
Issues in Using Knowledge to Perform Similarity Searching in Multimedia
Databases without Redundant Data Objects

Leonard Brown
The University of Oklahoma
School of Computer Science

200 Felgar St. EL #114
Norman, OK, 73019
lbrown@cs.ou.edu

Tel.: (405) 946-7381
Fax: (405) 325-4044

Le Gruenwald
The University of Oklahoma
School of Computer Science

200 Felgar St. EL #114
Norman, OK, 73019
gruenwal@cs.ou.edu
Tel.: (405) 325-3498
Fax: (405) 325-4044

Greg Speegle
Baylor University

Department of Computer Science
Waco, TX, 76798

speegle@cs.baylor.edu
Tel.: (254) 710-4252

Abstract
This paper presents a possible way that artificial intelligence can be used to perform searching
in a multimedia database management system without redundant data. Specifically, it finds the
nearest neighbors of some query object without computing the distance between it and every
other item in the database. Knowledge about the data in the system is required to perform
searching. This knowledge is obtained from a specific storage format of the objects called a
specification, which contains the editing operations used to create multimedia data. These
operations are used to determine the similarity between multimedia objects without having to
analyze their contents.

1. Introduction
A goal of any database management system is to be able to satisfy queries efficiently

while minimizing the amount of redundant information stored in the database [KS91]. This goal

is also desired in a MultiMedia DataBase Management System (MMDBMS). Given the nature
of certain multimedia applications, however, accomplishing this goal can be difficult.

To illustrate this difficulty, consider an example application for cartoonists. This
application allows the users to create, store, and retrieve individual panels of their cartoons.
Since cartoons usually tell a story, a series of panels will often be very similar to each other. So,
to create new panels quickly, the cartoonist can simply edit existing ones. For example, the
second panel in a comic strip may be a close-up of one of the characters in the first panel. To
simulate this close-up, a cartoonist can crop the desired character from the first panel, then
enlarge it.

The key characteristic of this application is that both the first and second panels need to
be stored in it. As the cartoonist creates several new images from editing existing ones, the
underlying database is forced to store many similar images. This is a problem because such
multimedia objects are generally quite large. For example, high resolution images can consume
several megabytes of space [KA97]. So, storing thousands of these panels will quickly consume
a database’s storage area. In addition to our example cartoonist database, this characteristic may
be present in any application in which users create new multimedia objects. This is because the
users may save several different versions of their creations.

Saving several different versions of multimedia data items implies that an MMDBMS is
often required to store many similar large objects. These similar objects represent redundant
information. So, storing these objects in their traditional format means that the MMDBMS
would contain a large amount of redundant information. Therefore, the MMDBMS would not
achieve the goal of minimizing redundancy. Note that this is also true even if logical
representations of multimedia objects are used such as color histograms for images. If a new
image is created by rotating an existing one 90°, both of their histograms would be identical, and
therefore redundant.

A storage format for eliminating the redundancy in such objects was proposed in [Spe95,
GS96]. The goal of this paper is to present a method for performing similarity search using this
storage format. This method requires an intelligent analysis and interpretation of the information
that is contained directly in the format. In the next section, we will describe this storage format
as well as the type of information that can be extracted from it. In section 3, we will describe the
issues involved in searching for nearest neighbors in MMDBMSs using this information and
explain why it is necessary. In section 4, we will describe how existing similarity search
algorithms may be modified using an intelligent analysis of this information. Finally, we will
summarize our paper in section 5.

2. Storing Multimedia Objects as Specifications
As stated earlier, in applications where users create, edit, and store multimedia objects,

there will be a large amount of redundant data stored. In order to reduce the amount of space
used in these types of applications, the redundant information can be eliminated by storing any
new object created by editing another object in the database as a specification [Spe95, GS96].

This means that the new object is stored as a reference to the previously existing object along
with the set of editing operations used to create it. So, for a user to access the new object stored
in this manner, it must be recreated according to the information stored in its specification.
Specifically, the existing object is referenced, then the associated editing operations are
performed on it. This process is called instantiation. We also refer to the existing object as the
base, and the new object as derived.

