
Issues in Using Specifications to Improve Content-Based Search of Multimedia Data

Leonard Brown
The University of Oklahoma
School of Computer Science

Norman, OK, 73019
lbrown@cs.ou.edu

Le Gruenwald
The University of Oklahoma
School of Computer Science

Norman, OK, 73019
gruenwal@cs.ou.edu

Greg Speegle
Baylor University

Dept. of Computer Science
Waco, TX, 76798

speegle@cs.baylor.edu

Abstract
 Many current multimedia database management
systems perform content-based retrieval of images by
extracting the values of various features from every object
stored in their system. This can be time-consuming,
especially if extracting the features requires a human to
analyze each object. This process can be minimized in
multimedia database systems that store images as a
sequence of editing operations, called specifications,
instead of the usual binary format. This paper discusses
the advantages and applicability of such systems and the
issues that must be resolved in order to develop them.

1. Introduction

 DataBase Management Systems (DBMSs) have
become the cornerstone of the business community. The
ability to efficiently store and retrieve huge quantities of
information on products, consumers, suppliers, employees
and other facets of an enterprise have revolutionized
commerce in developed nations. The next logical step in
the management of information is to extend databases
from text based information to multimedia data, such as
images. Extending these databases, however, is a difficult
task. The reason is that one of the main functions of any
DBMS is to store and retrieve data [43, 33, 47], and the
conventional ones are not appropriate for storing and
retrieving images [4].
 One of the main reasons that conventional DBMSs are
inappropriate for performing these tasks is that images
need to be interpreted. It is not desirable to search for
images based on some textual description that may be
associated with it such as a filename or a set of keywords
because such descriptions are subjective [23]. So, ideally,
an image should be retrieved based on its content, which
should be extracted automatically. This is not possible in
conventional DBMSs. For example, users should be able
to query the database requesting all images that contain a
picture of a dark blue sports car. A conventional DBMS

would require that the keywords “dark”, “blue”, “sports”,
and “car” be attached to any image returned as a result of
this query. Not only does this require that humans must
inspect each image and attach these keywords, it does not
permit humans to use other phrases such as “navy
automobile” or make judgment errors such as “black car”.
 One of the requirements, then, of a MultiMedia
DataBase Management System (MMDBMS) is that it
must provide users with the ability to retrieve images and
other multimedia objects based on their content.
Consequently, many researchers have developed
techniques that retrieve images from the database based
on queries using features extracted from them. Systems
using these techniques are called Content-Based Image
Retrieval (CBIR) systems [11]. Some examples of these
include QBIC [20, 15, 14], ARTISAN [11], IRIS [21],
FIBSSR [30], and ImageRoadMap [32].
 CBIR systems typically use the same approach to
retrieve images based on their content. As each image is
entered into the database, the values of the features that
can be used for querying are automatically identified.
Each image, then, can be represented by the set of values
of the features extracted from it, called a feature vector.
The result of this is that each image functions as a point in
a multidimensional feature space [13]. For example,
consider a CBIR system intended to allow searching
based on the color of images. In such a system, a
histogram can be created for each image where each bin
stores the number of pixels in that image that contains a
particular color. When normalized, each bin represents
the percentage of pixels in the image that contains a
particular color. So, as long as each image is represented
by such a histogram, the users can query the database
requesting the images that have a specified percentage of
pixels containing a certain color. An example of such a
query is “Retrieve all images that are 25% blue and 25%
green.” Similar histogram methods are used by numerous
CBIR systems including the aforementioned QBIC [20,
15, 14], ImageRover [39], RECI [10], and IRIS [21].
 Color is not the only feature used frequently in CBIR

systems. Many of them allow users to query based on
texture [10, 21, 25] and the shape of the primary object
[10, 11, 32]. Again, however, these features are extracted
from each image as it is entered into the database and
stored in feature vectors. A common type of query
required by users in an MMDBMS is to present a query
object to the database and request the k data items that are
the most similar to it. When this occurs, a feature vector
is generated from the query object as well. This vector is
compared to the feature vectors representing the images in
the database in order to determine which of them are the
most similar to the query. This is generally referred to as
the k-nearest neighbor problem [13, 5].
 A disadvantage of automatic feature extraction,
however, is that it is generally limited to the global or
primitive features of color, texture, and shape [11].
Extracting more complex features requires some degree
of human interaction such as labeling automatically
identified heterogeneous regions in an image [2]. Using
humans is not only slow, but it also introduces
inconsistencies in the process, since even the same person
may view the same image differently at separate times.
 Once the images and feature vectors are in the
database, locating the k-nearest neighbors of a goal or
query object has a worst-case requirement of computing
the distance between it and every other object in the
database [12]. Although multidimensional indexes such
as the R-tree [19] and its variants [13, 6] have been
designed to reduce the number of distance computations,
two problems still remain [40, 14]. The first is that these
indexes become ineffective when considering the large
number of dimensions typically required by the feature
vectors of multimedia objects [5, 14]. The second
problem is that the time needed to compare two vectors is
quadratic with respect to the number of dimensions [40].
 The goal of this paper is to present issues regarding a
more efficient method of performing content-based
retrieval for images. Our method is more efficient
because it avoids extracting features from all images and
avoids executing computationally expensive comparisons
of the query object to every stored image for each query.
Our approach is to perform content-based retrieval using
images stored as specifications [44, 18, 46], which will be
discussed in the next section. After reviewing the concept
of specifications, we will review various related
approaches proposed by other researchers and why our
research differs in section 3. In section 4, we will list the
issues that need to be resolved to use specifications to
perform content-based retrieval. Finally, in section 5, we
will summarize the main points of this paper.

