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Abstract 
 Many current multimedia database management 
systems perform content-based retrieval of images by 
extracting the values of various features from every object 
stored in their system.  This can be time-consuming, 
especially if extracting the features requires a human to 
analyze each object.  This process can be minimized in 
multimedia database systems that store images as a 
sequence of editing operations, called specifications, 
instead of the usual binary format.  This paper discusses 
the advantages and applicability of such systems and the 
issues that must be resolved in order to develop them.  
 
 
1. Introduction 
 
 DataBase Management Systems (DBMSs) have 
become the cornerstone of the business community.  The 
ability to efficiently store and retrieve huge quantities of 
information on products, consumers, suppliers, employees 
and other facets of an enterprise have revolutionized 
commerce in developed nations.  The next logical step in 
the management of information is to extend databases 
from text based information to multimedia data, such as 
images.  Extending these databases, however, is a difficult 
task.  The reason is that one of the main functions of any 
DBMS is to store and retrieve data [43, 33, 47], and the 
conventional ones are not appropriate for storing and 
retrieving images [4]. 
 One of the main reasons that conventional DBMSs are 
inappropriate for performing these tasks is that images 
need to be interpreted.  It is not desirable to search for 
images based on some textual description that may be 
associated with it such as a filename or a set of keywords 
because such descriptions are subjective [23].  So, ideally, 
an image should be retrieved based on its content, which 
should be extracted automatically.  This is not possible in 
conventional DBMSs.  For example, users should be able 
to query the database requesting all images that contain a 
picture of a dark blue sports car.  A conventional DBMS 

would require that the keywords “dark”, “blue”, “sports”, 
and “car” be attached to any image returned as a result of 
this query.  Not only does this require that humans must 
inspect each image and attach these keywords, it does not 
permit humans to use other phrases such as “navy 
automobile” or make judgment errors such as “black car”. 
 One of the requirements, then, of a MultiMedia 
DataBase Management System (MMDBMS) is that it 
must provide users with the ability to retrieve images and 
other multimedia objects based on their content.  
Consequently, many researchers have developed 
techniques that retrieve images from the database based 
on queries using features extracted from them.  Systems 
using these techniques are called Content-Based Image 
Retrieval (CBIR) systems [11].  Some examples of these 
include QBIC [20, 15, 14], ARTISAN [11], IRIS [21], 
FIBSSR [30], and ImageRoadMap [32]. 
 CBIR systems typically use the same approach to 
retrieve images based on their content.  As each image is 
entered into the database, the values of the features that 
can be used for querying are automatically identified.  
Each image, then, can be represented by the set of values 
of the features extracted from it, called a feature vector.  
The result of this is that each image functions as a point in 
a multidimensional feature space [13].  For example, 
consider a CBIR system intended to allow searching 
based on the color of images.  In such a system, a 
histogram can be created for each image where each bin 
stores the number of pixels in that image that contains a 
particular color.  When normalized, each bin represents 
the percentage of pixels in the image that contains a 
particular color.  So, as long as each image is represented 
by such a histogram, the users can query the database 
requesting the images that have a specified percentage of 
pixels containing a certain color.  An example of such a 
query is “Retrieve all images that are 25% blue and 25% 
green.”  Similar histogram methods are used by numerous 
CBIR systems including the aforementioned QBIC [20, 
15, 14], ImageRover [39], RECI [10], and IRIS [21]. 
 Color is not the only feature used frequently in CBIR 



