution is hence performed in MM.

The stable (nonvolatile) memory is used to hold log bu�ers, and avoid I/O actions when transactions are

committed. Stable memory is essential to performance in MMDBs [6, 21]. A logger process ushes the

logs asynchronously to the log disk. The tail end of the log is in stable memory; enough stable memory to

hold at least the log information for active transactions is assumed in this architecture. Archive Memory

2

(AM) holds a backup of the entire database.

Due to the volatility of RAM memory, recovery of MMDBs has been an area of active research [7,

14, 18]. The objective of this paper is to provide an overview of MMDB recovery. We focus on logging,

checkpointing, and reloading. Logging creates a log of update activities to databases. Checkpointing copies

the database residing in MM to the AM for backup purposes. Reloading reloads the backup database from

AM into MM if a system or media failure occurs that causes the contents of MM to be lost. In the event

of system failure a consistent state of the database can be recovered by applying information from the log

to an earlier backup (checkpoint) copy of the database. Checkpointing provides a way to limit the work

necessary at system restart by reducing the amount of log which must be examined [1, 15]. Hence database

logging, checkpointing, and reloading play an important role to ensure that the MMDBs can be recovered

from any failure.

The organization of the paper is as follows. The next three sections examine MMDB logging, check-

pointing and reload activities. In Section 5 we examine recovery as implemented in several MMDB systems.

Finally, conclusion is given in Section 6.

2 MMDB Logging

To keep track of what happens in the database, several types of log records are required in the log (see Table

2). When the MM is modi�ed a record reecting the prior value of the data, \BFIM", must be written as

well as a record reecting the new value of the data,\AFIM". Transaction status must also be stored in

the log. A transaction writes the \BT" (Begin Transaction) and \ET" (End Transaction) records to the

log to indicate the point when the transaction starts and when it commits. There are two values for \ET"

log records: \commit" and \abort", representing whether a transaction has been terminated successfully

or abnormally. The checkpointer writes \BC" (Begin Checkpoint) and \EC" (End Checkpoint) records

with a special checkpoint identi�er ckptid to indicate when the checkpoint started and when it ended. A

complete checkpoint occurs when a BC record has in the log a paired EC record with the same ckptid.

The information in the log can be collected at di�erent levels of abstraction, mainly physical logging

and logical logging. Physical logging means the state of the database modi�ed by an operation are logged,

and only physical units of storage (Page number, O�set, Length) are known [35]. Logical logging contains

descriptions of higher level operations and records the state transition of the database [1]. For example, a

3

Table 1: Log Format and Log Types

Type TID LAddr Value

AFIM tid laddr a�m

BFIM tid laddr b�m

BT tid ; ;

ET tid ; commit or abort

BC ckptid ; ;

EC ckptid ; ;

log record in logical logging may say \insert record r in relation R and the indices are updated to reect the

modi�cation" [1]. The advantage of logical logging is that it can exploit the semantics of operations and

fewer log items are needed to record modi�cations. However, this advantage is acquired at the expense of

added complexity to the database both during normal processing and at system restart. By logical logging,

applying the log record \insert record r" twice implies that record r is inserted in the database twice, which

produces a di�erent result from applying it once. As the idempotent property does not hold for logical

logging, to guarantee the atomicity of transactions the database must make sure that each committed

action has been executed exactly once and each uncommitted action has been undone exactly once as well.

With physical logging, the before images (BFIM) and the after images (AFIM) of updated items are

written to the log when the action occurs in the database. As before and after images in the log records

reect the state of the database, applying the BFIMs and AFIMs to the designated parts of the database

are idempotent. That is, one can \execute" these \state installation" operations more than once without

changing the result. This property can greatly simplify the recovery processing.

The most popular technique for checkpointing MMDBs (fuzzy checkpointing) is best implemented with

physical logging. Thus physical logging is recommended for MMDB systems. This is contrary to DRDB

where logical logging is usually recommended (because of its reduced space), but physical logging is often

used in production systems (due to the ease of implementation).

One of the most accepted types of logging rules is that of Write Ahead Logging (WAL) [1, 11, 13, 31],

in which log data must be written to a nonvolatile memory prior to the updating in the database. The

purpose of the \WAL" protocol is to ensure the e�ect of uncommitted transactions can be undone [11].

