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Abstract 
 In order to more efficiently represent image editing in 
multimedia databases, research has been performed to 
determine the usefulness of storing one image file as a 
base along with a set of operations that represent the 
modifications to the image that occured during editing.  
Because any editor should be able to produce and 
interpret them, these operations should be elements of 
some standardized set.  One of the properties that this 
standardized set must have is completeness so that it is 
able to represent any of the modifications a software 
editor may produce.  In this paper, we propose a method 
for testing whether or not any general set of image 
operations is complete.  Part of this proposal includes 
formal definitions for both images and completeness.  In 
addition, an example of this test is presented for a set of 
image processing operations. 
 
 

1. Motivation 
 
 One of the functions of any database system is to 
facilitate editing of its data.  This process becomes more 
complex in a multimedia database management system 
(MMDBMS) because of the size of multimedia data.  
Although multimedia data can be characterized into 
various types such as audio, video, still images, text, and 
graphics, they all have the characteristic of being space 

intensive [9].  For example, CD quality audio uses 1.4 
Megabits per second, NTSC quality video uses 1.92 
Megabits per frame, and an image stored as a bitmap can 
use 4,000,000 bytes of storage [1, 17]. 
 To illustrate the problems with editing multimedia 
objects, imagine an application for an interior designer.  
This application allows the designer to view a photo of the 
room and decorate it by editing the picture.  The designer 
could change the color of the walls and carpet, add, 
remove, or rearrange the furniture, and experiment with 
different lighting effects. 
 In addition to this example, imagine a different 
application that lets a recording studio edit one of its 
songs.  The application would let the users select a song, 
then add several sound effects, alter the voices, or merge 
samples from other recordings. 
 In both of these examples, the users start with a base 
image or audio file and perform different editing operations 
on it.  The users will want to see and hear each 
modification they perform.  When the users begin to 
create new files that are modifications of the base files, 
then save both the old and new data, the MMDBMS may 
quickly run out of storage. 
 Researchers have noted that there is redundancy in 
storing both the base and modified data in an MMDBMS 
[7].  Because of the size of multimedia data, it may be more 
efficient to use data references which will act as 
abstractions of the data [1].  As an alternative to simply 
compressing the data, it has been proposed to store only 



 

the base data with a series of instructions explaining how 
to generate the new data [7].  Not only would this method 
conserve much more space than compression, it would 
eliminate any degradation that results from compression 
algorithms that are lossy [7]. 
 When the user creates the new data, the editor used 
must store the instructions explaining how it was created 
in the MMDBMS.  In addition, if other users want to 
recreate the new data, their editors must know how to 
interpret the set of instructions they receive back from the 
database.  For all of the editors to interpret the 
instructions correctly, the set of operations used in the 
instructions will have to be part of some previously 
defined standard set, called a logical model language 
(LML) by researchers [7]. 
 Figure 1 illustrates this process for an image database.  
A user performs an action on an image such as clicking on 
the red option.  The editor receives this action and 
translates it into a standard operation, such as ‘change 
color red’.  The editor sends the command to the 
MMDBMS which performs the corresponding operation 
(x, y, color) → (x, y, red) on the image.  The MMDBMS 
then returns the modified image to the editor, which will 
then display the new image to the user. 

 

Action Standard Set
of Operations

Display Image

“Click on Red” “Change Color Red” (x,y,color) → (x,y,red)

User Editor MMDBMS

 
 

Figure 1  -  Image Editing using Standardized 
Operations 

 
 For the LML to be useful, it must have the ability to 
represent any transformation performed by the user's 
editor.  Since all of the possible image transformations are 
not known, it is difficult to test for this ability. 
 It is the goal of this paper to solve this problem for 
logical model languages for image databases, which we 
call image LMLs.  To accomplish this, it will give a precise 
definition of an image as well as define the completeness 
property for image LMLs.  In addition, it will test a sample 
LML for completeness using the method presented. 
 The structure of the remainder of this paper is as 
follows:  In section 2, we will describe and evaluate a 
previous definition of completeness.  In section 3, we will 
state our definition of completeness as well as our 
definition of an image.  In section 4, we will propose a 

methodology for testing an image LML for completeness.  
In section 5, we will describe a sample LML, and then in 
section 6, we will test it for completeness using the 
proposed technique.  In section 7, we will summarize our 
research and describe the work that will be continued in 
the future. 