As an example of this concept, consider Figure 1 in which two images need to be stored
in an example cartoon panel database. The base image is of two characters standing side by side.
The derived image contains a close-up of one of the characters and was created by first cropping
the character’s head, then enlarging it. The base image would be stored normally, meaning that it
would be stored in a conventional format for images. The derived image would be stored as a
reference to the first panel along with the necessary instructions or operations for transforming it,
which are crop and enlarge in this example. This allows us to store an entire multimedia object
as only a few bytes of text.

First Panel

Second Panel

*First Panel

Crop (head)

Enlarge

Second Panel

Panels Stored Conventionally Second Panel Stored as Specification

First Panel

Figure 1 -- Storage of Similar Images with and without Specifications

An MMDBMS has many benefits from using specifications [GS96]. Since storing a
derived object as a specification only requires a few bytes of text, specifications use much less
space than conventional multimedia storage formats including compression algorithms such as
JPEG [Wal91]. Specifications can also be used independent of the storage format of the base
object which allows more flexibility in their use. In addition, the act of repeatedly instantiating
and storing a specification is lossless, so there will not be any degradation in the quality of the
stored multimedia objects. Finally, when the set of possible editing operations used in
specifications is standardized [BGS97, BG98], any editor will be able to interpret and recreate
them. This makes them portable.

There are disadvantages that arise from using specifications, however. The main
drawback is that retrieving a specification involves instantiating it first, so it will take more time
than simply retrieving a derived image stored conventionally. Another drawback is that an
MMDBMS that uses specifications is dramatically different from one that does not. The existing
techniques for performing common database functions for a conventional MMDBMS may not be
appropriate for one that uses specifications. For example, in an MMDBMS that uses
specifications, deleting a multimedia object is more complex because other objects may be
derived from it. Thus, simply deleting an object may cause other objects to contain invalid
references. In the next section, we will discuss the reasons why performing similarity searches
are also more complicated when using specifications.

3. Requirements for Performing Similarity Search Using Specifications
As stated earlier, a common query in an MMDBMS is to retrieve the objects from a

database that are the most similar to or nearest to some target object. In this section, we discuss
the general issues that must be resolved to satisfy such queries by an MMDBMS that uses
specifications. To discuss these issues, we must first review the issues present in performing a
similarity search in any MMDBMS.

3.1 Similarity Search Requirements
Finding a multimedia object that is near another object implies that a distance function,

D, exists that can measure the similarity. This function accepts two multimedia objects as input
and returns some value. This distance function must be defined so that its returned value is
nonnegative, it is symmetric, and it obeys the triangle inequality [SW90].

The most intuitive method to find the nearest neighbors of a query object, Q, is to
compute the distance from it to each of the objects in the database. Once all the distances are
known, they can be sorted in ascending order. The smallest distance corresponds to the nearest
neighbor. The problem with this intuitive method for performing a similarity search is that it is
often expensive computing the distance between two multimedia objects. The distance function
described earlier computes the similarity between representations of two multimedia objects.
The process of computing the similarity may be extremely complex or costly [SK98].

As a result of this, many researchers have proposed methods of finding the k-nearest
neighbors of a query object that reduce the number of times the distance function, D, must be
computed in the database [SW90, BK73, SK98]. These algorithms tend to determine a way of
cheaply approximating the distance between two multimedia objects. These approximations are
used to find and eliminate objects in the database that cannot possibly be the nearest neighbor to
the query based on some known actual distance computations. For example, if the actual
distance, D1, from the query to one of the objects in the database is known, the MMDBMS does
not have to compute the actual distance from Q to objects whose approximate distance is greater
than D1. This assumes that the approximate distance between two objects is always less than the
actual distance [SW90, SK98].

More formally, assume that some function δ(M1, M2) is always less than D(M1, M2).
Now, compute one actual distance from the query object to one of the database objects, M. Thus,
D(Q, M) is known. If we compute δ(Q, O) for all objects O in the database, we can compare
each value to D(Q, M). If D(Q, M) < δ(Q, X) for some object, X, in the database, then D(Q, M)
< D(Q, X). Since the distance from Q to M is smaller than the distance from Q to X, Q is closer
to M than X. Therefore, X cannot the nearest neighbor of Q. Note that we have derived this
information without having to compute D(Q, X). We can repeatedly select a new object and
compute its actual distance which will consequently eliminate having to compute other objects in
the database. This allows us to find the nearest neighbors of Q while reducing the number of
times we have to compute the actual distance from Q to objects in the database [SW90, SK98].