Since only UNDO information of updated items is used to remove the e�ect of uncommitted transactions,

only UNDO information need obey this logging rule [15].

4

Another important logging rule concerns committed transactions. Once a transaction is committed in

a database, the DBMS then must always reect all of its e�ect regardless of failure. Thus if a DBMS allows

a transaction to commit, the REDO information that was written by this transaction should be ensured in

nonvolatile storage. By the commit rule, the recovery procedure is capable of recovering any transactions

that completed successfully but whose updates were not physically written to nonvolatile database before

the failure occurs in the system.

Both the WAL and Commit rule exist with DRDB. With MMDB systems, a new rule, LAW, is recom-

mended. The idea of this \LAW" (Logging After Writing) protocol is that the after image of an updated

item should be written to the log after its corresponding update is propagated to the database. Thus

if an updating action occurs after the initiation of the last complete checkpoint, the REDO information

is guaranteed to follow its begin checkpoint record in the log. Therefore the log portion starting from

the begin checkpoint record contains all the log records whose actions may be redone after a crash. This

simple idea signi�cantly simpli�es the log processing with a fuzzy checkpointing MMDB as demonstrated

in Section 3.2.

A nonvolatile log bu�er is crucial for high performance MMDBs [6, 21]. This facilitates immediate

commit of database transactions without requiring I/O for log records. In addition, the logging rules

discussed above can be easily implemented by properly adjusting the order of update and logging.

Briey speaking, MMDB logging di�ers from DRDB logging in three ways:

� A nonvolatile log bu�er should be used to satisfy WAL without requiring I/O prior to transaction

commit.

� Physical logging is recommended as it is easier to use with fuzzy checkpointing.

� To reduce the amount of the log needed to redo transactions after a system failure, the LAW policy

should be followed.

3 Checkpointing MMDBs

Checkpointing in MMDBs focuses on low-interference with normal transactions, and supporting e�cient

recovery. In what follows we review previous research on checkpointing MMDBs. We divide the check-

pointing approaches for MMDBs into three groups: fuzzy checkpoint, non-fuzzy checkpoint, and log-driven

5

checkpoint.

3.1 Fuzzy Checkpointing

Hagmann �rst suggested using fuzzy checkpointing for MMDBs [16]. The checkpointer does not need to

obtain the locks on the data items to be checkpointed. The database is dumped in sections (intervals of

pages) [16]. The only synchronization between the checkpointer and normal transactions is, after dumping

a section, the checkpointer writes a log record to the log. A section must not overwrite its previous image

so that if system failure occurs when dumping, its previous image will not be destroyed. This is also called

sliding monoplexed backups in [32].

Salem and Garcia-Molina compared the fuzzy checkpointing scheme with two non-fuzzy checkpointing

schemes, and found that fuzzy checkpointing is the most e�cient one [33]. Their fuzzy checkpointing

scheme maintains two complete backup databases on disks in addition to the primary database on main

memory. The checkpoint process uses a ping-pong scheme to ush dirty pages from the primary database

to the backup databases. That is, the checkpointer ushes dirty pages to one backup database during the

current checkpoint, and ushes dirty pages to the other backup database during the next checkpoint, and

so on. Thus, each page requires two dirty bits, and each dirty page is ushed twice, once to each backup

database, on two consecutive checkpoints.

Lin and Dunham proposed a variant of fuzzy checkpointing scheme, called Segmented Fuzzy Checkpoint-

ing [27, 26]. This approach checkpoints one segment at a time in a round-robin fashion and automatically

changes the segment boundaries based on the distribution of update operations. As a result, the average

recovery time is greatly reduced at the cost of a more sophisticated checkpointing process. The amount

of the log needed to read during recovery after a system failure is less with the segmented approach than

with the conventional fuzzy one.

Li et al proposed a fuzzy checkpointing scheme that uses multiple log disks to reduce recovery time [25].

The database is divided into partitions, each of which has its own log disks. The log records generated

due to updating the data in a partition, are written to the log disk for that partition. By distributing

log records in multiple log disks according their partitions, the time to recover from a system failure is

reduced.

