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Abstract 

In a mobile ad-hoc network (MANET), mobile hosts can move freely and communicate with each other 
directly through a wireless medium without the existence of a fixed wired infrastructure.  MANET is 
typically used in battlefields and disaster recovery situations where it is not feasible to have a fixed 
network.  Techniques that manage database transactions in MANET need to address additional issues 
such as host mobility, energy limitation and real-time constraints.  This paper proposes a solution for 
transaction management that reduces the number of transactions missing deadlines while balancing the 
energy consumption by the mobile hosts in the system.  This paper then reports the simulation 
experiments that were conducted to evaluate the performance of the proposed solution in terms of number 
of transactions missing deadlines, total energy consumption and the distribution of energy consumption 
among mobile host.  
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1. INTRODUCTION 

Rapid developments in wireless technology have enabled mobile users to access data from 

different sites. The Mobile MultiDatabase Management Systems (MMDBMSs) ensure convenient and 

efficient access of databases for the mobile users.     Transaction Manager (TM) is a vital component that 

provides reliable and consistent units of computing to its users in MMDBMSs.  The wireless 

communication medium poses two new issues that need to be taken care of by the TM, i.e., frequent 

disconnection and migration. Disconnection in wireless systems cannot be treated as catastrophic failures 

that result in aborted transactions. When a disconnection occurs, TM needs to determine the status of the 

user, and if reconnection is expected, the transaction must not be aborted. However, even if reconnection 

is not expected, aborting a transaction should be postponed as long as possible since the status of the user 

can only be predicted. Also, a disconnected user may resume execution from a different location. 
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Disconnection and migration prolong the execution time of transactions which results in a higher 

probability of conflicts with other transactions. Thus, it is necessary to ensure that transactions of mobile 

users are not penalized due to their extended execution time.  This means that Long-Live Transactions 

(LLT) must be supported.  Limiting MMDBMSs to purely ACID (Atomicity, Consistency, Isolation, 

Durability) may lead to too many aborts, which will result in a system that is perfectly consistent but gets 

only a small fraction of useful work done [12]. This dictates that MMDBMSs should support a range of 

correctness criteria. In addition, any solution should conform to multidatabase design restrictions, i.e., the 

autonomy of the local databases should not be violated. 

There are two typical mobile computing architectures.  In the General Mobile Computing 

Architecture, there is a fixed Mobile Support Station (MSS) that supports all mobile hosts (MHs) roaming 

within its cell.  When an MH moves out of a cell and enters a new cell, it can no longer communicate 

with the previous cell’s MSS and is under the control of the new cell’s MSS.  All MSSs communicate 

with each other via a fixed network.  In the second architecture called Mobile Ad-hoc Network 

(MANET) Architecture, all MHs are roaming and the network that interconnects these MHs is a wireless 

network with a frequently changing topology, and there are no fixed infrastructure and no fixed MSSs.  

All MHs communicate with each other through a wireless medium. This second kind of architecture is 

widely used in battlefields and disaster recovery situations ([15],[25]) where it is not feasible to have a 

fixed network infrastructure. 

Much research in the area of mobile database transaction management was based on the first 

architecture ([30], [12], [26], [27], [11]), while none on the second one.  Supporting database transaction 

services in an ad-hoc mobile network raises new issues.  If an MH stores a database, then other MHs will 

try to submit transactions and get data from it. In this environment both the user and the data source will 

be moving. So finding a route from one MH to another MH is necessary before submitting a transaction. 

Moreover many applications in this environment are time-critical which require their transactions to be 

executed not only correctly but also within their deadlines.  Thus the Transaction Manager at the MH 

where the database is stored has to consider the mobility of the submitting MHs as well as the deadlines 
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of the transactions.   Another important issue in mobile ad-hoc networks is power or energy restriction on 

MHs because MHs are not connected to direct power supplies, and many of them will run on small and 

low-power devices.  So energy-efficient solutions are needed for this environment. Such solutions should 

aim at providing a balance of energy consumption among MHs so that MHs with low energy do not run 

out of energy quickly, and thus the number of MH disconnections due to energy exhaustion can be 

reduced. 

