

Testing a Set of Image Processing Operations for Completeness

Leonard Brown
Le Gruenwald

The University of Oklahoma
School of Computer Science

Norman, OK, 73019
lbrown@cs.ou.edu, gruenwal@cs.ou.edu

Greg Speegle

Baylor University
Department of Computer Science

Waco, TX, 76798
speegle@mercury.baylor.edu

Abstract
 In order to more efficiently represent image editing in
multimedia databases, research has been performed to
determine the usefulness of storing one image file as a
base along with a set of operations that represent the
modifications to the image that occured during editing.
Because any editor should be able to produce and
interpret them, these operations should be elements of
some standardized set. One of the properties that this
standardized set must have is completeness so that it is
able to represent any of the modifications a software
editor may produce. In this paper, we propose a method
for testing whether or not any general set of image
operations is complete. Part of this proposal includes
formal definitions for both images and completeness. In
addition, an example of this test is presented for a set of
image processing operations.

1. Motivation

 One of the functions of any database system is to
facilitate editing of its data. This process becomes more
complex in a multimedia database management system
(MMDBMS) because of the size of multimedia data.
Although multimedia data can be characterized into
various types such as audio, video, still images, text, and
graphics, they all have the characteristic of being space

intensive [9]. For example, CD quality audio uses 1.4
Megabits per second, NTSC quality video uses 1.92
Megabits per frame, and an image stored as a bitmap can
use 4,000,000 bytes of storage [1, 17].
 To illustrate the problems with editing multimedia
objects, imagine an application for an interior designer.
This application allows the designer to view a photo of the
room and decorate it by editing the picture. The designer
could change the color of the walls and carpet, add,
remove, or rearrange the furniture, and experiment with
different lighting effects.
 In addition to this example, imagine a different
application that lets a recording studio edit one of its
songs. The application would let the users select a song,
then add several sound effects, alter the voices, or merge
samples from other recordings.
 In both of these examples, the users start with a base
image or audio file and perform different editing operations
on it. The users will want to see and hear each
modification they perform. When the users begin to
create new files that are modifications of the base files,
then save both the old and new data, the MMDBMS may
quickly run out of storage.
 Researchers have noted that there is redundancy in
storing both the base and modified data in an MMDBMS
[7]. Because of the size of multimedia data, it may be more
efficient to use data references which will act as
abstractions of the data [1]. As an alternative to simply
compressing the data, it has been proposed to store only

the base data with a series of instructions explaining how
to generate the new data [7]. Not only would this method
conserve much more space than compression, it would
eliminate any degradation that results from compression
algorithms that are lossy [7].
 When the user creates the new data, the editor used
must store the instructions explaining how it was created
in the MMDBMS. In addition, if other users want to
recreate the new data, their editors must know how to
interpret the set of instructions they receive back from the
database. For all of the editors to interpret the
instructions correctly, the set of operations used in the
instructions will have to be part of some previously
defined standard set, called a logical model language
(LML) by researchers [7].
 Figure 1 illustrates this process for an image database.
A user performs an action on an image such as clicking on
the red option. The editor receives this action and
translates it into a standard operation, such as ‘change
color red’. The editor sends the command to the
MMDBMS which performs the corresponding operation
(x, y, color) → (x, y, red) on the image. The MMDBMS
then returns the modified image to the editor, which will
then display the new image to the user.

Action Standard Set
of Operations

Display Image

“Click on Red” “Change Color Red” (x,y,color) → (x,y,red)

User Editor MMDBMS

Figure 1 - Image Editing using Standardized
Operations

 For the LML to be useful, it must have the ability to
represent any transformation performed by the user's
editor. Since all of the possible image transformations are
not known, it is difficult to test for this ability.
 It is the goal of this paper to solve this problem for
logical model languages for image databases, which we
call image LMLs. To accomplish this, it will give a precise
definition of an image as well as define the completeness
property for image LMLs. In addition, it will test a sample
LML for completeness using the method presented.
 The structure of the remainder of this paper is as
follows: In section 2, we will describe and evaluate a
previous definition of completeness. In section 3, we will
state our definition of completeness as well as our
definition of an image. In section 4, we will propose a

methodology for testing an image LML for completeness.
In section 5, we will describe a sample LML, and then in
section 6, we will test it for completeness using the
proposed technique. In section 7, we will summarize our
research and describe the work that will be continued in
the future.