systems.  Many of them allow users to query based on 
texture [10, 21, 25] and the shape of the primary object 
[10, 11, 32].  Again, however, these features are extracted 
from each image as it is entered into the database and 
stored in feature vectors.  A common type of query 
required by users in an MMDBMS is to present a query 
object to the database and request the k data items that are 
the most similar to it.  When this occurs, a feature vector 
is generated from the query object as well.  This vector is 
compared to the feature vectors representing the images in 
the database in order to determine which of them are the 
most similar to the query.  This is generally referred to as 
the k-nearest neighbor problem [13, 5].  
 A disadvantage of automatic feature extraction, 
however, is that it is generally limited to the global or 
primitive features of color, texture, and shape [11].  
Extracting more complex features requires some degree 
of human interaction such as labeling automatically 
identified heterogeneous regions in an image [2].  Using 
humans is not only slow, but it also introduces 
inconsistencies in the process, since even the same person 
may view the same image differently at separate times. 
 Once the images and feature vectors are in the 
database, locating the k-nearest neighbors of a goal or 
query object has a worst-case requirement of computing 
the distance between it and every other object in the 
database [12].  Although multidimensional indexes such 
as the R-tree [19] and its variants [13, 6] have been 
designed to reduce the number of distance computations, 
two problems still remain [40, 14].  The first is that these 
indexes become ineffective when considering the large 
number of dimensions typically required by the feature 
vectors of multimedia objects [5, 14].  The second 
problem is that the time needed to compare two vectors is 
quadratic with respect to the number of dimensions [40]. 
 The goal of this paper is to present issues regarding a 
more efficient method of performing content-based 
retrieval for images.  Our method is more efficient 
because it avoids extracting features from all images and 
avoids executing computationally expensive comparisons 
of the query object to every stored image for each query.  
Our approach is to perform content-based retrieval using 
images stored as specifications [44, 18, 46], which will be 
discussed in the next section.  After reviewing the concept 
of specifications, we will review various related 
approaches proposed by other researchers and why our 
research differs in section 3.  In section 4, we will list the 
issues that need to be resolved to use specifications to 
perform content-based retrieval.  Finally, in section 5, we 
will summarize the main points of this paper. 
 
2. Specifications 
 
 One of the characteristics of images that makes their 
storage difficult is that they tend to require more space 

than conventional data.  For example, very high-
resolution images may require several megabytes [26].  
Even with the falling cost of memory, attempting to store 
thousands of images can quickly exhaust storage space. 
 A method for reducing the space used by storing such 
images becomes evident when some example multimedia 
applications are considered.  For example, consider a 
video game that contains several similar images.  Each 
picture may display a character wearing a different 
uniform, where each uniform varies only by color and 
team logo.  Another application is one that allows a 
cartoonist to create and store several comic strips.  Each 
successive panel of a strip will be similar to the previous 
one, so the cartoonist will create new panels by editing 
existing ones.  For example, the cartoonist may crop a 
character’s head and enlarge it to illustrate a close-up. 
 This characteristic of storing several similar images 
will be true of any application where a user creates new 
images from other ones previously stored in the system.  
As each new image is created, the user will want to save 
both the old and new versions of it.  So, these images will 
contain a lot of redundant data.  As in traditional 
databases, such redundant data should be eliminated. 
 One method for eliminating the redundancy in these 
types of applications is by changing how the images are 
stored [45, 18, 46].  The idea is that instead of storing two 
similar images in their binary formats, only the original, 
called the base image, is stored in that manner.  The new, 
or derived, image is stored as a reference to the first 
(base) image along with a set of instructions for 
transforming it into the new one.  This representation of 
the derived image is called a specification of that image.  
Displaying a derived image stored in this manner can be 
accomplished by accessing the referenced base image and 
performing the associated instructions for transforming it. 
 As an example of this concept, consider Figure 1 in 
which two images need to be stored in the example video 
game application.  The base image is of a player wearing 
a blue uniform with a logo of a tiger.  The derived image 
contains a player on a different team created by changing 
the color of the uniform from blue to red and replacing 
the tiger with an eagle.  The base image would be stored 
conventionally.  The derived image would be stored as a 
specification, meaning that it will contain a reference to 
the base image along with the operations used to 
transform it.  For this example, we will call the 
transformation operations “change color to red”, “remove 
tiger logo”, and “add eagle logo” although the operations 
would be lower level in practice.  So, these operations are 
the instructions for transforming the base image into the 
derived image.  Therefore, whenever a user wants to see 
the second player displayed, the base image would be 
accessed, and then the operations would be performed 
sequentially.  This process is called instantiation [18]. 
 In addition to using less space, using specifications to 



store images offers other advantages.  Unlike many 
compression methods, storing and instantiating a 
specification is a lossless process.  The derived image, 
then, can be retrieved and stored endlessly without any 
degradation.  Another advantage of specifications is that 
they are not dependent upon any particular compression 
or storage format such as JPEG [50], nor are they 
dependent upon any specific computing platform.  Thus, 
specifications are portable.  This portability allows 
derived images to be stored as specifications instead of 
various compression formats.  So, specifications can save 
space even when using data that is already compressed. 
 