The goals of this paper are to propose an overall solution for managing database transactions in 

MANET that takes the issues of MH disconnection, migration, energy limitation, and transaction timing 

constraints into consideration, and perform simulation experiments to study the performance of the 

proposed solution.   The paper presents algorithms that provide answers to the following questions: how 

to distribute a transaction initiated by client, how to choose a server to process a transaction, how to 

schedule a transaction for execution,  how to guarantee the ACID properties for a transaction, and how to 

return the transaction results to the client.  The rest of the paper is organized as follows.  Section 2 

reviews some of the most recent mobile transaction management techniques.  Section 3 describes the 

proposed MANET architecture and applications.  Section 4 presents our transaction management 

technique that addresses the above issues for the proposed architecture.   Specifically, Section 4 describes 

the information to be stored at each MH, the properties and classification of transactions, three different 

modes of energy to be used, how transactions are processed by MHs, and how transaction concurrency 

control and commitment are handled.  Sections 5 and 6 present the simulation model and results. Finally 

Section 7 concludes the paper. 

2.  RELATED WORK 

A number of transaction management techniques have been proposed for the General Mobile Computing 

Architecture.  The technique presented in [30] is based on agent-based distributed computing. An agent is 

an object that encapsulates data and procedures that the receiving computer executes. A global transaction 

can be visualized as an agent that consists of sub-agents. Agents may be submitted from various sites 

including mobile stations. Agent-based computation is decentralized as the agents themselves 
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communicate with each other in order to provide consistent and reliable computing. A set of structural 

dependencies allows the user to define compensating methods that are executed to compensate for already 

committed methods. In order to support migration, relocation points are pre-defined within the agent. The 

executions of agents can be isolated from each other by ensuring that concurrent execution occurs within 

the pre-defined breakpoints.  

The Kangaroo model presented in [12] is based on the Open Nested model and captures the 

movement behavior of MHs. A global transaction (referred to as a Kangaroo transaction) consists of a set 

of Joey transactions, each consisting of all operations executed within the boundaries of one MSS. Each 

Joey transaction consists of one or more sub-transactions. Joey transactions may be committed 

independently. Kangaroo transactions execute in two different modes: under the Compensating mode, the 

failure of any Joey transaction causes all committed Joeys to be compensated and any other active Joeys 

to be aborted. Under the Split mode, all committed Joeys will not be compensated and the decision to 

commit or abort any active Joeys is left up to the component Data Base Management Systems (DBMSs).  

The Pre-Commit model proposed in [26] introduces a pre-read, pre-write, and a pre-commit 

operation to address the issues of mobile computing. Transactions of mobile users include read or pre-

read data values, manipulate the data that have been read and pre-write the modified values stored at the 

MH. Once all pre-write values have been declared, the transaction pre-commits. At this point, all pre-

write values are transmitted to the MSS, which then completes the transactions.  A pre-write does not 

update the state of the physical data object but only declares its modified value. Once a transaction pre-

commits, its pre-write values are written to a pre-write buffer maintained in the MSS and are made visible 

to other concurrent transactions executing at that MH and the respective MSS.  

In the PSTM technique proposed in [9, 11], the Global Transaction Manager (GTM) consists of 

two layers: the Global Transaction Coordinator (GTC) which resides at each MSS, and the Site 

Transaction Manager (STM) which resides at each local database site.  All local databases are connected 

to a fixed network.  When an MH submits a global transaction to the GTC, the GTC creates a global data 

structure to supervise the overall execution of the global transaction. Then it submits all sub-transactions 

of the global transaction and their compensating transactions to the corresponding sites. The STM at each 
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site supervises the execution of site transactions submitted at that site. After the completion of each site 

transaction, the STM informs the GTC about the status of the site transaction. If an MH migrates to a new 

cell, the MH will inform the new MSS about the identity of the previous MSS. The GTC of the new MSS 

will obtain the whole global data structure from the previous MSS and will be responsible for the 

execution of the global transaction of the migrated MH. If a user disconnects, its status is marked as 

disconnected but its transactions are not halted. But if the GTM determines that a catastrophic failure has 

occurred, then they are halted and marked as suspended.  