 
2. Related work 
 
 Developing an image LML was the subject of research 
performed in [7] and [4].  To express all of the possible 
image transformations performed by a given editor, the 
researchers examined two sources, namely the existing 
image processing software and the image algebra 
described in [14] and [15].  While the operations in the 
LML are defined using the image algebra, the definition of 
completeness is based on the existing software. 
 The definition from the researchers is that a complete 
image LML has the capability of expressing any operation 
that can be performed by version 3.0 of Adobe Systems 
Incorporated's Photoshop.  The reason this software 
package was selected is that it outsells competing 
software packages by a factor of four [4].  In addition, 
other software reviewers regard it as powerful when 
comparing its functionality to its competitors [10, 11, 12]. 
 The main drawback to this definition is that it requires 
accepting two assumptions.  The first assumption is that 
Photoshop 3.0 can express every image transformation.  
The second is that every operation in Photoshop can be 
expressed by the operations in the LML being evaluated.  
Proving the first assumption requires that all of the 
possible image transformations are known.  Proving the 
second requires a list of the LML operations needed for 
each Photoshop command. 

 
3. Definitions  
 
 Since our goal is to provide a methodology for 
determining whether a set of image operations is complete, 
we must precisely define what an image is, what an image 
operation is, and what completeness means.  We will 
define an image by examining how it is used.  Once the 
definition of an image is established, we will define image 
operations, then define completeness with respect to 
image operations. 
 
3.1 Image Background 
 
 Despite how an image is logically stored in a computer, 
the goal is to visually display it.  Computer screens are 



 

composed of a grid of small, square, colored dots.  These 
dots are called pixels.  [2, 13]. 
 For a computer to display an image, it must be digitized.  
This means that the image must be decomposed into a grid 
of pixels [5].  Since a computer must digitize an image in 
order to display it, we will define images as a grid of pixels. 
 An individual pixel can be thought of as having two 
components, its coordinate point and its value [15].  Both 
of these components must be defined.  Since an image is a 
grid of pixels, we will restrict the coordinates of a single 
pixel to a 2-dimensional plane.  The pixel's value is 
intended to represent its color. 
 Representing a color numerically is the goal of color 
theory.  There are several models used for representing 
color.  One widely used model is RGB which stands for 
Red, Green, and Blue.  Combinations of these three colors, 
called channels, are used to create the other colors in the 
RGB model.  This model is based on the way colors are 
perceived by humans in that red, green, and blue are the 
basis for all of the colors in nature [5]. 
 Another widely used model is CMYK, which stands for 
Cyan, Magenta, Yellow, and blacK.  This color model is 
based on the inks used in printing where the percentages 
of cyan, magenta, yellow, and black inks are specified for 
each printed dot [5].  So, to associate a pixel with a color in 
the CMYK model, a value between 0 and 100 is required 
for each of the four channels. 
 These two examples show that there are a different 
number of channels necessary to represent the color of a 
pixel depending on the model used.  Because of this, a 
pixel must be a coordinate pair associated with a set of 
channels.  This means an image is a set of coordinate 
points where each point has a set of channels and 
values. 
 
3.2 Image Definition 
 
 As seen from the informal definition, an image is 
defined as a set of pixels where each pixel has a unique x 
and y coordinate pair.  A pixel is defined as a set of tuples 
{<x, y, c, v>} where x represents the value of the x-
coordinate and y represents the value of the y-coordinate.  
Since each pixel corresponds to exactly one x and y 
coordinate pair, all of the x values are equal, and all of the 
y values are equal in the set. 
 In each tuple, the element c represents one of the 
channels of the color mode used by the pixel, such as red 
in the rgb color mode.  The element v represents the value 
of the channel for the pixel.  This allows us to represent a 
single pixel by a set of tuples {<x1, y1, c1, v1>, <x2, y2, c2, 

v2>, ... , <xk, yk, ck, vk>} where k ≥ 0, xi = xj and y i = yj for 

all i ≥ 1 and i ≤ k and for all j ≥ 1 and j ≤ k.  Note that this 

means each tuple represents one channel, and adding or 
removing tuples corresponds to adding or removing 
channels. 
 The domains of x and y are the set of integers, Z, since 