Blue_Player 

Red_Player 

Blue_Player 

*Blue_Player 
Change Color Red 
Remove Tiger Logo 
Add Eagle Logo 

Red_Player 

Traditional CBIR System 
 

Specification-Based CBIR System 

Figure 1 - Storage of similar images in traditional 
and specification-based CBIR systems 

 
 There are numerous application areas that store many 
similar images, and will therefore benefit from using 
specifications.  In addition to the applications presented 
earlier, this approach will be useful in multimedia 
authoring environments where several versions of various 
images created by a user can be archived [17].  One 
example of such an environment is web design.  
Specifications will also be useful in the area of medicine 
where plastic surgeons can illustrate the changes they 
intend to make to their patients by editing their photo.  
Law enforcement is another area that can benefit by 
allowing users to save and retrieve several possible 
disguises of a suspect such as changing hair color, 
removing or adding glasses, or removing or adding facial 
hair.  When other multimedia objects are also considered, 
such as audio or video, storing their objects as 
specifications can benefit such areas as broadcast media 
or the recording industry as indicated in [22]. 
 
3. Related work 
 
 There are two main areas of research related to our 
work.  The first contains the numerous CBIR systems 
currently being developed.  The second contains the 
research that is related to the concept of specifications and 
the standardization of the operations used to edit 
multimedia objects.  We will review their research in this 

section and discuss how our work is different. 
 
3.1. Content-based image retrieval systems 
 
 As stated before, there are numerous CBIR systems 
developed by researchers.  Most of these systems do not 
use specifications or editing operations to improve the 
efficiency of their searching.  There are, however, some 
aspects of the systems that will greatly affect our research. 
 First, there are several features commonly used in 
various CBIR systems for querying that are extracted 
from images automatically.  These include color used in 
systems such as QBIC [20, 15, 14], ImageRover [39], 
RECI [10], and IRIS [21], texture used in [10, 21, 25], 
and shape used in [10, 11, 32].  We will be able to use this 
research to extract these features from our base images.  
However, alternative approaches must be employed to 
extract them from the specifications of derived images. 
 Another issue that occurs in CBIR systems is the 
representation used to store the features once they are 
extracted from the images.  For example, many systems 
use feature vectors to represent the images contained in 
the system once the desired extractions are complete [34, 
30, 39, 20].  However, using this representation in a 
specification-based CBIR system may result in storing 
redundant data.  For example, consider a derived image 
that was created by rotating its base, and let both images 
be represented by feature vectors that are their respective 
normalized color histograms.  Since the rotation operation 
does not add or remove pixels from an image, both 
vectors would be exactly the same.  Thus, it would be 
redundant to store the percentages of pixels that contain 
each color in both histograms.  Therefore, feature vectors 
should not be used for the representation of specifications. 
 In addition, CBIR systems must define some criteria 
for satisfying a query.  This means that there must be 
some method of defining how similar one image is to 
another such as the Euclidean Distance [38, 30, 39] or 
other functions based on feature vectors [2].  Such vectors 
only contain information about the features that are 
extracted from the images, so they do not maintain any 
information about the relationship between a derived 
image and its base.  Thus, that relationship does not affect 
the distance between the two images. 
 Another issue that must be resolved is developing a 
technique to access the data.  Another common type of 
query described in [13] is the range query.  As in 
conventional databases, an index is more appropriate than 
a hashing method for satisfying queries of this type since 
it preserves order.  The indexing techniques commonly 
used, like the B-tree, use only one attribute called the key 
to search entire data records.  In contrast, the DBMS 
should be able to search all of the attributes in a feature 
vector equally.  For example, each dimension of a color 
histogram may be used equally in queries by users.  Thus, 