2. Related work

 Developing an image LML was the subject of research
performed in [7] and [4]. To express all of the possible
image transformations performed by a given editor, the
researchers examined two sources, namely the existing
image processing software and the image algebra
described in [14] and [15]. While the operations in the
LML are defined using the image algebra, the definition of
completeness is based on the existing software.
 The definition from the researchers is that a complete
image LML has the capability of expressing any operation
that can be performed by version 3.0 of Adobe Systems
Incorporated's Photoshop. The reason this software
package was selected is that it outsells competing
software packages by a factor of four [4]. In addition,
other software reviewers regard it as powerful when
comparing its functionality to its competitors [10, 11, 12].
 The main drawback to this definition is that it requires
accepting two assumptions. The first assumption is that
Photoshop 3.0 can express every image transformation.
The second is that every operation in Photoshop can be
expressed by the operations in the LML being evaluated.
Proving the first assumption requires that all of the
possible image transformations are known. Proving the
second requires a list of the LML operations needed for
each Photoshop command.

3. Definitions

 Since our goal is to provide a methodology for
determining whether a set of image operations is complete,
we must precisely define what an image is, what an image
operation is, and what completeness means. We will
define an image by examining how it is used. Once the
definition of an image is established, we will define image
operations, then define completeness with respect to
image operations.

3.1 Image Background

 Despite how an image is logically stored in a computer,
the goal is to visually display it. Computer screens are

composed of a grid of small, square, colored dots. These
dots are called pixels. [2, 13].
 For a computer to display an image, it must be digitized.
This means that the image must be decomposed into a grid
of pixels [5]. Since a computer must digitize an image in
order to display it, we will define images as a grid of pixels.
 An individual pixel can be thought of as having two
components, its coordinate point and its value [15]. Both
of these components must be defined. Since an image is a
grid of pixels, we will restrict the coordinates of a single
pixel to a 2-dimensional plane. The pixel's value is
intended to represent its color.
 Representing a color numerically is the goal of color
theory. There are several models used for representing
color. One widely used model is RGB which stands for
Red, Green, and Blue. Combinations of these three colors,
called channels, are used to create the other colors in the
RGB model. This model is based on the way colors are
perceived by humans in that red, green, and blue are the
basis for all of the colors in nature [5].
 Another widely used model is CMYK, which stands for
Cyan, Magenta, Yellow, and blacK. This color model is
based on the inks used in printing where the percentages
of cyan, magenta, yellow, and black inks are specified for
each printed dot [5]. So, to associate a pixel with a color in
the CMYK model, a value between 0 and 100 is required
for each of the four channels.
 These two examples show that there are a different
number of channels necessary to represent the color of a
pixel depending on the model used. Because of this, a
pixel must be a coordinate pair associated with a set of
channels. This means an image is a set of coordinate
points where each point has a set of channels and
values.

3.2 Image Definition

 As seen from the informal definition, an image is
defined as a set of pixels where each pixel has a unique x
and y coordinate pair. A pixel is defined as a set of tuples
{<x, y, c, v>} where x represents the value of the x-
coordinate and y represents the value of the y-coordinate.
Since each pixel corresponds to exactly one x and y
coordinate pair, all of the x values are equal, and all of the
y values are equal in the set.
 In each tuple, the element c represents one of the
channels of the color mode used by the pixel, such as red
in the rgb color mode. The element v represents the value
of the channel for the pixel. This allows us to represent a
single pixel by a set of tuples {<x1, y1, c1, v1>, <x2, y2, c2,

v2>, ... , <xk, yk, ck, vk>} where k ≥ 0, xi = xj and y i = yj for

all i ≥ 1 and i ≤ k and for all j ≥ 1 and j ≤ k. Note that this

means each tuple represents one channel, and adding or
removing tuples corresponds to adding or removing
channels.
 The domains of x and y are the set of integers, Z, since

x and y come from the discrete lattice Z2 described in [14]
and [15]. The domain of each ci is composed of the

various channels that can be defined on an image. The
domain of each vi is dependent on the value of the

corresponding ci in its tuple. For example, if ci is red of the

rgb color mode using 24-bit color, then the domain of vi is

all integers between 0 and 255. If ci is yellow of the cmyk

color model, then the domain of vi is all integers between 0

and 100 [5, 13].
 As an example of this image definition, say that we
have a pixel in the rgb color model. The pixel is located at
the point (5, 10) and has a red channel value of 15, a green
channel value of 30, and a blue channel value of 40.
According to the definition used in this paper, the pixel is
represented as a set of three tuples, namely {<5, 10, red,
15>, <5, 10, green, 30>, and <5, 10, blue, 40>}.