x and y come from the discrete lattice Z2 described in [14] 
and [15].  The domain of each ci is composed of the 

various channels that can be defined on an image.  The 
domain of each vi is dependent on the value of the 

corresponding ci in its tuple.  For example, if ci is red of the 

rgb color mode using 24-bit color, then the domain of vi is 

all integers between 0 and 255.  If ci is yellow of the cmyk 

color model, then the domain of vi is all integers between 0 

and 100 [5, 13]. 
 As an example of this image definition, say that we 
have a pixel in the rgb color model.  The pixel is located at 
the point (5, 10) and has a red channel value of 15, a green 
channel value of 30, and a blue channel value of 40.  
According to the definition used in this paper, the pixel is 
represented as a set of three tuples, namely {<5, 10, red, 
15>, <5, 10, green, 30>, and <5, 10, blue, 40>}. 
 
3.3 Image Operations  
 
 The above definition of an image helps clarify what is 
meant by an image operation.  In this paper, an image 
operation performs a transformation from an image A to 
another image B.  This definition of an image operation 
excludes those operations whose result is not an image.  
For example, cardinality is an operation that can be 
performed on an image, but its result is an integer, namely 
the number of pixels in the image.  As far as our definition 
is concerned, this is not an image operation. 
 
3.4 Completeness Definition 
 
 Instead of comparing an image LML to a software 
package as in the related work, the approach used in this 
paper is to base the completeness definition on the 
definition of an image.  To say that an image LML is 
complete, it must be able to express all transformations 
from one image to another.  So, given any two images A 
and B, there should exist a sequence of LML operations to 
convert A to B and B to A. 
 
4. Testing for Completeness 
 
 In this section, we will describe the method used to test 
if an image LML satisfies the completeness property.  We 
will accomplish this by describing an algorithm for 



 

converting any image A to another image B.  If the 
operations in the image LML can perform all of the image 
operations needed by the algorithm, then it can convert 

any image A to another image B.  By our definition, this 
means that it is complete. 

 
4.1 Algorithm Description 
 
 The algorithm we will use is based on the fact that 
images are sets.  Informally, given one set of elements, A, 
and another set of elements, B, we will convert A to B by 
first adding to or deleting elements from A until it has the 
same number of elements as B.  Then, we will modify the 
values of each of the elements in A so that they are the 
same as the elements in B. 
 
4.2 Algorithm 
 
 Formally, let A be any image and let the cardinality of A 
= m where m ≥ 0.  We can represent A as {P1, P2, ... , Pm} 

where each Pi is a pixel.  Similarly, let B be any image and 

let the cardinality of B = n, where n ≥ 0.  We can represent 
B as {Q1, Q2, ... , Qn} where each Qi is a pixel. 

 
Step 1:  If m ≥ n, then remove a pixel from A (m - n) times, 
otherwise, add a pixel to A (n - m) times.  Upon completion 
of this step, if m ≥ n, then the cardinality of A will equal m 
- (m - n), which equals n.  If m < n, then the cardinality of A 
will equal m + (n - m), which also equals n.  Thus, after this 
step, the cardinality of A will equal the cardinality of B. 
 
Step 2:  Since the cardinality of both images are now 
equal, we can now express A as {P1, P2, ... , Pn} and B as 

{Q1, Q2, ... , Qn}.  In this step, for each i between 1 and n, 

we will set Pi = Qi.  Upon completion of this step, A will 

now contain the elements {Q1, Q2, ... , Qn}. 

 In our definition, each Pi and Qi are sets of tuples.  This 

means that setting Pi equal to Qi will be more complex than 

a simple assignment statement.  For each of the pixels in 
image A, we will add or remove tuples from the pixel until 
its cardinality equals the cardinality of the corresponding 
pixel in image B.  Then we will set the tuples in A equal to 
the corresponding tuples in B. 
 For each i between 1 and n, perform the following sub-
steps: 
 
Step 2.1:  Let h be the cardinality of Qi and k be the 

cardinality of Pi.  If k ≥ h, then remove (k - h) tuples from 

Pi, otherwise add (h - k) tuples to Pi.  Upon completion of 

this step, if k ≥ h, then the cardinality of Pi will equal k - (k 

- h), which equals h.  If k < h, then the cardinality of Pi will 

equal k + (h - k), which also equals h.  Thus, after this step, 
the cardinality of Pi will equal the cardinality of Qi. 