traditional indexes for relational DBMSs are insufficient 
because they use one key to represent an entire vector. 
 The result is that images require an index that can be 
searched using any of the dimensions of the feature 
vectors representing them.  Consequently, researchers 
have proposed many various multidimensional indexes.  
One of the more popular types of these indexes treats 
each feature vector as a point in a multidimensional space 
[13] and creates trees where each node corresponds to a 
section in that space.  This category of indexes contains 
variations of the R-tree [19, 13, 6], which includes those 
data structures that group their data using Minimum 
Bounding Regions (MBRs) such as the X-tree [3] and 
others [24, 29] as well as those that do not use MBRs [5, 
16, 28].  Those indexes that use MBRs partition only the 
portion of multidimensional space occupied by feature 
vectors stored in the database.  Thus, they are able to 
reduce the time it takes to search the feature vectors 
because they eliminate the unused multidimensional 
space.  They also, however, are burdened with having to 
compute an MBR for each node of their tree, unlike those 
indexes that do not use them [6]. 
 
3.2. Specifications / image editing operations 
 
 There are several proposed multimedia data models 
that use concepts similar to specifications such as scripts 
layers, or deltas [17, 37].  However, there is no capability 
to search or for data based on its content using the scripts 
or layers themselves. 
 There are many researchers that are compiling lists of 
editing operations for multimedia objects.  For example, 
in [35], the researchers are producing an image algebra 
that will serve the same function as the relational algebra 
for conventional data.  In addition, [27] lists and 
categorizes several image processing operations.  In [49] 
and [31], researchers are developing languages for video 
objects.  In [49], the Resolution Independent Video 
Language (RIVL) is introduced.  This language is 
intended to allow users to create programs using images 
or video data in the same manner that programs are 
created today using numeric data.  In [31], the researchers 
present a scripting language for producing video 
presentations.  The main advantage both [49] and [31] 
cite is that using the high-level operations provides 
portability for multimedia data.  However, neither group 
appears to be studying how content-based retrieval could 
be enhanced using their languages. 
 An algebra for manipulating video data is presented in 
[51].  This work is more closely related to our research 
than any of the others because it studies performing 
content-based access to video data using its algebra.  In 
their work, searching is performed by using descriptions 
that are manually assigned to each video object using a 
description operator, while in our work, content-based 

retrieval can be performed without requiring the features 
of each multimedia object to be available.  This is because 
we intend to determine whether or not a derived object 
satisfies a query directly from its specification. 
 
4. Specification issues 
 
 To discuss the issues surrounding using specifications 
to perform content-based retrieval, it will be necessary to 
describe the advantages to our approach in more detail.  
Consider the base image of a player in a blue uniform 
described earlier.  Also, consider a derived image of a 
different player wearing a red uniform that was created by 
changing all of the blue pixels to red.  We are able to 
determine the percentage of each of the colors contained 
in the derived image directly from this specification.  Its 
color histogram would be exactly the same as the 
histogram extracted from the base image, except that the 
percentage of red pixels is increased by the percentage of 
blue pixels, and the percentage of blue pixels is reduced 
to 0.  Thus, for any query based on color that we can 
answer for the base image, we can answer it for the 
derived image.  Note that we are able to answer such 
queries without having to extract the features from the 
derived image, nor even instantiate it.  In addition, it was 
not necessary to compute the entire feature vector for the 
derived image.  We only needed the percentage of pixels 
of the colors present in the user’s query. 
 Now consider two other example images in the video 
game.  The base image contains a player wearing a 
uniform with a tiger, and the derived image is created by 
enlarging the base by 50%.  Now, consider the query, 
“Retrieve all images containing a picture of a tiger”.  
Automatically determining whether or not an image 
contains a tiger is beyond the capabilities of current 
systems.  So, this feature must be extracted manually or 
semi-automatically, meaning that a human must indicate 
to the system whether or not the image contains a tiger. 
 Having a human analyze every image contained in an 
MMDBMS takes a lot of time.  By using specifications, 
we can reduce the number of images that have to be 
analyzed manually.  We can determine whether or not the 
derived image in this example contains a tiger directly 
from its specification.  So, we do not have to manually 
analyze the derived image as we would in a conventional 
MMDBMS.  In addition, we again do not have to 
instantiate the derived image. 
 These examples illustrate that in some cases it is 
possible to perform content-based retrieval without 
extracting features from every object in an MMDBMS by 
using specifications.  There are, however, several issues 
that must be resolved to implement this approach.  The 
remainder of this section will discuss these issues. 
 