3.3 Image Operations

 The above definition of an image helps clarify what is
meant by an image operation. In this paper, an image
operation performs a transformation from an image A to
another image B. This definition of an image operation
excludes those operations whose result is not an image.
For example, cardinality is an operation that can be
performed on an image, but its result is an integer, namely
the number of pixels in the image. As far as our definition
is concerned, this is not an image operation.

3.4 Completeness Definition

 Instead of comparing an image LML to a software
package as in the related work, the approach used in this
paper is to base the completeness definition on the
definition of an image. To say that an image LML is
complete, it must be able to express all transformations
from one image to another. So, given any two images A
and B, there should exist a sequence of LML operations to
convert A to B and B to A.

4. Testing for Completeness

 In this section, we will describe the method used to test
if an image LML satisfies the completeness property. We
will accomplish this by describing an algorithm for

converting any image A to another image B. If the
operations in the image LML can perform all of the image
operations needed by the algorithm, then it can convert

any image A to another image B. By our definition, this
means that it is complete.

4.1 Algorithm Description

 The algorithm we will use is based on the fact that
images are sets. Informally, given one set of elements, A,
and another set of elements, B, we will convert A to B by
first adding to or deleting elements from A until it has the
same number of elements as B. Then, we will modify the
values of each of the elements in A so that they are the
same as the elements in B.

4.2 Algorithm

 Formally, let A be any image and let the cardinality of A
= m where m ≥ 0. We can represent A as {P1, P2, ... , Pm}

where each Pi is a pixel. Similarly, let B be any image and

let the cardinality of B = n, where n ≥ 0. We can represent
B as {Q1, Q2, ... , Qn} where each Qi is a pixel.

Step 1: If m ≥ n, then remove a pixel from A (m - n) times,
otherwise, add a pixel to A (n - m) times. Upon completion
of this step, if m ≥ n, then the cardinality of A will equal m
- (m - n), which equals n. If m < n, then the cardinality of A
will equal m + (n - m), which also equals n. Thus, after this
step, the cardinality of A will equal the cardinality of B.

Step 2: Since the cardinality of both images are now
equal, we can now express A as {P1, P2, ... , Pn} and B as

{Q1, Q2, ... , Qn}. In this step, for each i between 1 and n,

we will set Pi = Qi. Upon completion of this step, A will

now contain the elements {Q1, Q2, ... , Qn}.

 In our definition, each Pi and Qi are sets of tuples. This

means that setting Pi equal to Qi will be more complex than

a simple assignment statement. For each of the pixels in
image A, we will add or remove tuples from the pixel until
its cardinality equals the cardinality of the corresponding
pixel in image B. Then we will set the tuples in A equal to
the corresponding tuples in B.
 For each i between 1 and n, perform the following sub-
steps:

Step 2.1: Let h be the cardinality of Qi and k be the

cardinality of Pi. If k ≥ h, then remove (k - h) tuples from

Pi, otherwise add (h - k) tuples to Pi. Upon completion of

this step, if k ≥ h, then the cardinality of Pi will equal k - (k

- h), which equals h. If k < h, then the cardinality of Pi will

equal k + (h - k), which also equals h. Thus, after this step,
the cardinality of Pi will equal the cardinality of Qi.

Step 2.2: Now, we will set Pi equal to Qi. Since the

cardinalities of both Pi and Qi equal h, we will represent Pi

as {Pi1, Pi2, ... , Pih} and Qi as {Qi1, Qi2, ... , Qih}, where

each Pij and Qij is a 4-tuple described earlier.

 For each j between 1 and h, perform the following:

Step 2.2.1: Set the value of the x-variable in Pij equal to

the value of the x variable in Qij.

Step 2.2.2: Set the value of the y-variable in Pij equal to

the value of the y variable in Qij.

Step 2.2.3: Set the value of the c-variable in Pij equal to

the value of the c variable in Qij.

Step 2.2.4: Set the value of the v-variable in Pij equal to

the value of the v variable in Qij.

4.3 Algorithm Correctness

 After completion of the substeps 2.2.1 - 2.2.4, the tuple
Pij will equal the tuple Qij. This is true because each of the

4 corresponding components of the tuples will be equal.
 After these substeps are performed for each of the j
tuples in Pi, then each tuple Pij will equal Qij for all j

between 1 and h. So, if a 4-tuple <x, y, c, v> is in Qi, then

there will be a 4-tuple <x, y, c, v> in Pi. So, Qi ⊆ Pi.