2. Specifications

 One of the characteristics of images that makes their
storage difficult is that they tend to require more space

than conventional data. For example, very high-
resolution images may require several megabytes [26].
Even with the falling cost of memory, attempting to store
thousands of images can quickly exhaust storage space.
 A method for reducing the space used by storing such
images becomes evident when some example multimedia
applications are considered. For example, consider a
video game that contains several similar images. Each
picture may display a character wearing a different
uniform, where each uniform varies only by color and
team logo. Another application is one that allows a
cartoonist to create and store several comic strips. Each
successive panel of a strip will be similar to the previous
one, so the cartoonist will create new panels by editing
existing ones. For example, the cartoonist may crop a
character’s head and enlarge it to illustrate a close-up.
 This characteristic of storing several similar images
will be true of any application where a user creates new
images from other ones previously stored in the system.
As each new image is created, the user will want to save
both the old and new versions of it. So, these images will
contain a lot of redundant data. As in traditional
databases, such redundant data should be eliminated.
 One method for eliminating the redundancy in these
types of applications is by changing how the images are
stored [45, 18, 46]. The idea is that instead of storing two
similar images in their binary formats, only the original,
called the base image, is stored in that manner. The new,
or derived, image is stored as a reference to the first
(base) image along with a set of instructions for
transforming it into the new one. This representation of
the derived image is called a specification of that image.
Displaying a derived image stored in this manner can be
accomplished by accessing the referenced base image and
performing the associated instructions for transforming it.
 As an example of this concept, consider Figure 1 in
which two images need to be stored in the example video
game application. The base image is of a player wearing
a blue uniform with a logo of a tiger. The derived image
contains a player on a different team created by changing
the color of the uniform from blue to red and replacing
the tiger with an eagle. The base image would be stored
conventionally. The derived image would be stored as a
specification, meaning that it will contain a reference to
the base image along with the operations used to
transform it. For this example, we will call the
transformation operations “change color to red”, “remove
tiger logo”, and “add eagle logo” although the operations
would be lower level in practice. So, these operations are
the instructions for transforming the base image into the
derived image. Therefore, whenever a user wants to see
the second player displayed, the base image would be
accessed, and then the operations would be performed
sequentially. This process is called instantiation [18].
 In addition to using less space, using specifications to

store images offers other advantages. Unlike many
compression methods, storing and instantiating a
specification is a lossless process. The derived image,
then, can be retrieved and stored endlessly without any
degradation. Another advantage of specifications is that
they are not dependent upon any particular compression
or storage format such as JPEG [50], nor are they
dependent upon any specific computing platform. Thus,
specifications are portable. This portability allows
derived images to be stored as specifications instead of
various compression formats. So, specifications can save
space even when using data that is already compressed.

Blue_Player

Red_Player

Blue_Player

*Blue_Player
Change Color Red
Remove Tiger Logo
Add Eagle Logo

Red_Player

Traditional CBIR System

Specification-Based CBIR System

Figure 1 - Storage of similar images in traditional
and specification-based CBIR systems

 There are numerous application areas that store many
similar images, and will therefore benefit from using
specifications. In addition to the applications presented
earlier, this approach will be useful in multimedia
authoring environments where several versions of various
images created by a user can be archived [17]. One
example of such an environment is web design.
Specifications will also be useful in the area of medicine
where plastic surgeons can illustrate the changes they
intend to make to their patients by editing their photo.
Law enforcement is another area that can benefit by
allowing users to save and retrieve several possible
disguises of a suspect such as changing hair color,
removing or adding glasses, or removing or adding facial
hair. When other multimedia objects are also considered,
such as audio or video, storing their objects as
specifications can benefit such areas as broadcast media
or the recording industry as indicated in [22].