 
Step 2.2:  Now, we will set Pi equal to Qi.  Since the 

cardinalities of both Pi and Qi equal h, we will represent Pi 

as {Pi1, Pi2, ... , Pih} and Qi as {Qi1, Qi2, ... , Qih}, where 

each Pij and Qij is a 4-tuple described earlier. 

 For each j between 1 and h, perform the following: 
 
Step 2.2.1:  Set the value of the x-variable in Pij equal to 

the value of the x variable in Qij. 

 
Step 2.2.2:  Set the value of the y-variable in Pij equal to 

the value of the y variable in Qij. 

 
Step 2.2.3:  Set the value of the c-variable in Pij equal to 

the value of the c variable in Qij. 

 
Step 2.2.4:  Set the value of the v-variable in Pij equal to 

the value of the v variable in Qij. 

 
4.3 Algorithm Correctness 
 
 After completion of the substeps 2.2.1 - 2.2.4, the tuple 
Pij will equal the tuple Qij.  This is true because each of the 

4 corresponding components of the tuples will be equal. 
 After these substeps are performed for each of the j 
tuples in Pi, then each tuple Pij will equal Qij for all j 

between 1 and h.  So, if a 4-tuple <x, y, c, v> is in Qi, then 

there will be a 4-tuple <x, y, c, v> in Pi.  So, Qi ⊆ Pi.  

Similarly, if a 4-tuple <x, y, c, v> is in Pi, then there will be a 

4-tuple <x, y, c, v> in Qi.  So, Pi ⊆ Qi.  Therefore Pi = Qi. 

 This means that when step 2 completes for each of the 
n pixels in image A, Pi will equal Qi for all i between 1 and 

n.  So, if there is a pixel Qi = {Qi1, Qi2, ... , Qih} in B, there 

will be a pixel {Qi1,  Qi2, ... , Qih} in A.  So, B ⊆ A.  

Similarly, since Pi = Qi for all i, if there is a pixel Qi = {Qi1, 

Qi2, ... , Qih} in A, there will be a pixel {Qi1, Qi2, ... , Qih} in 

B.  So, A ⊆ B.  Therefore, A = B. 
 This means that at the conclusion of this algorithm, 
image A will be the same as image B. 



 

 
4.4 Image Operation List 
 
 The algorithm given above uses eight image 
operations.  In step 1, a pixel is either added to or removed 
from an image.  In step 2.1, a tuple is either added to or 
removed from a pixel.  In step 2.2.1, the x variable of a tuple 
is modified.  In step 2.2.2, the y variable of a tuple is 
modified.  In step 2.2.3, the c variable of a tuple is 
modified.  In step 2.2.4, the v variable of a tuple is 
modified. 
 Table 1 summarizes the image operations used in our 
algorithm. 
 

1. An operation to add a pixel to an image 
2. An operation to remove a pixel from an image 
3. An operation to add a tuple to a pixel 
4. An operation to remove a tuple from a pixel 
5. An operation to change pixel element x 
6. An operation to change pixel element y 
7. An operation to change pixel element c 
8. An operation to change pixel element v 

 
Table 1  -  Image Operations Used in the Testing 

for Completeness Algorithm 
 
So, if an image LML can perform each of these eight image 
operations, then it can express every transformation from 
one image to another.  This means that it is complete. 
 
5. An Example LML 
 
 To demonstrate our technique for testing for 
completeness of an image LML, we will use the LML 
proposed in [7] which contains six operations.  These 
operations are called merge, define, mutate, modify, 
combine, and applyfunction. 
 
5.1 Merge 
 
 The merge operation combines a base image, A, with a 
new image, B.  The result is the union of the pixels in the 
two images.  This operation is flexible enough to be either 
opaque or transparent.  If it is transparent, whenever 
images A and B have pixels at the same coordinates, the 
value of the pixels in A will be used.  In the same 
situations, if it is opaque, the values of the pixels in B will 
be used. 
 Formally, let A be the base image where A = {P1, P2, ... , 

Pm} with m ≥ 0, and B be an image {Q1, Q2, ... , Qn} with n 

≥ 0.  Recall from section 3 that a pixel is defined as a set of 
4-tuples {<x, y, c, v>} where all of the values of x are 
equal, and all of the values of y are equal.  The result of 
merging A with B returns the union of their pixels based 
on the x and y coordinates, meaning that if there is a pixel 
Pi in A where Pi = {<xi, yi, ci1, vi1>, <xi, yi, ci2, vi2>, ... , 

<xi, yi, cik, vik>}, and there is a pixel Qj in B where Qj = 

{<xj, yj, cj1, vj1>, <xj, yj, cj2, vj2>, ... , <xj, yj, cjh, vjh>}, 

such that xi = xj and yi = yj, then we will include only one 

of the pixels in the resultant union. 