6

3.2 Use of the LAW Protocol with Fuzzy Checkpointing

Figure 2 shows a checkpointing action and two database actions made to the page P1 of MM. At time t1 a

record in P1 is deleted, at time t2 the MMDB ushes P1 to AM, and at time t3 a new record is inserted into

P1. A crash occurs before the MMDB gets a chance to copy out P1 in the most recent checkpoint which

is thus an incomplete checkpoint. The delete action has been reected in AM, but the insert action is not

reected in AM. Therefore, the actions made after the initiation of the most recent complete checkpoint

may or may not be reected in the backup database at the time of failure.

BC1

Time

BC2

flush P1

insert P1delete P1

t1 t2 t3

Crash

Figure 2: The Database Actions With Fuzzy Checkpoint

LBC

UpdateAFIM BC

Correct Log Processing for Redo Activity

Wrong Log Processing for Redo Activity
The Log

crash

Figure 3: The Post-crash Log Processing Without \LAW"

If the LAW policy is not followed it is possible to have the AFIM record for an update written to the

log prior to a BC and the actual update to MM occurring after the point in time when the BC was written.

In this case, a proper redo starting point is the earliest beginning of the transactions which are active at

the initiation of the last complete checkpoint. >From that point, the redo activity is forward processed

until the end of the log is reached. Figure 3 demonstrates the correct post-crash log processing with a

fuzzy checkpoint MMDB.

The usual approach to identify the redo point is a backward scan of the log from the LBC (Begin

Checkpoint record of the last complete checkpoint). This approach certainly reduces the performance

of recovery in the MMDB. Furthermore, it becomes worse when there are long-lived transactions in the

MMDB. Under the \LAW" protocol, if an action occurs after the LBC, then its after image must follow the

7

LBC in the log. Figure 4 illustrates this idea. If the log processing for the redo purpose begins immediately

from the LBC as shown in Figure 4, it still can redo all actions that should be redone after a crash. With

a nonvolatile log bu�er, the implementation of the \LAW" protocol is easy. After the MMDB updates the

page of MM, it appends the corresponding AFIM record to the log bu�er.

log processing for redo activity

AFIM
Update

LBC

Figure 4: The Post-crash Log Processing Under \LAW"

Thus the use of the LAW protocol reduces the amount of log which must be processed to recover from

a system failure.

3.3 Non-Fuzzy Checkpointing

Non-fuzzy checkpointing schemes usually incur much overhead during normal transaction processing. The

overhead mainly comes from locking the checkpointed objects to ensure transaction-consistency or action-

consistency. Lehman and Carey proposed a transaction-consistent (at relation level) scheme, where the

main memory is divided into segments, one for each database object (relation, index, or database structure)

[21]. The checkpointing transaction locks one relation at a time, checkpoints all related segments of the

relation, and then releases the lock. Eventually, every relation in the checkpoint is transaction-consistent;

only committed data is checkpointed. Thus, there is no need to maintain undo-log-records in nonvolatile

storage. However, the checkpointing activity increases the data contention with normal transactions, and

thus greatly a�ects the performance.

Salem and Garcia-Molina have discussed two non-fuzzy checkpointing approaches in [33]. The �rst

approach aborts some update transactions to ensure the state read by the checkpointing process is consis-

tent. The second approach requires some update transactions storing the original values of data items to

be updated for the checkpointing process. Both have severe impact on the system performance.

Jagadish et al proposed an action-consistent checkpointing scheme [18]. When checkpointing, the undo-

log-records of active transactions are �rst written to the log, and then dirty pages are ushed to disks to

8

enforce the WAL protocol. During normal transaction processing, the logger only writes the redo-log-

records of the committed transactions to the log. This approach was originally used in Dali, which is

discussed in Section 5.1.

3.4 Log-Driven Checkpointing

Instead of dumping from the main memory database, log-driven checkpointing applies the log to a previous

dump to generate a new dump. This technique is originally used to generate remote backup of the database

[8, 28], and is adopted to MMDBs in [5, 22, 23]. With high transaction processing rate in MMDBs, the

size of the log can increase rapidly. As a result, applying the log to the dump could be quite ine�cient,

compared to ushing the dirty page to the dump directly.