3. Related work

 There are two main areas of research related to our
work. The first contains the numerous CBIR systems
currently being developed. The second contains the
research that is related to the concept of specifications and
the standardization of the operations used to edit
multimedia objects. We will review their research in this

section and discuss how our work is different.

3.1. Content-based image retrieval systems

 As stated before, there are numerous CBIR systems
developed by researchers. Most of these systems do not
use specifications or editing operations to improve the
efficiency of their searching. There are, however, some
aspects of the systems that will greatly affect our research.
 First, there are several features commonly used in
various CBIR systems for querying that are extracted
from images automatically. These include color used in
systems such as QBIC [20, 15, 14], ImageRover [39],
RECI [10], and IRIS [21], texture used in [10, 21, 25],
and shape used in [10, 11, 32]. We will be able to use this
research to extract these features from our base images.
However, alternative approaches must be employed to
extract them from the specifications of derived images.
 Another issue that occurs in CBIR systems is the
representation used to store the features once they are
extracted from the images. For example, many systems
use feature vectors to represent the images contained in
the system once the desired extractions are complete [34,
30, 39, 20]. However, using this representation in a
specification-based CBIR system may result in storing
redundant data. For example, consider a derived image
that was created by rotating its base, and let both images
be represented by feature vectors that are their respective
normalized color histograms. Since the rotation operation
does not add or remove pixels from an image, both
vectors would be exactly the same. Thus, it would be
redundant to store the percentages of pixels that contain
each color in both histograms. Therefore, feature vectors
should not be used for the representation of specifications.
 In addition, CBIR systems must define some criteria
for satisfying a query. This means that there must be
some method of defining how similar one image is to
another such as the Euclidean Distance [38, 30, 39] or
other functions based on feature vectors [2]. Such vectors
only contain information about the features that are
extracted from the images, so they do not maintain any
information about the relationship between a derived
image and its base. Thus, that relationship does not affect
the distance between the two images.
 Another issue that must be resolved is developing a
technique to access the data. Another common type of
query described in [13] is the range query. As in
conventional databases, an index is more appropriate than
a hashing method for satisfying queries of this type since
it preserves order. The indexing techniques commonly
used, like the B-tree, use only one attribute called the key
to search entire data records. In contrast, the DBMS
should be able to search all of the attributes in a feature
vector equally. For example, each dimension of a color
histogram may be used equally in queries by users. Thus,

traditional indexes for relational DBMSs are insufficient
because they use one key to represent an entire vector.
 The result is that images require an index that can be
searched using any of the dimensions of the feature
vectors representing them. Consequently, researchers
have proposed many various multidimensional indexes.
One of the more popular types of these indexes treats
each feature vector as a point in a multidimensional space
[13] and creates trees where each node corresponds to a
section in that space. This category of indexes contains
variations of the R-tree [19, 13, 6], which includes those
data structures that group their data using Minimum
Bounding Regions (MBRs) such as the X-tree [3] and
others [24, 29] as well as those that do not use MBRs [5,
16, 28]. Those indexes that use MBRs partition only the
portion of multidimensional space occupied by feature
vectors stored in the database. Thus, they are able to
reduce the time it takes to search the feature vectors
because they eliminate the unused multidimensional
space. They also, however, are burdened with having to
compute an MBR for each node of their tree, unlike those
indexes that do not use them [6].

3.2. Specifications / image editing operations

 There are several proposed multimedia data models
that use concepts similar to specifications such as scripts
layers, or deltas [17, 37]. However, there is no capability
to search or for data based on its content using the scripts
or layers themselves.
 There are many researchers that are compiling lists of
editing operations for multimedia objects. For example,
in [35], the researchers are producing an image algebra
that will serve the same function as the relational algebra
for conventional data. In addition, [27] lists and
categorizes several image processing operations. In [49]
and [31], researchers are developing languages for video
objects. In [49], the Resolution Independent Video
Language (RIVL) is introduced. This language is
intended to allow users to create programs using images
or video data in the same manner that programs are
created today using numeric data. In [31], the researchers
present a scripting language for producing video
presentations. The main advantage both [49] and [31]
cite is that using the high-level operations provides
portability for multimedia data. However, neither group
appears to be studying how content-based retrieval could
be enhanced using their languages.
 An algebra for manipulating video data is presented in
[51]. This work is more closely related to our research
than any of the others because it studies performing
content-based access to video data using its algebra. In
their work, searching is performed by using descriptions
that are manually assigned to each video object using a
description operator, while in our work, content-based

retrieval can be performed without requiring the features
of each multimedia object to be available. This is because
we intend to determine whether or not a derived object
satisfies a query directly from its specification.