 



4.1. Determine effects of transformations  
 
 In the examples presented in this section, we are able 
to answer the queries because we know how the 
operations in the specifications affect the features of the 
base image.  Specifically, we know how the color 
histogram of an image is affected if all of the pixels of 
one color are changed into another.  We also know that 
enlarging an image does not change the objects contained 
in it.  So, one of the most important issues that need to be 
resolved to perform content-based retrieval using 
specifications is to determine the effects of the 
transformation operations contained in specifications on 
the features used for querying. 
 This requirement can be defined more formally.  Call a 
base object X and an object derived from it Y.  Let Y be 
stored as a specification.  This means that Y is stored as a 
reference to X along with some list of operations used to 
transform it.  Call this transformation T, and define T(X) 
as the result of performing the transformation on the 
image X.  Therefore, Y = T(X).  Now, let F represent a 
specific feature, and let F(n) represent its value extracted 
from some object n.  We denote a feature vector 
representing an image, n, as ( )nF

!
. 

 To perform content-based retrieval in an MMDBMS, 
we must know ( )nF

!
 for all objects in the database.  

Therefore, we must know ( )XF
!  and ( )YF

!
 in our example.  

In a conventional MMDBMS, ( )XF
!  and ( )YF

!
 are 

determined through some feature extraction process 
performed on both X and Y.  In an MMDBMS that uses 
specifications, the extraction process only needs to be 
performed on X.  Since Y = T(X), ( )YF

!
 = ( )( )XTF

!
.  So, 

one method of finding ( )YF
!

 is to determine the 
composition of T and F

!
 [9]. 

 There are several components of ( )( )XTF
!

 that we must 
identify to perform content-based retrieval.  The first is 
that the possible values of X must be identified.  This 
corresponds to identifying the set of images that will be 
stored in the application.  This issue is the same for any 
DBMS.  Database designers should know the properties 
of their data in order to select the best design. 
 Specifying the set of possible objects, {X}, will also 
lead to the next component, identifying all of the possible 
querying features, {F}.  If the MMDBMS stores only 
faces, then the features may be eye color and hair color.  
If the MMDBMS stores only trademarks, then an 
important feature is the shape of the trademark.  As stated 
earlier, since the users query the database using these 
defined features, completing this component determines 
the possible queries that can be entered by the user. 
 Intuitively, the next component is to specify all 
possible transformation operations, {T}.  There are 
several issues to consider when performing this step.  One 

is that the transformation operations are the set of editing 
operations a user can perform.  So, if the transformations 
are not robust, the user will not be able to make elaborate 
changes to base images.  Ideally, the set of operations {T} 
should be complete, meaning that it should be able to 
express all possible image transformations [8].  If too 
many operations are defined, however, it will be difficult 
to determine all possible compositions between the 
members of {T} and {F}. 
 Another issue that must be addressed is that the set of 
possible editing operations should be portable.  Different 
editors should be able to display an image stored as a 
specification, so they must understand the operations 
contained within it.  Therefore, the set of possible editing 
operations should be standardized [49, 31, 6]. 
 The next component of ( )( )XTF

!
 to consider is T(X).  

T(X) should be expressed as succinctly as possible to 
reduce the computations needed to calculate ( )( )XTF

!
.  