3.2 Similarity Search with Specifications Requirements
As stated in the previous section, the goal of many similarity search algorithms is to

reduce the number of times costly distance functions are computed. Many assume that the
distance function is the largest cost for an MMDBMS [SW90]. This assumption changes when
specifications are considered. If specifications are used, then the process of instantiation
becomes the most expensive cost. So, we must avoid instantiating a specification to find its
distance to the query object, Q.

Such distances can be found using knowledge derived from the information stored in
specifications. For example, we can compute the distance from a derived object to its base as a
function of the editing operations used to create the derived object. This distance can be
computed by determining how much the associated editing operations change a multimedia
object. This means that the distance between a specification and its base should be computed
using a transformation-based technique as opposed to a metric-based one [Sub98]. Note that
such a computation may not be expensive. Thus, we do not have to avoid computing the
distance between a derived object and its base during a similarity search.

Determining how similar a derived object is to its base cannot be accomplished by simply
attaching a weight to each editing operation. This is because the combination of two operations
does not necessarily alter a multimedia object more than one of the operations by itself. To
illustrate, imagine that the specification of a derived image contains two operations. Both
operations are rotate 180°. After applying both operations, the resulting derived image is
identical to its base. According to the nonnegative definiteness property [SW90], the distance
between the specification and its base should be zero. If we attach a nonzero weight of w to each
rotation operation, then the specification would have a total weight of 2w, and would therefore
violate the nonnegative definite property of a distance function.

The MMDBMS, then, must be able to understand and interpret any combination of
editing operations contained in a specification. In addition, the notion of similarity changes
based on the underlying application. So, to produce a value that measures the similarity between
a derived object and its base, the MMDBMS must consider the features contained in the base
object and determine how they are affected by the combination of editing operations listed in the
derived object’s specification. Since there is an infinite number of different combinations of

editing operations, the MMDBMS must contain an intelligent component that can either learn or
deduce the similarity measurement.

4. Modifying Existing Similarity Search Algorithms for Specifications
If we use a transformation-based metric for computing the distance between a derived

object and its base, we change the assumptions of existing similarity search techniques.
Therefore, we must modify the conventional methods for finding the nearest neighbors of a query
object, Q. Generally, we must determine a new inexpensive estimation, δ, of the actual distance
function, D. Again, this function must be chosen such that δ(X, Y) < D(X, Y) for all multimedia
objects X and Y.

Let B be a base object in our MMDBMS, and let S be an object derived from it. By
modifying the similarity search technique proposed by Burkhard and Keller in [BK73, SW90],
we will present a function δ(S, Q) that is an inexpensive lower bound for D(S, Q). First, we must
briefly review Burkhard and Keller’s similarity search technique.

Burkhard and Keller’s technique is to use the triangle inequality to derive their
inexpensive distance function, δ [BK73, SW90]. They select one of the objects in the database,
R, as a reference point, and compute the actual distance from R to all of the objects in the
database. Once completed, they use these distance computations to find the k-nearest neighbors
of any query object presented to the database.

Burkhard and Keller’s distance function is derived from the fact that D(Q, R) ≤ D(Q, X)
+ D(X, R) for any object, X, in the database. When D(X, R) is subtracted from both sides, D(Q,
X) ≥ D(Q, R) - D(X, R) is obtained. Note that by starting with D(X, R) ≤ D(Q, X) + D(Q, R), the
inequality D(Q, X) ≥ D(X, R) - D(Q, R) could just as easily be obtained. Thus, D(Q, X) ≥ |D(X,
R) - D(Q, R)| which serves as the approximation function, δ(Q, X).

Given the intelligent component described in the previous section, we could
inexpensively determine a value for D(S, B) since S is derived from B. We could not, however,
determine the distance from S to some other object X without first knowing D(B, X). This
includes the case when X is the reference object, R. So, to minimize distance computations, we
must assume that we do not know D(S, R) which means that Burkhard and Keller’s approach
must be modified to use it in an MMDBMS that uses specifications. Specifically, we have to
find a new approximation for D(S, Q) that does not use D(S, R). We will call this
approximation, δ’(S, Q).