4. Specification issues

 To discuss the issues surrounding using specifications
to perform content-based retrieval, it will be necessary to
describe the advantages to our approach in more detail.
Consider the base image of a player in a blue uniform
described earlier. Also, consider a derived image of a
different player wearing a red uniform that was created by
changing all of the blue pixels to red. We are able to
determine the percentage of each of the colors contained
in the derived image directly from this specification. Its
color histogram would be exactly the same as the
histogram extracted from the base image, except that the
percentage of red pixels is increased by the percentage of
blue pixels, and the percentage of blue pixels is reduced
to 0. Thus, for any query based on color that we can
answer for the base image, we can answer it for the
derived image. Note that we are able to answer such
queries without having to extract the features from the
derived image, nor even instantiate it. In addition, it was
not necessary to compute the entire feature vector for the
derived image. We only needed the percentage of pixels
of the colors present in the user’s query.
 Now consider two other example images in the video
game. The base image contains a player wearing a
uniform with a tiger, and the derived image is created by
enlarging the base by 50%. Now, consider the query,
“Retrieve all images containing a picture of a tiger”.
Automatically determining whether or not an image
contains a tiger is beyond the capabilities of current
systems. So, this feature must be extracted manually or
semi-automatically, meaning that a human must indicate
to the system whether or not the image contains a tiger.
 Having a human analyze every image contained in an
MMDBMS takes a lot of time. By using specifications,
we can reduce the number of images that have to be
analyzed manually. We can determine whether or not the
derived image in this example contains a tiger directly
from its specification. So, we do not have to manually
analyze the derived image as we would in a conventional
MMDBMS. In addition, we again do not have to
instantiate the derived image.
 These examples illustrate that in some cases it is
possible to perform content-based retrieval without
extracting features from every object in an MMDBMS by
using specifications. There are, however, several issues
that must be resolved to implement this approach. The
remainder of this section will discuss these issues.

4.1. Determine effects of transformations

 In the examples presented in this section, we are able
to answer the queries because we know how the
operations in the specifications affect the features of the
base image. Specifically, we know how the color
histogram of an image is affected if all of the pixels of
one color are changed into another. We also know that
enlarging an image does not change the objects contained
in it. So, one of the most important issues that need to be
resolved to perform content-based retrieval using
specifications is to determine the effects of the
transformation operations contained in specifications on
the features used for querying.
 This requirement can be defined more formally. Call a
base object X and an object derived from it Y. Let Y be
stored as a specification. This means that Y is stored as a
reference to X along with some list of operations used to
transform it. Call this transformation T, and define T(X)
as the result of performing the transformation on the
image X. Therefore, Y = T(X). Now, let F represent a
specific feature, and let F(n) represent its value extracted
from some object n. We denote a feature vector
representing an image, n, as ()nF

!
.

 To perform content-based retrieval in an MMDBMS,
we must know ()nF

!
 for all objects in the database.

Therefore, we must know ()XF
! and ()YF

!
 in our example.

In a conventional MMDBMS, ()XF
! and ()YF

!
 are

determined through some feature extraction process
performed on both X and Y. In an MMDBMS that uses
specifications, the extraction process only needs to be
performed on X. Since Y = T(X), ()YF

!
 = ()()XTF

!
. So,

one method of finding ()YF
!

 is to determine the
composition of T and F

!
 [9].

 There are several components of ()()XTF
!

 that we must
identify to perform content-based retrieval. The first is
that the possible values of X must be identified. This
corresponds to identifying the set of images that will be
stored in the application. This issue is the same for any
DBMS. Database designers should know the properties
of their data in order to select the best design.
 Specifying the set of possible objects, {X}, will also
lead to the next component, identifying all of the possible
querying features, {F}. If the MMDBMS stores only
faces, then the features may be eye color and hair color.
If the MMDBMS stores only trademarks, then an
important feature is the shape of the trademark. As stated
earlier, since the users query the database using these
defined features, completing this component determines
the possible queries that can be entered by the user.
 Intuitively, the next component is to specify all
possible transformation operations, {T}. There are
several issues to consider when performing this step. One

is that the transformation operations are the set of editing
operations a user can perform. So, if the transformations
are not robust, the user will not be able to make elaborate
changes to base images. Ideally, the set of operations {T}
should be complete, meaning that it should be able to
express all possible image transformations [8]. If too
many operations are defined, however, it will be difficult
to determine all possible compositions between the
members of {T} and {F}.
 Another issue that must be addressed is that the set of
possible editing operations should be portable. Different
editors should be able to display an image stored as a
specification, so they must understand the operations
contained within it. Therefore, the set of possible editing
operations should be standardized [49, 31, 6].
 The next component of ()()XTF

!
 to consider is T(X).