4 MMDB Reloading

In an MMDB system, the primary copy of the database resides permanently in a volatile memory, instead

of stable secondary storage as in a DRDB system. When a system or media failure occurs, the database

is lost. In order to resume transaction processing quickly without degrading system performance, a reload

scheme is needed to bring the database from AM into MM and to construct its most recent consistent

state.

There are several issues associated with MMDB reloading. The �rst issue is occurrence frequency of the

reload process. System failure typically happens due to power outage, preventative maintenance, DBMS

errors, operating system crashes, or hardware downs [19]. Although MM can be made more reliable by

techniques such as battery-backed up memory boards, uninterruptible power supplies, and triple modular

redundancy, this does not guarantee that the system is failure-free [9]. On average, a system failure occurs

once every few weeks [13]. Media failure, although occurring once or twice a year, can have a severe impact

on recovery. A memory failure will require either reloading the entire database from AM to MM as in

system failure, or reloading a partial database if the speci�c location of memory failure can be identi�ed.

In addition to these failures, if MM is not large enough to hold the entire database, I/Os might also be

incurred due to MM page faults. This may happen frequently based upon the percentage of the database

in MM. A general reloading scheme should also be capable of handling these page faults.

The second issue is when the system should resume its execution after a failure. According to the 80-20

9

rule, 80% of the accesses go to 20% of the data [?], and thus a transaction can often run with only a small

portion of the database present in MM. Therefore, it does not make sense to load the entire AM into MM

before bringing the database online. As estimated in [?], 28.43 minutes are needed to recover one gigabyte

database. If the system is not available at all during recovery, many transactions will be backlogged. This

also translates into many transactions missing their deadlines if the application is deadline-driven.

The third issue is reload prioritization. If the system is allowed to be brought up before the entire

database is memory-resident, many page faults may be incurred unless data in MM is needed frequently or

immediately depending on applications. This means that data should be prioritized for reload purposes.

Reload priority can be determined based on access frequency as in [14], transaction deadline or temporal

data interval for real-time applications as in [?].

The existing reload schemes can be classi�ed into two categories: simple reloading and concurrent

reloading. In simple reloading, the system can not be brought online until the entire database is memory-

resident. This scheme can complete database reloading in the shortest amount of time; however, transaction

execution may be blocked for a long time. The techniques proposed in [14, 16] fall under this category.

The former resumes transaction processing only after the database has been reloaded completely and

log information has been applied to this database to obtain its most consistent state. The latter makes

use of the two processors and nonvolatile shadow memory (SM) existing in the MARS system to hasten

the recovery process. While one processor reloads the database, the other processor copies AFIMs of

committed transactions from the log to SM. The system is brought up as soon as the entire database is

memory-resident. When a data item is needed, the system will search for it in both MM and SM. The

one found in SM will take precedence over that found in MM. This dual address translation mechanism

allows normal transaction processing to be performed even before the consistent state of the database is

established.

In concurrent reloading, the system resumes its execution before the entire database is brought into

MM. Transaction processing and reload activities can be performed in parallel. In [?, 21, ?] after the

system catalogs and their indices are reloaded then regular transaction processing is allowed to resume.

When a transaction needs to access relations and indices that are not yet memory-resident, the transaction

manager issues recovery transactions to reload them on a per partition basis. Databases entities (tuples

or index components) are stored in partitions and do not cross partition boundaries. Since relations and

indices are usually of large sizes, transactions must wait for a long time before they can be executed.

10

Gruenwald has proposed three di�erent concurrent reload algorithms: Ordered Reload with Prioriti-

zation (ORP), Smart Reload (SR), and Frequency Reload (FR) [14]. The di�erences between them lie in

the structure of AM, utilization of data access frequency, reload prioritization, and reload granularity. A

reload of higher priority can preempt that of lower priority. Reload granularity is the smallest unit of data

to be reloaded; during the reload of this unit, no preemption can take place. The algorithms distinguish

two types of transactions: waiting and executing. Waiting transactions were present in the system but

not yet committed at the time of failure. Executing transactions arrive after the system resumes its ex-

ecution. ORP requires the system to be brought online after some amount of the database is in MM. It

gives the highest reload priority to executing transactions, the second highest to waiting transactions, and

the lowest to the rest of the database. This algorithm uses cylinder to be its reload granularity; therefore

no preemption is allowed to take place until the entire currently reloaded cylinder is brought into MM.