This means that the operations given in T(X) should be 
optimized.  For example, consider a transformation that 
first changes a color of a player’s uniform from blue to 
red, then deletes the player from the image.  This can be 
optimized by eliminating the first operation.  This will not 
only speed up the computation of ( )( )XTF

!
, but also speed 

up the instantiation of T(X) when a user wants to access 
object Y.  This optimization, then, should also be based 
on reducing the time it takes to instantiate a specification. 
 The final component of computing ( )( )XTF

!
 is to 

compute the composition of T and F
!

.  This requires the 
development of rules regarding their composition.  For 
example, one rule is that the rotation operation does not 
affect the color histogram of an image.  So, if T is the 
rotation operation, and F

!
 is the histogram representing 

the percentage of different colors in an image, then we 
know that ( )( )XTF

!
 = ( )XF

! .  This leads to the additional 
issues of identifying how to store the rules, determining 
which to apply, and accessing them efficiently. 
 An example of each of these components is presented 
in [1].  It uses the set of operations specified in [46].  The 
set of features, {F}, are color and shape.  The value of 
each feature is a score from 0 to 100 that represents the 
confidence level that the image contains a specific 
instance of a feature such as the color red.  The 
application of editing operations on images, T(X), is 
performed using defined regions.  These are polygonal 
regions that are actually changed during the operations 
transforming X to T(X).  These regions are then used to 
determine the final component, F(T(X)).  Specifically, [1] 
uses the approach that each pixel in a defined region 
contributes equally to a feature.  This means that after 
applying an operation on an image, the scores of its 
features are adjusted based on the number of pixels in the 
defined region that are altered. 
 



4.2. Computing similarity 
 
 A common type of query that users frequently enter 
into MMDBMSs is called a k-nearest-neighbor query 
[13].  This refers to those queries in which the users 
request the database to return the k items that are the most 
similar to some user-defined image.  The similarity of two 
objects is usually based on some function, D, measuring 
the distance between the feature vectors representing the 
images.  Thus, D is a function mapping two feature 
vectors to a real number, D( ( )XF

! , ( )YF
!

) → R.  Formally, 
the k-nearest neighbor problem is the set of images Y 
such that no more than k-1 images in the database have a 
smaller value of D for the goal image X. 
 The set of k nearest images, K, can be calculated by 
computing the distance function on each feature vector in 
the database.  The distance function used to compute the 
similarity between two multimedia objects often requires 
a large number of computations.  For example, the time 
needed by many approaches to compute the similarity 
between two high-dimensional color histograms is often 
quadratic with respect to the number of dimensions [41].  
So, one of the goals of an MMDBMS is to process 
nearest-neighbor queries while minimizing the number of 
times such expensive functions are evaluated. 
 In [41], an algorithm is proposed to accomplish that 
goal.  Specifically, this algorithm processes nearest-
neighbor queries while minimizing the number of times 
the actual, but expensive, distance function (do) is 
evaluated.  Since nearest neighbor searching techniques 
often use an inexpensive function to approximate the 
distance between two objects [36, 42], this algorithm 
assumes the existence of such a function, df, such that 
df(O1,O2) ≤ do(O1,O2) for all multimedia objects O1 and 
O2.  The algorithm begins by generating a candidate set of 
multimedia objects that may be the k-nearest neighbors of 
some query object, q.  The set is determined initially by 
computing the less expensive function, df(q,O) for all of 
the objects, O, in the MMDBMS.  The algorithm then 
evaluates do(q,O) for only those objects, O, where df(q,O) 
is less than some value.  This value is the actual distance 
of the kth most distant object from the query object in the 
candidate set, which is adjusted as new candidates are 
added.  The algorithm is argued to be optimal since 
do(q,O) is evaluated for only those objects in the 
candidate set such that df(q,O) is less than the actual 
distance of the kth nearest object to q.  Thus, no more 
evaluations of do will be performed than necessary [41]. 
 In an MMDBMS that uses specifications, we will not 
compute the distance function, df, for derived objects 
since we are not storing their feature vectors.  Instead, a 
more natural technique to measure the distance between 
the query and an object stored as a specification is the 
transformation approach [48].  In this approach, the 
distance between two objects is determined by the 