T(X) should be expressed as succinctly as possible to
reduce the computations needed to calculate ()()XTF

!
.

This means that the operations given in T(X) should be
optimized. For example, consider a transformation that
first changes a color of a player’s uniform from blue to
red, then deletes the player from the image. This can be
optimized by eliminating the first operation. This will not
only speed up the computation of ()()XTF

!
, but also speed

up the instantiation of T(X) when a user wants to access
object Y. This optimization, then, should also be based
on reducing the time it takes to instantiate a specification.
 The final component of computing ()()XTF

!
 is to

compute the composition of T and F
!

. This requires the
development of rules regarding their composition. For
example, one rule is that the rotation operation does not
affect the color histogram of an image. So, if T is the
rotation operation, and F

!
 is the histogram representing

the percentage of different colors in an image, then we
know that ()()XTF

!
 = ()XF

! . This leads to the additional
issues of identifying how to store the rules, determining
which to apply, and accessing them efficiently.
 An example of each of these components is presented
in [1]. It uses the set of operations specified in [46]. The
set of features, {F}, are color and shape. The value of
each feature is a score from 0 to 100 that represents the
confidence level that the image contains a specific
instance of a feature such as the color red. The
application of editing operations on images, T(X), is
performed using defined regions. These are polygonal
regions that are actually changed during the operations
transforming X to T(X). These regions are then used to
determine the final component, F(T(X)). Specifically, [1]
uses the approach that each pixel in a defined region
contributes equally to a feature. This means that after
applying an operation on an image, the scores of its
features are adjusted based on the number of pixels in the
defined region that are altered.

4.2. Computing similarity

 A common type of query that users frequently enter
into MMDBMSs is called a k-nearest-neighbor query
[13]. This refers to those queries in which the users
request the database to return the k items that are the most
similar to some user-defined image. The similarity of two
objects is usually based on some function, D, measuring
the distance between the feature vectors representing the
images. Thus, D is a function mapping two feature
vectors to a real number, D(()XF

! , ()YF
!

) → R. Formally,
the k-nearest neighbor problem is the set of images Y
such that no more than k-1 images in the database have a
smaller value of D for the goal image X.
 The set of k nearest images, K, can be calculated by
computing the distance function on each feature vector in
the database. The distance function used to compute the
similarity between two multimedia objects often requires
a large number of computations. For example, the time
needed by many approaches to compute the similarity
between two high-dimensional color histograms is often
quadratic with respect to the number of dimensions [41].
So, one of the goals of an MMDBMS is to process
nearest-neighbor queries while minimizing the number of
times such expensive functions are evaluated.
 In [41], an algorithm is proposed to accomplish that
goal. Specifically, this algorithm processes nearest-
neighbor queries while minimizing the number of times
the actual, but expensive, distance function (do) is
evaluated. Since nearest neighbor searching techniques
often use an inexpensive function to approximate the
distance between two objects [36, 42], this algorithm
assumes the existence of such a function, df, such that
df(O1,O2) ≤ do(O1,O2) for all multimedia objects O1 and
O2. The algorithm begins by generating a candidate set of
multimedia objects that may be the k-nearest neighbors of
some query object, q. The set is determined initially by
computing the less expensive function, df(q,O) for all of
the objects, O, in the MMDBMS. The algorithm then
evaluates do(q,O) for only those objects, O, where df(q,O)
is less than some value. This value is the actual distance
of the kth most distant object from the query object in the
candidate set, which is adjusted as new candidates are
added. The algorithm is argued to be optimal since
do(q,O) is evaluated for only those objects in the
candidate set such that df(q,O) is less than the actual
distance of the kth nearest object to q. Thus, no more
evaluations of do will be performed than necessary [41].
 In an MMDBMS that uses specifications, we will not
compute the distance function, df, for derived objects
since we are not storing their feature vectors. Instead, a
more natural technique to measure the distance between
the query and an object stored as a specification is the
transformation approach [48]. In this approach, the
distance between two objects is determined by the

operations needed to transform one into the other. Each
transformation operation, ti, has an associated cost, w(ti),
and the distance between the objects is the sum of the cost
of the transformation operations, Σ(w(ti)). Thus, the
distance, d, between a derived object, T(X), and its base,
X, is Σ(w(ti)) where T=<t1, t2, ..., tm>.
 Once the actual distance between X and q is computed,
we can use Σ(w(ti)) to obtain an inexpensive lower bound
on do(q,T(X)). Using the triangle inequality in a manner
similar to [42], do(q,T(X)) ≥ |do(q,X) - Σ(w(ti))|. So, we
can inexpensively compute a lower bound for the distance
between a specification and the query object. This lower
bound can then be used to avoid having to perform the
more expensive distance computation, do(q,T(X)).
 We must use caution in computing the distance
between a derived object and its base, however. To
illustrate, consider assigning a weight of w > 0 to the
operation “Rotate image 180º”. Applying the operation
twice would produce a non-zero weight of 2w
representing the distance of the resulting derived image to
its base. The derived image, however, would be identical
to its base, so it should have a distance of 0. The sum of
the weights only produces an upper bound on the distance
from a base to its derived objects. To be more accurate,
the context of each operation must be considered.