SM works similarly to ORP except that whenever it reloads a page, it makes sure that the page with the

highest access frequency among all pages on AM is reloaded. Because of this, it chooses block to be its

reload granularity. FR is exactly the same as ORP, except that it requires a special AM structure, in which

pages are organized on cylinders in decreasing order of access frequency. With this structure, within the

reload of one cylinder, more frequently accessed pages are brought into MM before less frequently accessed

ones. Simulation results comparing these three algorithms with the simple reload algorithm described

above showed that FR yields the best transaction response time and system throughput [14].

Levy and Silberschatz [22] has proposed a concurrent reload scheme that resumes transaction processing

immediately after a system failure and recovers pages individually according to the demand of post-crash

transactions. It makes use of a Stale/Fresh marking technique. A page is stale if it has been modi�ed by

committed transactions but not yet reected in the disk database, and is fresh otherwise. A transaction

that accesses a stale page will trigger the recovery of that page and and will be delayed until the page is

reloaded into MM and brought up-to-date. In order to implement a page-based recovery, log records must

be grouped together on a page basis during normal operation.

5 Recovery with Existing MMDB Systems

There have been several MMDBs, some of which are commercialized while others are prototyped. This

section provides an overview of the recovery techniques implemented in three existing MMDB systems:

11

Dali from AT&T, Fast Path from IBM, and NEC RTDBMS from NEC America. The �rst system is a

prototype, while the other two are commercial products.

5.1 Dali

Dali is a main memory database server being developed at AT&T Bell Labs [17]. Two Recovery Managers

have been implemented for Dali. In the original Recovery Manager, disk I/O was reduced by logging only

REDO records during normal execution. Lock contention by the checkpointer was handled by allowing

segment-level action-consistent checkpoints and by having the checkpointer write to the disk relevant parts

of the UNDO log. Each transaction maintained a private UNDO log for each segment it accessed. Each

UNDO log was then checkpointed when its corresponding segment was checkpointed. This allowed the

system to quiesce only actions within a segment instead of the actions within the entire database during

checkpointing. It also incurred the overhead associated with maintaining several UNDO and REDO logs

per transaction, and the global REDO log. The recovery algorithm made only a single pass over the log,

and required no special hardware to preserve the data [18].

Tests conducted with the original recovery algorithm used in Dali led to a restructuring of its recovery

algorithm [2]. The new features in Dali include multi-level logging, post-commit actions, dirty page de-

tection, and fuzzy checkpoints. Multi-level logging was used to provide higher level of concurrency. Fuzzy

checkpoints were implemented due to the poor performance of the original action-consistent ones. Each

checkpoint �rst copies all dirty pages to disk, then takes a snapshot of the active transactions. For every

active transaction, all undo logs for that transaction are written out as well. Finally, the global log is

ushed and the checkpoint is complete.

5.2 Fast Path

IMS/VS Fast Path supports both memory-resident data and disk-resident data. It performs updates to

memory resident data at commit time. As the database is not modi�ed by active transactions, only after

images need to be maintained in the log �le and no UNDO operations are required when a failure occurs

[?, ?]. The idea of group commit is adopted by IMS/VS Fast Path to reduce the amount of time needed

to ush log records to log disks during the commit process, which in turn improves system throughput [9].

No writes to the disk database are allowed during normal processing. The transaction-consistent backup

copy of the database is refreshed during system shutdown, or some infrequently checkpoints. Two backup

12

copies of the disk database are maintained. The checkpointed data is written alternately onto two backup

copies [?, ?].

At the system restart, the main storage data base (MSDB) is reloaded from one of the backup copies.

All the changes made since the last checkpoint will be reected on the reloaded database by using the log

information stored in the log �le [?].

5.3 NEC RTDBMS

Main memory database also plays an important role in real-time systems. Two examples are NEC Real-

Time Database Management System (NEC RTDBMS) and Stone RTDB [?]. Due to space limitation, in

what follows we briey discuss NEC RTDBMS.