operations needed to transform one into the other.  Each 
transformation operation, ti, has an associated cost, w(ti), 
and the distance between the objects is the sum of the cost 
of the transformation operations, Σ(w(ti)).  Thus, the 
distance, d, between a derived object, T(X), and its base, 
X, is Σ(w(ti)) where T=<t1, t2, ..., tm>. 
 Once the actual distance between X and q is computed, 
we can use Σ(w(ti)) to obtain an inexpensive lower bound 
on do(q,T(X)).  Using the triangle inequality in a manner 
similar to [42], do(q,T(X)) ≥ |do(q,X) - Σ(w(ti))|.  So, we 
can inexpensively compute a lower bound for the distance 
between a specification and the query object.  This lower 
bound can then be used to avoid having to perform the 
more expensive distance computation, do(q,T(X)). 
 We must use caution in computing the distance 
between a derived object and its base, however. To 
illustrate, consider assigning a weight of w > 0 to the 
operation “Rotate image 180º”.  Applying the operation 
twice would produce a non-zero weight of 2w 
representing the distance of the resulting derived image to 
its base.  The derived image, however, would be identical 
to its base, so it should have a distance of 0.  The sum of 
the weights only produces an upper bound on the distance 
from a base to its derived objects.  To be more accurate, 
the context of each operation must be considered. 
 
4.3. Access method 
 The multidimensional indexes referenced in section 3 
have been proposed for storing multimedia data 
represented by feature vectors.  None of these indexes are 
appropriate in an MMDBMS that uses specifications.  
Again, this is because it is redundant to create and store 
feature vectors for images stored as specifications.  Thus, 
alternative indexing strategies must be employed. 
 
5. Summary and future work 
 
 There are many applications that allow users to derive 
new images by editing other existing ones.  Examples of 
such applications include video games and comic strip 
databases.  In applications such as these, space can be 
saved by storing the derived images as specifications.  
This storage format consists of the sequence of operations 
used to create the derived image along with a reference to 
the other existing image upon which it is based. 
 In addition to saving space, an advantage of an 
MMDBMS using this storage format is that it can perform 
content-based searching of images without extracting 
features from each object in the database.  This is possible 
because the values of the features used in users’ queries 
can be determined directly from the specifications.  The 
result is that the process used for extracting features can 
be avoided for many of the images in the database.  This 
will save time, especially when the feature extraction 



process requires a human to analyze the image.  In 
addition, the MMDBMS does not have to maintain 
feature vectors for each image stored in the database. 
 In order to implement content-based retrieval using 
specifications, many issues must be considered.  First, 
once the set of images in the database is defined, their 
important features should be identified as well as the list 
of editing operations that can be performed on them by 
the users.  Once these sets are defined, the result of 
applying each operation on the various image features 
must be computed.  This information is necessary to 
determine whether a derived image satisfies a query 
directly from its specification.  In addition, this 
information represents the guidelines or rules used to 
perform content-based retrieval.  These rules need to be 
stored in the MMDBMS, and techniques regarding their 
access must be determined. 
 Another issue that must be considered to perform 
content-based retrieval using specifications is the 
development of techniques regarding the measurement of 
similarity between two images when none, one, or both 
are stored as specifications.  As presented in this paper, 
this may involve assigning a weight to each of the editing 
operations that can be applied on the images. 
 This paper also presented the issue of developing a 
technique for accessing derived images stored as 
specifications.  Many conventional MMDBMSs compute 
and store feature vectors for each object in the database 
and use a multidimensional indexing technique for their 
access.  This is insufficient for the approach presented in 
this paper since feature vectors may not be generated for 
derived images stored as specifications because they may 
contain redundant information.  Therefore, alternative 
access methods must be developed. 
 Although our research has focused primarily on using 
specifications to store images, this method can be 
employed with any type of media data.  Specifications 
can be used to enhance content-based retrieval in 
applications that store similar audio files or videos as 
well.  In order to implement such applications, many of 
the issues discussed in this paper must be addressed for 
the audio and video data types as well. 
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