4.3. Access method
 The multidimensional indexes referenced in section 3
have been proposed for storing multimedia data
represented by feature vectors. None of these indexes are
appropriate in an MMDBMS that uses specifications.
Again, this is because it is redundant to create and store
feature vectors for images stored as specifications. Thus,
alternative indexing strategies must be employed.

5. Summary and future work

 There are many applications that allow users to derive
new images by editing other existing ones. Examples of
such applications include video games and comic strip
databases. In applications such as these, space can be
saved by storing the derived images as specifications.
This storage format consists of the sequence of operations
used to create the derived image along with a reference to
the other existing image upon which it is based.
 In addition to saving space, an advantage of an
MMDBMS using this storage format is that it can perform
content-based searching of images without extracting
features from each object in the database. This is possible
because the values of the features used in users’ queries
can be determined directly from the specifications. The
result is that the process used for extracting features can
be avoided for many of the images in the database. This
will save time, especially when the feature extraction

process requires a human to analyze the image. In
addition, the MMDBMS does not have to maintain
feature vectors for each image stored in the database.
 In order to implement content-based retrieval using
specifications, many issues must be considered. First,
once the set of images in the database is defined, their
important features should be identified as well as the list
of editing operations that can be performed on them by
the users. Once these sets are defined, the result of
applying each operation on the various image features
must be computed. This information is necessary to
determine whether a derived image satisfies a query
directly from its specification. In addition, this
information represents the guidelines or rules used to
perform content-based retrieval. These rules need to be
stored in the MMDBMS, and techniques regarding their
access must be determined.
 Another issue that must be considered to perform
content-based retrieval using specifications is the
development of techniques regarding the measurement of
similarity between two images when none, one, or both
are stored as specifications. As presented in this paper,
this may involve assigning a weight to each of the editing
operations that can be applied on the images.
 This paper also presented the issue of developing a
technique for accessing derived images stored as
specifications. Many conventional MMDBMSs compute
and store feature vectors for each object in the database
and use a multidimensional indexing technique for their
access. This is insufficient for the approach presented in
this paper since feature vectors may not be generated for
derived images stored as specifications because they may
contain redundant information. Therefore, alternative
access methods must be developed.
 Although our research has focused primarily on using
specifications to store images, this method can be
employed with any type of media data. Specifications
can be used to enhance content-based retrieval in
applications that store similar audio files or videos as
well. In order to implement such applications, many of
the issues discussed in this paper must be addressed for
the audio and video data types as well.

6. References

[1] Aars, Michael, “Automatic Feature Extraction Using
Specifications of Images”, M.S. Thesis, Baylor University, 1999.

[2] Analyti, Anastasia and Starvos Christodoulakis, “Content-
Based Querying”, Multimedia Databases in Perspective, Apers,
Blanken, and Houtsma (Eds.), Springer, 1997.

[3] Berchtold, Stefan, Daniel A. Keim, and Hans-Peter Kriegel,
“The X-Tree: An Index Structure for High-Dimensional Data”,
Proc. of the 22nd Intl. Conf. on VLDB, 1996, pp. 28 - 39.

[4] Blanken, Hans, “Introduction”, Multimedia Databases in

Perspective, Apers, Blanken, and Houtsma (Eds.), Springer,
1997.

[5] Bozkaya, Tolga and Meral Ozsoyoglu, “Distance-Based
Indexing for High-Dimensional Metric Spaces”, Proc. of the
1997 ACM SIGMOD Intl. Conf. on Management of Data, May
1997, pp. 357-368.

[6] Brown, Leonard and Le Gruenwald, “Determining a
Minimal and Independent Set of Image Processing Operations
for a Multimedia Database System”, Proc. of the 1998 Energy
Technology Conference and Exhibition, February 1998.

[7] Brown, Leonard and Le Gruenwald, “Tree-Based Indexes for
Image Data”, Journal of Visual Communication and Image
Representation, Volume 9, Number 4, 1998, pp. 300-313.

[8] Brown, Leonard, Le Gruenwald, and Greg Speegle, “Testing
a Set of Image Processing Operations for Completeness”, Proc.
of the 2nd Conf. on Multimedia Information Systems, April
1997, pp. 127-134.