NEC RTDBMS has several important features to ensure high throughput and accurate predictability

[?]. First, the primary copy of the database is memory-resident, and thus no page fault occurs during

transaction processing. Second, the in-memory log bu�er is nonvolatile. This reduces the transaction

response time since no log I/O is needed to satisfy the WAL protocol and the Commit Rule. It implements

physical logging using deferred update. Third, fuzzy checkpointing is used to minimize the overhead

incurred by the checkpointing activity. No real-time characteristics such as transaction deadline and

criticalness are utilized in the recovery components.

6 Summary and Conclusion

With increasing capacity and decreasing price of memory, MMDBs become an attractive alternative to

DRDBs for applications which require high throughput and fast response time. Since the primary copy of

the database in an MMDB system may reside in a volatile memory whose contents are lost upon a system

or media failure, recovery is one of the most crucial issues. In this paper, We provided an overview of three

recovery components, logging, checkpointing, and reloading, and described how they are implemented in

three existing MMDBs: Dali, Fast Path, and NEC.

We discussed three major logging rules: WAL, LAW, and Commit. We also concluded that a nonvolatile

log bu�er should be used to satisfy WAL without requiring I/O prior to transaction commit and the LAW

policy should be followed to reduce the amount of log needed to redo transactions after a system failure.

We described three groups of checkpointing: fuzzy, non-fuzzy, and log-driven, and showed how LAW

13

can be combined with fuzzy checkpointing to achieve faster recovery. We also identi�ed three major issues

associated with reloading in MMDBs: occurrence frequency, when the system should resume its execution

after failure, and reload prioritization. An e�cient reload scheme should minimize system down time.

However, which part of the database must be memory-resident before the system can be brought online

must be selected carefully in order to reduce the number of page faults that might be incurred during

transaction processing. This means that data should be prioritized for reload purposes.

As many real-time applications need MMDBs to achieve high speed and predictability in response time,

future research should investigate how real-time requirements such as transaction deadlines and temporal

data intervals can be incorporated into MMDB recovery.

References

[1] P.A. Bernstein, V. Hadzilacos, and N.Goodman. Concurrency Control and Recovery in Database

Systems. Addison-Wesley Publishing Company, 1987.

[2] Philip Bohannon, Rajeev Rastogi, Avi Silberschatz, and S. Sudarshan. Multi-level recovery in the dali

storage manager. Technical report, AT&T Bell Labs Internal Report, 1995.

[3] D.L. Burkes and R.K. Treiber. Design approaches for real-time transaction processing remote site

recovery. In 35th IEEE Compcon 90, pages 568{572, 1990.

[4] Margaret H. Dunham and Abdelsalam Helal. Mobile computing and databases: Anything new? ACM

SIGMOD Record, 24(4):5{9, December 1995.

[5] Margaret H. Eich. Main memory database recovery. In Proceedings of ACM-IEEE Fall Joint Computer

Conference, pages 1226{1232, November 1986.

[6] Margaret H. Eich. A classi�cation and comparison of main memory database recovery techniques. In

Proceedings of the IEEE International Conference on Data Engineering, pages 332{339, 1987.

[7] Margaret H. Eich. Main memory databases: Current and future research issues. IEEE Transactions

on Knowledge and Database Engineering, 4(6):507{508, December 1992.

[8] Hector Garcia-Molina and Christos A. Polyzois. Issues in disaster recovery. In 35th IEEE Compcon

90, pages 573{577, 1990.

14

[9] Hector Garcia-Molina and Kenneth Salem. Main memory database systems: An overview. IEEE

Transactions on Knowledge and Database Engineering, 4(6):509{516, December 1992.

[10] J. N. Gray. Notes on data base operating systems. In Operating Systems: an Advanced Course,

volume 60, pages 393{481. Springer-Verlag, NewYork, 1978.

[11] Jim Gray. Notes on data base operating systems. In R. Bayer, R.N. Graham, and G. Seegmueller,

editors, Lecture Notes on Computer Science Volume 60. Springer-Verlag, 1978.

[12] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann

Publishers, 1992.

[13] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann

Publishers, San Mateo, California, 1993.