 

5.2 Define  

 

 The define operation selects a subset of an image.  This 
operation is frequently referred to as cropping. 

 Formally, let A be an image where A = {P1, P2, ... , Pm} 

with m ≥ 0.  Performing the define operation on A will 
create a new image {P1, P2, ... , Pr} with m ≥ r. 

 

5.3 Mutate 

 

 The mutate operation changes the position of pixels in 
an image.  This means that it assigns new values to the x 
and y coordinates of some of the pixels.  In terms of our 
image definition, this operation will assign new values to 
the x and y variables of the tuples in a pixel.  Since the 
result of this operation must be an image, there cannot be 
another pixel in the resulting image with the same x and y 
coordinates. 

 

5.4 Modify 

 

 The modify operation affects the values of the 
channels of an image.  It will change the color of some of 
the pixels in an image to a new color.  In terms of our image 
definition, this corresponds to changing the value of the v 
variable in a tuple. 



 

5.5 Combine  
 
 The combine operation is similar to the modify 
operation in that is also changes the colors of an image.  
The difference is that it computes the new color of a pixel 
by using the colors of adjacent pixels.  As with the modify 
operation, this corresponds to changing the value of the v 
variable in a tuple in terms of our image definition. 
 
5.6 ApplyFunction 
 
 Finally, the applyfunction operation manipulates the 
channels used by an image.  Unlike the modify and 
combine operations, it edits the channels themselves, not 
their values.  Among the functions this operation performs 
is adding a channel, removing a channel, and replacing a 
channel.  In terms of our image definition, it affects the 
values of the c variables in the tuples. 

 
6 Testing the sample LML 
 
 For an image LML to be complete, it must be able to 
perform each of the eight low level image operations 
needed by the algorithm described in section 4.  In this 
section, we will show that the sample LML described in 
section 5 can perform each of the eight operations. 

 
6.1 Adding a pixel 
 
 Adding a pixel to an image can be performed by the 
merge operation in the LML by merging a base image with 
an image containing a single pixel provided that the pixel 
does not have the same coordinates as a pixel in the base 
image.  Formally, let A be any image where A = {P1, P2, ... , 

Pm}.  To transform A into {P1, P2, ... , Pm, Q1}, we can 

merge A with an image B = {Q1}, where Q1 = {<x’, y’, c1’, 

v1’>, <x’, y’, c2’, v2’>, ... , <x’, y’, ch’, vh>}, and there is 

not a pixel {<x, y, c1, v1>, <x, y, c2, v2>, ... , <x, y, ck, vk>} 

in A such that x = x’ and y = y’. 
 
6.2 Removing a pixel 
 
 Removing a pixel can be accomplished with the define 
operation.  Informally, we will define a new image from the 
base image by selecting all of the pixels in the base image 
except for a single pixel.  Formally, let A be an image {P1, 

P2, ... , Pm}.  To remove a pixel Pj from A, we define a new 

image A' = {P1’, P2’, ... , Pm-1’} where Pi’ = Pi if i < j and Pi’ 

= Pi+1 if i ≥ j. 

 
6.3 Adding a tuple  
 
 Recall from section 3.2 that adding a tuple to a pixel 
corresponds to adding a new channel.  To add a tuple to a 
pixel, we will have to define a new channel at the same 
coordinates and assign it a value.  Since the applyfunction 
operation in the proposed image LML can add a channel, 
this task can be accomplished by it.  Formally, let P be a 
pixel {<x, y, c1, v1>, <x, y, c2, v2>, ... , <x, y, ck, vk>}.  

Applyfunction can add a tuple <x, y, ck+1, vk+1> to P 

creating a new pixel {<x, y, c1, v1>, <x, y, c2, v2>, ... , <x, y, 

ck, vk>, <x, y, ck+1, vk+1>}. 