Similarly, if a 4-tuple <x, y, c, v> is in Pi, then there will be a

4-tuple <x, y, c, v> in Qi. So, Pi ⊆ Qi. Therefore Pi = Qi.

 This means that when step 2 completes for each of the
n pixels in image A, Pi will equal Qi for all i between 1 and

n. So, if there is a pixel Qi = {Qi1, Qi2, ... , Qih} in B, there

will be a pixel {Qi1, Qi2, ... , Qih} in A. So, B ⊆ A.

Similarly, since Pi = Qi for all i, if there is a pixel Qi = {Qi1,

Qi2, ... , Qih} in A, there will be a pixel {Qi1, Qi2, ... , Qih} in

B. So, A ⊆ B. Therefore, A = B.
 This means that at the conclusion of this algorithm,
image A will be the same as image B.

4.4 Image Operation List

 The algorithm given above uses eight image
operations. In step 1, a pixel is either added to or removed
from an image. In step 2.1, a tuple is either added to or
removed from a pixel. In step 2.2.1, the x variable of a tuple
is modified. In step 2.2.2, the y variable of a tuple is
modified. In step 2.2.3, the c variable of a tuple is
modified. In step 2.2.4, the v variable of a tuple is
modified.
 Table 1 summarizes the image operations used in our
algorithm.

1. An operation to add a pixel to an image
2. An operation to remove a pixel from an image
3. An operation to add a tuple to a pixel
4. An operation to remove a tuple from a pixel
5. An operation to change pixel element x
6. An operation to change pixel element y
7. An operation to change pixel element c
8. An operation to change pixel element v

Table 1 - Image Operations Used in the Testing

for Completeness Algorithm

So, if an image LML can perform each of these eight image
operations, then it can express every transformation from
one image to another. This means that it is complete.

5. An Example LML

 To demonstrate our technique for testing for
completeness of an image LML, we will use the LML
proposed in [7] which contains six operations. These
operations are called merge, define, mutate, modify,
combine, and applyfunction.

5.1 Merge

 The merge operation combines a base image, A, with a
new image, B. The result is the union of the pixels in the
two images. This operation is flexible enough to be either
opaque or transparent. If it is transparent, whenever
images A and B have pixels at the same coordinates, the
value of the pixels in A will be used. In the same
situations, if it is opaque, the values of the pixels in B will
be used.
 Formally, let A be the base image where A = {P1, P2, ... ,

Pm} with m ≥ 0, and B be an image {Q1, Q2, ... , Qn} with n

≥ 0. Recall from section 3 that a pixel is defined as a set of
4-tuples {<x, y, c, v>} where all of the values of x are
equal, and all of the values of y are equal. The result of
merging A with B returns the union of their pixels based
on the x and y coordinates, meaning that if there is a pixel
Pi in A where Pi = {<xi, yi, ci1, vi1>, <xi, yi, ci2, vi2>, ... ,

<xi, yi, cik, vik>}, and there is a pixel Qj in B where Qj =

{<xj, yj, cj1, vj1>, <xj, yj, cj2, vj2>, ... , <xj, yj, cjh, vjh>},

such that xi = xj and yi = yj, then we will include only one

of the pixels in the resultant union.

5.2 Define

 The define operation selects a subset of an image. This
operation is frequently referred to as cropping.

 Formally, let A be an image where A = {P1, P2, ... , Pm}

with m ≥ 0. Performing the define operation on A will
create a new image {P1, P2, ... , Pr} with m ≥ r.

5.3 Mutate

 The mutate operation changes the position of pixels in
an image. This means that it assigns new values to the x
and y coordinates of some of the pixels. In terms of our
image definition, this operation will assign new values to
the x and y variables of the tuples in a pixel. Since the
result of this operation must be an image, there cannot be
another pixel in the resulting image with the same x and y
coordinates.

5.4 Modify

 The modify operation affects the values of the
channels of an image. It will change the color of some of
the pixels in an image to a new color. In terms of our image
definition, this corresponds to changing the value of the v
variable in a tuple.

5.5 Combine

 The combine operation is similar to the modify
operation in that is also changes the colors of an image.
The difference is that it computes the new color of a pixel
by using the colors of adjacent pixels. As with the modify
operation, this corresponds to changing the value of the v
variable in a tuple in terms of our image definition.