[14] Le Gruenwald and Margaret H. Eich. Mmdb reload algorithms. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, pages 397{405, 1991.

[15] Theo Haeder and Andreas Reuter. Principles of transaction-oriented database recovery. ACM Com-

puting Surveys, 15(4):287{317, December 1983.

[16] Robert B. Hagmann. A crash recovery scheme for a memory resident database system. IEEE Trans-

actions on Computers, C-35(9):839{843, September 1986.

[17] H. V. Jagadish, D. Lieuwen, R. Rastogi, A. Silberschatz, and S. Sudarshan. Dali: A high performance

main memory storage manager. In Proceedings of the 20th Conference on Very Large Databases,

Morgan Kaufman pubs. (Los Altos CA), Santiago, Chile, August 1994.

[18] H. V. Jagadish, A. Silberschatz, and S. Sudarshan. Recovering from main-memory lapses. In Pro-

ceedings of the 19th Conference on Very Large Databases, Morgan Kaufman pubs. (Los Altos CA),

Dublin, August 1993.

[19] T. J. Lehman and M. J. Carey. A recovery algorithm for a high performance memory-resident database

system. In 19 ACM SIGMOD Conf. on the Management of Data, May 1987.

[20] T. J. Lehman, E. J. Shekita, and L. F. Cabrera. An evaluation of starburst's memory resident storage

compoenent. IEEE Transactions on Knowledge and Database Engineering, 4(6):555{566, 1992.

15

[21] Tobin J. Lehman and Michael J. Carey. A recovery algorithm for a high-performance memory-resident

database system. In Proceedings of the 1987 ACM-SIGMOD International Conference on Management

of Data, pages 104{117, 1987.

[22] E. Levy and A. Silberschatz. Incremental recovery in main memory database systems. IEEE Trans-

actions on Knowledge and Data Engineering, 4(6), December 1992.

[23] K. Li and J. F. Naughton. Multiprocessor main memory transaction processing. In Proceedings of

International Symposium on Databases in Parallel and Distributed Systems, December 1988.

[24] X. Li and M. H. Eich. A new logging protocol: LAW. Technical Report CSE9221, Southern Methodist

University, Dept. of Computer Science and Engineering, Dallas (TX), October 1992.

[25] X. Li, M.H. Eich, V.J. Joseph, Z. Gulzar, C.H. Corti, and M. Nascimento. Checkpointing and re-

covery in partitioned main memory databases. In Proc. IASTED/ISMM International Conference on

Intelligent Information Management Systems, Washington, DC., June 1995.

[26] J. L. Lin and M. H. Dunham. Dynamic segmented fuzzy checkpointing for main memory databases.

Submitted for publication. , October 1995.

[27] J.L. Lin and M.H. Eich. Segmented fuzzy checkpointing for main memory databases. Technical Report

CSE9442, Southern Methodist University, Dept. of Computer Science and Engineering, Dallas (TX),

December 1994.

[28] Jim Lyon. Tandem's remote data facility. In 35th IEEE Compcon 90, pages 562{567, 1990.

[29] C. Pu. On-the-y, incremental, consistent reading of entire databases. Algorithmica, Springer Verlag

Inc., 1(3):271{287, 1986.

[30] Rajeev Rastogi. personal communication, July 1995.

[31] K. Rothermel and C. Mohan. Aries/nt: A recovery method based on write-ahead logging for nested

transactions. In Proceedings of the Fifteenth International Conference on Very Large Data Bases,

pages 337{346, 1989.

[32] K. Salem and H. Garcia-Molina. Crash recovery for memory-resident databases. Technical Report

CS-TR-119-87, Princeton University, Department of Computer Science, 1987.

16

[33] K. Salem and H. GarciaMolina. Checkpointing memory-resident databases. In Proc. IEEE CS Intl.

Conf. No. 5 on Data Engineering, Los Angeles, February 1989.

[34] Kenneth Salem and Hector Garcia-Molina. Checkpointing memory-resident database. In Proceedings

of the Fifth IEEE International Conference on Data Engineering, pages 452{462, February 1989.

[35] Joost S. M. Verhofstad. Recovery techniques for database systems. ACM Computing Surveys,

10(2):167{195, June 1978.

17