The Multi-version transaction model proposed in [27] uses versions to increase data availability 

in mobile environment. Each transaction is this model is either in start, committed or terminated state. A 

transaction can start and commit at MH but it will terminate only at MSS. The proposed scheme improves 

concurrency of mobile transactions by making use of the time between the commitment of transactions at 

MH and the termination of transactions at MSS. The scheme synchronizes the read / write lock requests 

on different versions of data using timestamps.  

All the above reviewed techniques are based on the General Mobile Computing Architecture; so 

they address the mobility of users only. But in MANET the servers that store the data sources are also 

MHs. There are no fixed MSSs in this architecture, and the precise positions of the users and the data 

sources also cannot be located in advance. So before submitting a transaction, an MH has to find the MH 

which has the data. After processing the transactions the MH has to find the requester and submit the 

results. So location management should also be addressed while managing transactions in this 

environment.  From the energy point of view, since all MHs will be running on limited power, they can 

go into doze mode or sleep mode at any time to reserve energy. The reviewed techniques do not address 

the energy-related issues, for example, if an MH goes into doze mode then how the MSS will take care of 

the transactions submitted by that MH. In our environment the servers called Large Mobile Hosts 

(LMHs), which store the entire DBMS and are capable of processing transactions as defined in Section 3, 

can also have energy limitation and are different from the MSSs which are servers with unlimited power. 

The reviewed techniques also do not deal with real-time transactions. Associating deadlines with 

 
 

5



transactions will have an impact on each of the proposed techniques. We will need a transaction scheduler 

and a commit protocol which take transaction types (firm and soft) and deadlines into consideration in 

order to minimize the number of transactions that must be aborted due to deadline violations.  An efficient 

sub-transaction deadline assignment is also needed to carefully distribute global transactions’ deadlines 

among their sub-transactions. In summary, none of the reviewed techniques can be applied directly to our 

environment.  In the following sections we will describe our proposed architecture and applications and 

present a transaction management solution that fills in the gap in the reviewed techniques. 

3.   PROPOSED ARCHITECTURE AND APPLICATIONS 

In MANET, MHs communicate with each other without the help of a static wired infrastructure. 

So we have defined our architecture for this environment as illustrated in Fig. 1. Our architecture for 

MANET is adopted from the group mobility model defined in [15]. Depending on communication 

capacity, computing power, disk storage, memory size and energy limitation, MHs in this architecture can 

be classified into two groups: 1) computers with reduced memory, storage, power and computing 

capabilities (e.g. wearable computers developed at CMU [34]), which we will call Small Mobile Hosts 

(SMHs), and 2) classical workstations equipped with more storage, power, communication and 

computing facilities than SMHs, which we will call Large Mobile Host (LMHs). Every MH has a radius 

of influence. An MH can directly communicate with other MHs which are within its radius of influence. 

In Fig. 1, an oval shape with borders in dotted line represents the radius of influence of an MH. The 

communication link between two MHs is shown with dark dotted lines. Two MHs that are outside each 

other's radius of influence will be able to indirectly communicate with each other in multiple hops using 

other intermediate MHs between them [3].  For example, in Fig. 1, SMH 7 will not be able to 

communicate directly with LMH 1 because LMH 1 resides outside of the radius of influence of SMH 7, 

but it can indirectly communicate in multiple hops using SMH 6 and SMH 5 between them.  Due to 

energy and storage limitations, we will assume that only LMHs will store the whole DBMS and SMHs 

will store only some modules of the DBMS (e.g. Query Processor) that allow them to query their own 

data, submit transactions to LMHs and receive the results. 
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The proposed architecture can be used to support many applications, such as battlefields and 

disaster recovery.  In battlefields, soldiers equipped with portable computing and transceiver devices can 

be considered as SMHs while battery-supported computers transported by humvees and tanks can be 

considered as LMHs.  Both humvee and tank computers are more static than SMHs [25] and can store 

tactical information regarding enemy and other units in their databases.  Soldiers can communicate with 

tank and humvee computers via wireless LAN technology to get the information from their databases (for 

example, which unit of enemy is located where, what is its strength).  