5.6 ApplyFunction

 Finally, the applyfunction operation manipulates the
channels used by an image. Unlike the modify and
combine operations, it edits the channels themselves, not
their values. Among the functions this operation performs
is adding a channel, removing a channel, and replacing a
channel. In terms of our image definition, it affects the
values of the c variables in the tuples.

6 Testing the sample LML

 For an image LML to be complete, it must be able to
perform each of the eight low level image operations
needed by the algorithm described in section 4. In this
section, we will show that the sample LML described in
section 5 can perform each of the eight operations.

6.1 Adding a pixel

 Adding a pixel to an image can be performed by the
merge operation in the LML by merging a base image with
an image containing a single pixel provided that the pixel
does not have the same coordinates as a pixel in the base
image. Formally, let A be any image where A = {P1, P2, ... ,

Pm}. To transform A into {P1, P2, ... , Pm, Q1}, we can

merge A with an image B = {Q1}, where Q1 = {<x’, y’, c1’,

v1’>, <x’, y’, c2’, v2’>, ... , <x’, y’, ch’, vh>}, and there is

not a pixel {<x, y, c1, v1>, <x, y, c2, v2>, ... , <x, y, ck, vk>}

in A such that x = x’ and y = y’.

6.2 Removing a pixel

 Removing a pixel can be accomplished with the define
operation. Informally, we will define a new image from the
base image by selecting all of the pixels in the base image
except for a single pixel. Formally, let A be an image {P1,

P2, ... , Pm}. To remove a pixel Pj from A, we define a new

image A' = {P1’, P2’, ... , Pm-1’} where Pi’ = Pi if i < j and Pi’

= Pi+1 if i ≥ j.

6.3 Adding a tuple

 Recall from section 3.2 that adding a tuple to a pixel
corresponds to adding a new channel. To add a tuple to a
pixel, we will have to define a new channel at the same
coordinates and assign it a value. Since the applyfunction
operation in the proposed image LML can add a channel,
this task can be accomplished by it. Formally, let P be a
pixel {<x, y, c1, v1>, <x, y, c2, v2>, ... , <x, y, ck, vk>}.

Applyfunction can add a tuple <x, y, ck+1, vk+1> to P

creating a new pixel {<x, y, c1, v1>, <x, y, c2, v2>, ... , <x, y,

ck, vk>, <x, y, ck+1, vk+1>}.

6.4 Removing a tuple

 Removing a tuple from a pixel corresponds to removing
a channel from a pixel. Since the applyfunction operation
in the proposed image LML can remove a channel, this
task can be accomplished by it. Formally, let P be a pixel
{<x, y, c1, v1>, <x, y, c2, v2>, ... , <x, y, ck, vk>}.

Applyfunction can remove a tuple <x, y, cj, vj> from P

creating a new pixel {<x, y, c1', v1'>, <x, y, c2', v2'>, ... , <x,

y, ck-1', vk-1'>} where each ci’ = ci if i < j and ci’ = ci+1 if i

≥ j.

6.5 Modifying x and y

 Changing the x and y coordinates in a tuple can be
performed by the mutate operation. Informally, we assign
new values to the x and y components of each tuple in a
pixel. Of course, the resulting image cannot contain two
pixels with the same x and y coordinates.
 Formally, let P be a pixel P = {<x, y, c1, v1>, <x, y, c2,

v2>, ... , <x, y, ck, vk>}. The mutate operation will set <x,

y, ci, vi> equal to <x’, y’, ci, vi> for all i = 1, k. In order for

this operation to be valid, there can be no pixel {<x’’, y’’,
c1, v1>, <x’’, y’’, c2, v2>, ... , <x’’, y’’, cl, vl>} in the

original image such that x’’ = x’ and y’’ = y’.

6.6 Modifying c

 Changing the c value in a tuple corresponds to
replacing a channel with another in a tuple. This function
can be performed by the applyfunction operation

according to its definition. Formally, let P be a pixel P =
{<x, y, c1, v1>, <x, y, c2, v2>, ... , <x, y, ck, vk>}. To

replace a channel cj with some c’, we will set the tuple <x,

y, cj, vj> equal to <x, y, c’, vj>. Note that if vj is not in the

domain of c’, then it will also have to be modified.

6.7 Modifying v

 The modify and combine operations change the value v
in a tuple. The only restriction on changing the value of v
is that the new value must remain in the domain of the c
value in its tuple.
 Formally, let P be a pixel {<x, y, c1, v1>, <x, y, c2, v2>, ...