 
6.4 Removing a tuple  
 
 Removing a tuple from a pixel corresponds to removing 
a channel from a pixel.  Since the applyfunction operation 
in the proposed image LML can remove a channel, this 
task can be accomplished by it.  Formally, let P be a pixel 
{<x, y, c1, v1>, <x, y, c2, v2>, ... , <x, y, ck,  vk>}.  

Applyfunction can remove a tuple <x, y, cj, vj> from P 

creating a new pixel {<x, y, c1', v1'>, <x, y, c2', v2'>, ... , <x, 

y, ck-1', vk-1'>} where each ci’ = ci if i < j and ci’ = ci+1 if i 

≥ j. 
 
6.5 Modifying x and y 
 
 Changing the x and y coordinates in a tuple can be 
performed by the mutate operation.  Informally, we assign 
new values to the x and y components of each tuple in a 
pixel.  Of course, the resulting image cannot contain two 
pixels with the same x and y coordinates. 
 Formally, let P be a pixel P = {<x, y, c1, v1>, <x, y, c2, 

v2>, ... , <x, y, ck, vk>}.  The mutate operation will set <x, 

y, ci, vi> equal to <x’, y’, ci, vi> for all i = 1, k.  In order for 

this operation to be valid, there can be no pixel {<x’’, y’’, 
c1,  v1>, <x’’, y’’, c2, v2>, ... , <x’’, y’’, cl,  vl>} in the 

original image such that x’’ = x’ and y’’ = y’. 
 
6.6 Modifying c 
 
 Changing the c value in a tuple corresponds to 
replacing a channel with another in a tuple.  This function 
can be performed by the applyfunction operation 



 

according to its definition.  Formally, let P be a pixel P = 
{<x, y, c1, v1>, <x, y, c2, v2>, ... , <x, y, ck, vk>}.  To 

replace a channel cj with some c’, we will set the tuple <x, 

y, cj, vj> equal to <x, y, c’, vj>.  Note that if vj is not in the 

domain of c’, then it will also have to be modified. 
 
6.7 Modifying v 
 
 The modify and combine operations change the value v 
in a tuple.  The only restriction on changing the value of v 
is that the new value must remain in the domain of the c 
value in its tuple. 
 Formally, let P be a pixel {<x, y, c1, v1>, <x, y, c2, v2>, ... 

, <x, y, ck, vk>}.  To change the value vi in a tuple <x, y, ci, 

vi> to some value v’ in the domain of ci, we simply replace 

the tuple by <x, y, ci, v’>. 

 
6.8 Completeness Summary 
 
 To summarize, the 8 possible general operations that 
can be performed on an image can be expressed in the 
operations defined in the image LML in [7].  This means 
that the proposed image LML is complete.  The general 
operations and their corresponding LML operations are 
given in table 2. 
 

 
Image Operations 

Corresponding 
LML Operations 

Add a pixel to an image Merge 
Remove a pixel from an image Define 
Add a tuple to a pixel Applyfunction 
Remove a tuple from a pixel Applyfunction 
Change x Mutate 
Change y Mutate 
Change c Applyfunction 
Change v Modify or Combine 

 
Table 2  -  Image Operations and Their 

Corresponding LML Operations 
 
7. Conclusion 
 
 To reduce the amount of space necessary to store a 
series of edited versions of an image, some of the versions 
can be stored as a set of instructions.  So that the images 
can be interpreted by any editor, the set of image 
processing operations in the instructions must be part of 
some standardized set called a Logical Model Language 

(LML) [7].  To demonstrate that the standardized set of 
operations is useful, it must be proven to be complete. 
 In this paper, we have proposed a methodology for 
testing whether or not a set of image processing 
operations is complete.  As part of accomplishing this, we 
have provided a definition of completeness and a formal 
definition of an image.  In addition, we have demonstrated 
this method using a sample set of image operations. 
 Completeness is not the only property needed to 
establish whether or not an image LML is an acceptable 
standard.  In addition, the LML should be independent 
and minimal [7, 4].  A precise definition and testing method 
for each of these properties is part of continuing research.  
Also, this paper has only addressed LMLs for image 
databases.  This work needs to be extended to other 
multimedia data types, namely audio, video, text, and 
graphics data. 
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