We will use a similar approach to Burkhard and Keller’s to derive this approximation.
We know that D(S, Q) + D(Q, R) ≥ D(S, R). We also know that D(S, R) ≥ |D(B, R) - D(B, S)|
from reasoning similar to the logic presented earlier. Thus, D(S, Q) + D(Q, R) ≥ |D(B, R) - D(B,
S)|. This leads to the inequality D(S, Q) ≥ |D(B, R) - D(B, S)| - D(Q, R). Since the distance of
each base object to the reference point is known, we can use this as our inexpensive
approximation function. So, δ’(S, Q) = |D(B, R) - D(B, S)| - D(Q, R). When it is known that this

function is greater than the distance from Q to some other object, X, in the database, we know
that S is not the nearest neighbor of Q.

5. Summary and Future Work
Specifications [Spe95, GS96] can be used to eliminate redundancy in MMDBMSs for

systems that store many similar multimedia data items such as an application that lets a user
design and create new objects. Since specifications store the editing operations used to derive
new multimedia objects from existing ones, they have information that is not present in the
conventional binary storage formats. This information can be used to measure how similar the
new object is to the existing one. Because there is an infinite number of combinations of editing
operations that can be stored in specifications, such a measurement must be either deduced or
learned.

Given an intelligent component that performs this deduction, we can compute
inexpensive approximations for the distance between a specification and some query object.
These approximations allow us to modify existing techniques for finding the nearest neighbor of
a query object similarly to the manner presented in section 4.

For future work, we must develop the component or module that determines the similarity
between a derived object and its base using a specification. To develop this module, we must
first define the set of editing operations that may be used in a specification. In addition, we will
have provide training for the module so that it can determine the similarity between a derived
object and its base.

References
[BGS97] Brown, Leonard, Le Gruenwald, and Greg Speegle, “Testing a Set of Image Processing
Operations for Completeness”, Proceedings of the 2nd Conference on Multimedia Information
Systems, April 1997, pp. 127-134.

[BG98] Brown, Leonard and Le Gruenwald, “Determining a Minimal and Independent Set of
Image Processing Operations for a Multimedia Database System”, Proceedings of the 1998
Energy Technology Conference and Exhibition, February 1998.

[BK73] Burkhard, W. A. and R. M. Keller, “Some Approaches to Best-Match File Searching”,
Communications of the ACM, Volume 16, Number 4, April 1973, pp. 230-236. Referenced in
[SW90]

[GS96] Gruenwald, Le and Greg Speegle, “Research Issues in View-Based Multimedia Database
Systems”, Proceedings of the 2nd World Conference on Integrated Design and Process
Technology, December 1996, pp. 331-336.

[KA97] Klas, Wolfgang and Karl Aberer, “Multimedia and its Impact on Database System
Architectures”, Multimedia Databases in Perspective, Chapter 3, P. M. G Apers, H. M. Blanken,
and M. A. W. Houtsma (Eds.), Springer, 1997.

[KS91] Korth, Henry F. and Abraham Silberschatz, Database System Concepts, McGraw-Hill,
Inc., New York, 1991.

[SK98] Seidl, Thomas and Hans-Peter Kriegel, “Optimal Multi-Step k-Nearest Neighbor
Search”, ACM SIGMOD, 1998, pp. 154-165.

[Spe95] Speegle, Greg, “Views of Media Objects in Multimedia Databases”, Proceedings of the
International Workshop on Multimedia Database Management Systems, August 1995, pp. 20-29.

[Sub98] Subrahmanian, V. S., Principles of Multimedia Database Systems, Morgan Kaufmann,
San Francisco, California, 1998.

[SW90] Shasha, Dennis and Tsong-Li Wang, “New Techniques for Best-Match Retrieval”, ACM
Transactions on Information Systems, Volume 8, Number 2, April 1990, pp. 140-158.

[Wal91] Wallace, Gregory K., “The JPEG Still Picture Compression Standard”,
Communications of the ACM, Volume 34, Number 4, April 1991, pp. 30-44.