[9] Date, C. J., An Introduction to Database Systems, 6th
Edition, Addison-Wesley, Reading, MA, 1995.

[10] Djeraba, Charbane et al., “Retrieval and Extraction by
Content of Images in an Object Oriented Database”, Proc. of
the 2nd Conference on Multimedia Information Systems, April
1997, pp. 50-57.

[11] Eakins, John P., Jago Boardman, and Margaret E. Graham,
“Similarity Retrieval of Trademark Images”, IEEE Multimedia,
Volume 5, Number 2, April-June 1998, pp. 53-63.

[12] Fagin, Ronald, “Fuzzy queries in Multimedia Database
Systems”, Proc. of the 17th ACM SIGACT-SIGMOD-SIGART
Symp. on Principles of Database Systems, June 1998, pp. 1-10.

[13] Faloutsus, Christos, Searching Multimedia Databases by
Content, Kluwer Academic Publishers, Boston, 1996.

[14] Faloutsus, Christos, et al., “Efficient and Effective Querying
by Image Content”, Journal of Intelligent Information Systems,
Volume 3, 1994, pp. 231-262.

[15] Flickner, Myron et al., “Query by Image and Video
Content: The QBIC System”, IEEE Computer, Volume 28,
Number 9, September 1995, pp. 23-31.

[16] Freeston, Michael, “A General Solution of the n-
dimensional B-tree Problem”, Proc. of the 1995 ACM SIGMOD
Intl. Conf. on Management of Data, 1995, pp. 80-91.

[17] Gibbs, Simon, Christian Breiteneder, and Dennis
Tsichritzis, “Data Modeling of Time-Based Media”, Proc. of the
1994 ACM SIGMOD Intl. Conf. on Management of Data, May
1994, pp. 91-102.

[18] Gruenwald, Le and Greg Speegle, “Research Issues in
View-Based Multimedia Database Systems”, Proc. of the 2nd
World Conf. on Integrated Design and Process Technology,
December 1996, pp. 331-336.

[19] Guttman, Antonin, “R-trees: A Dynamic Index Structure for
Spatial Searching”, Proc. of the 1984 ACM SIGMOD Intl.
Conf. on Management of Data, 1984, pp. 47-57.

[20] Hafner, James et al., “Efficient Color Histogram Indexing

for Quadratic Form Distance Functions”, IEEE Trans. on
Pattern Analysis and Machine Intelligence, Volume 17, Number
7, July 1995, pp. 729-736.

[21] Hermes, Th. et al., “Content-Based Image Retrieval”, Proc.
of CASCON ‘95, November 1995.

[22] International Organization for Standardization, “MPEG-7:
Context and Objectives”, ISO/IEC JTC1/SC29/WG11, available
http://www.cselt.it/mpeg/standards/mpeg-7/mpeg-7.htm.

[23] Jagadish, H. V., “Content-Based Indexing and Retrieval”,
The Handbook of Multimedia Information Management,
Grosky, Jain, and Mehrotra (Eds.), Prentice Hall, 1997.

[24] Katayama, Norio and Shin'ichi Satoh, “The SR-Tree: An
Index Structure for High-Dimensional Nearest Neighbor
Queries”, Proc. of the 1997 ACM SIGMOD Intl. Conf. on
Management of Data, May 1997, pp. 369-380.

[25] Kelly, Patrick M., Michael Cannon, and Donald R. Hush,
“Query by Image Example: The CANDID Approach”, SPIE Vol.
2420 Storage and Retrieval for Image and Video Database III,
1995, pp. 238-248.

[26] Klas, Wolfgang and Karl Aberer, “Multimedia and its
Impact on Database System Architectures”, Multimedia
Databases in Perspective, Apers, Blanken, and Houtsma (Eds.),
Springer, 1997.

[27] Klette, Reinhard and Piero Zamperoni, Handbook of Image
Processing Operations, John Wiley and Sons, New York, 1996.

[28] Kumar, Akhil, “G-Tree: A New Data Structure for
Organizing Multidimensional Data”, IEEE Trans. on
Knowledge and Data Engineering, Volume 6, Number 2, April
1996, pp. 341 - 347.

[29] Lin, King-Ip, H. V. Jagadish, and Christos Faloutsos, “The
TV-Tree: An Index Structure for High-Dimensional Data”,
VLDB Journal, Volume 3, 1994, pp. 517-542.

[30] Mehrotra, Rajiv and James E. Gary, “Similar Shape
Retrieval in Shape Data Management”, IEEE Computer,
Volume 28, Number 9, September 1995, pp. 57-62.