, <x, y, ck, vk>}. To change the value vi in a tuple <x, y, ci,

vi> to some value v’ in the domain of ci, we simply replace

the tuple by <x, y, ci, v’>.

6.8 Completeness Summary

 To summarize, the 8 possible general operations that
can be performed on an image can be expressed in the
operations defined in the image LML in [7]. This means
that the proposed image LML is complete. The general
operations and their corresponding LML operations are
given in table 2.

Image Operations

Corresponding
LML Operations

Add a pixel to an image Merge
Remove a pixel from an image Define
Add a tuple to a pixel Applyfunction
Remove a tuple from a pixel Applyfunction
Change x Mutate
Change y Mutate
Change c Applyfunction
Change v Modify or Combine

Table 2 - Image Operations and Their

Corresponding LML Operations

7. Conclusion

 To reduce the amount of space necessary to store a
series of edited versions of an image, some of the versions
can be stored as a set of instructions. So that the images
can be interpreted by any editor, the set of image
processing operations in the instructions must be part of
some standardized set called a Logical Model Language

(LML) [7]. To demonstrate that the standardized set of
operations is useful, it must be proven to be complete.
 In this paper, we have proposed a methodology for
testing whether or not a set of image processing
operations is complete. As part of accomplishing this, we
have provided a definition of completeness and a formal
definition of an image. In addition, we have demonstrated
this method using a sample set of image operations.
 Completeness is not the only property needed to
establish whether or not an image LML is an acceptable
standard. In addition, the LML should be independent
and minimal [7, 4]. A precise definition and testing method
for each of these properties is part of continuing research.
Also, this paper has only addressed LMLs for image
databases. This work needs to be extended to other
multimedia data types, namely audio, video, text, and
graphics data.

References

1. Aberer, Karl and Wolfgan Klas, “The Impact of

Multimedia Data on Database Management
Systems”, International Computer Science Institute,
Berkeley, 1992.

2. Adobe Photoshop 3.0 User Guide, Adobe Systems

Inc., 1994.

3. Banjerjee, Jay et. al., “Data Model Issu es for Object-

Oriented Applications”, Readings in Object-Oriented
Databases , 1990, pp. 197-208.

4. Basit, Mujeeb, Paul Parker, and Greg Speegle,

“Application of Image Algebra to Views of Images in
Multimedia Databases”, Honors Thesis, The
University of Baylor, April, 1996.

5. Greenberg, Adele Droblas and Seth Greenberg,

Fundamental Photoshop, McGraw-Hill, Inc., Berkeley,
1995.

6. Gruenwald, Le and Greg Speegle, “Views of

Multimedia: A Mechanism for Supporting Media
Editing with Databases”, NSF Proposal, September,
1996.

7. Gruenwald, Le and Greg Speegle, “Research issues in

View-Based Multimedia Databases”, 2nd World
Conference on Integrated Design and Process
Technology, December, 1996.

8. Gruenwald, Le, Greg Speegle, and Wang, “A Meta-
Structure for Supporting MM Editing in OODBMS” ,

Work in progress, 1997.

9. Khoshafian, Setrag and Brad Baker, Multimedia and
Imaging Databases , Morgan Kaufman, 1996.

10. Marshall, Patrick, “Electric Results”, Info World, Vol.

17, Issue 11, March 13, 1995.

11. Marshall, Patrick, “Electric Results”, Info World, Vol.

17, Issue 19, May 8, 1995.

12. Marshall, Patrick, “Electric Results”, Info World, Vol.

17, Issue 26, June 26, 1995.

13. McClelland, Deke, Photoshop 3 Bible , IDG Books

Worldwide, Inc., Chicago, 1994.

14. Ritter, Gerhard X., “Image Algebra”, Unpublished

manuscript available anonymous ftp at ftp.cis.ufl.edu
in the /pub/src/ia/documents directory.

15. Ritter, Gerhard X. and Joseph N. Wilson, Handbook

of Computer Vision Algorithms in Image Algebra ,
CRC Press, New York, 1996.

16. Speegle, Greg, “Views of Media Objects in

Multimedia Database Management Systems”,
Proceedings of the 1st International Workshop on
MMDBMS, August, 1995.

17. Woelk, Darrell, W. Kim, and W. Luther., “An Object-

Oriented Approach to Multimedia Data”, Readings
in Object-Oriented Database Systems , Morgan
Kaufman, 1990.