[31] Meira, S. R. L and A. E. L. Moura, “A Scripting Language
for Multimedia Presentations”, Proc. of the Intl. Conf. on
Multimedia Computing and Systems, May 1994, pp. 484-489.

[32] Park, YoungChoon and Forouzan Golshani,
“ImageRoadMap: A New Content-Based Image Retrieval
System”, Proc. of the 8th Intl. Conf. on Database and Expert
Systems Applications, September 1997, Lecture Notes in
Computer Science, Volume 1308, Springer, pp. 225-239.

[33] Ramakrishnan, Raghu, Database Management Systems,
WCB McGraw-Hill, Boston Massachusetts, 1998.

[34] Ravela, S. and R. Manmatha, “Image Retrieval by
Appearance”, Proc. of the 20th Intl. Conf. on Research and
Development in Information Retrieval, July 1997.

[35] Ritter, Gerhard X. and Joseph N. Wilson, Handbook of
Computer Vision Algorithms in Image Algebra, CRC Press,
Boca Raton, 1996.

[36] Roussopoulos, Nick, Stephen Kelley, and Frédéric Vincent,

“Nearest-Neighbor Queries”, Proceedings of the 1995 ACM
SIGMOD Intl. Conf. on Management of Data, 1995, pp. 71-79.

[37] Schloss, Gerhard A. and Michael Wynblatt, “Building
Temporal Structures in a Layered Multimedia Data Model”,
Proc. of the ACM Multimedia ’94, October 1994, pp. 271-278.

[38] Schulz-Mirbach, H., H. Burkhardt, and S. Siggelkow,
“Using Invariant Features for Content-Based Data Retrieval”,
1st NOBLESSE Workshop on Nonlinear Methods in Model-
Based Image Interpretation, September 1996.

[39] Sclaroff, Stan, Leonid Taycher, and Marco La Cascia,
“ImageRover: A Content-Based Image Browser for the World
Wide Web”, Technical Report TR97-005, Boston University,
Boston, 1997.

[40] Seidl, Thomas and Hans-Peter Kriegel, “Optimal Multi-
Step k-Nearest Neighbor Search”, Proc. of the 23rd VLDB
Conf., August 1997, pp. 506-515.

[41] Seidl, Thomas and Hans-Peter Kriegel, “Efficient User-
Adaptable Similarity Search in Large Multimedia Databases”,
Proc. of the 1998 ACM SIGMOD Intl. Conf. on Management of
Data, 1998, pp. 154-165.

[42] Shasha, Dennis and Tsong-Li Wang, “New Techniques for
Best-Match Retrieval”, ACM Trans. on Information Systems,
Volume 8, Number 2, April 1990, pp. 140-158.

[43] Silberschatz, Abraham, Henry Korth, and S. Sudarshan,
Database Systems Concepts, McGraw-Hill, New York, 1997.

[44] Speegle, Greg, “Views as Metadata in Multimedia
Databases”, Proc. of the ACM Multimedia ‘94 Conference
Workshop on Multimedia Database Management Systems,
October 1994, pp. 19-26.

[45] Speegle, Greg, “Views of Media Objects in Multimedia
Databases”, Proceedings of the Intl. Workshop on Multimedia
Database Management Systems, August 1995, pp. 20-29.

[46] Speegle, Greg, Xiaojun Wang, and Le Gruenwald, “A
Meta-Structure for Supporting Multimedia Editing in Object-
Oriented Databases”, Proc. of the 16th British Natl. Conf. on
Databases, July 1998, Lecture Notes in Computer Science,
Volume 1405, Springer, pp. 89-102.

[47] Stonebraker, Michael and Joseph Hellerstein, Readings In
Database Systems 3, Morgan Kaufmann, San Francisco,
California, 1998.

[48] Subrahmanian, V. S., Principles of Multimedia Database
Systems, Morgan Kaufmann, San Francisco, California, 1998.

[49] Swartz, Jonathan and Brian C. Smith, “A Resolution
Independent Video Language”, Electronic Proceedings of ACM
Multimedia ‘95, November 1995, available http://
www.cs.cornell.edu/zeno/Projects/rivl/Rivl-mm95/mm-95.html.

[50] Wallace, Gregory K., “The JPEG Still Picture Compression
Standard”, Communications of the ACM, Volume 34, Number
4, April 1991, pp. 30-44.

[51] Weiss, Ron, Andrzej Duda, and David K. Gifford,
“Content-Based Access to Algebraic Video”, Proc. of the Intl.
Conf. on Multimedia Computing and Systems, May 1994, pp.
140-151.

	School of Computer Science
	School of Computer Science
	Waco, TX, 76798
	Abstract