In a disaster recovery situation such as an earthquake rescue operation, rescuers can be viewed as 

SMHs and mobile hospitals as LMHs. A mobile hospital can store the information of medical equipment 

in its database and rescuers can query about the inventory and inform the mobile hospital to keep certain 

arrangements ready for a particular patient whom they have found at their sites. There can be multiple 

mobile hospitals and the mobile hospitals can exchange information among themselves.  

Other possible uses of MANET include Mobile ad-hoc voting [36] developed at MIT to 

spontaneously vote on issues across a mobile network and immediately checking the results to see the 

impact of election, students using laptop computers to participate in an interactive lecture [37], business 

associates sharing and accessing databases in a meeting where it is difficult to setup a wired network. 
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Fig. 1. Architecture 
 

4. PROPOSED  TRANSACTION MANAGEMENT SOLUTION 

In this section, we present our solution to manage real-time database transactions in the 

architecture proposed in Section 3.  We first describe some key information stored at the mobile hosts 
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that are needed in order to understand the details of our solution.    We then present the properties and 

classification of transactions to be processed by our solution and its employment of three modes of 

energy.  We then describe how transactions flow between MHs, how an SMH processes transactions 

initiated at its site, how an LMH executes transactions sent to it by SMHs and other LMHs, how an LMH 

schedules transactions in its queue for execution, how it commits a compensatable/non-compensatable 

transaction, and how it verifies whether a transaction conflicts with other active transactions when the 

transaction wants to commit in order to decide whether the transaction should be committed/aborted.  

4.1. Key Information Stored at Mobile Hosts 

In our presented architecture, each MH will store some key information in its local database. The 

ID field will uniquely identify an MH.  Every MH will get its coordinates from GPS (Global Positioning 

System) [20] periodically and store them in the Position field, which will be used at the time of routing a 

transaction from a source MH to a destination MH. Each MH will also store its Radius of transmission 

range in its local database. The Energy_availability field will record the amount of energy available in 

that MH at that point of time. This information is needed to identify the MH with the highest available 

energy at any point in time.  Each LMH will maintain a Global Schema, which is the integration of all 

local schemas from all LMHs and is used to identify which data object is stored in which LMH.  Each 

LMH will periodically broadcast its ID, Position and Energy_availability, and the SMHs and other LMHs 

will record these in an LMH_list in their local databases after listening to the broadcast channel. The 

frequency of broadcasts depends on the application. If the application requires LMHs to move more often, 

then their states should be broadcast frequently.  

4.2 Transaction Properties and Classification 

In our real-time environment, transactions have deadlines and are classified into two categories: 

firm and soft [32].  When a firm transaction misses its deadline, its value becomes zero and it must be 

aborted.  For example in the battlefield, a transaction that is trying to recognize a moving object of enemy 

(e.g. an enemy airplane) by comparing it with the images (signatures) stored in the database can be 

treated as a firm transaction.   From the value function describing tasks with soft deadlines in [1], we can 
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define soft transactions with two deadlines. A soft transaction still can be executed after its first deadline 

expires, but its value decreases after the first deadline and becomes zero after the second deadline. In a 

battlefield environment, querying the position of an enemy stored in the database can be treated as a soft 

transaction with two deadlines. Since the position of the enemy will be changing frequently in this 

environment, the value of this transaction will decrease over time and will become zero after a certain 

time. In this case, the first deadline will be the point of time when the probability of getting the enemy at 

that position starts decreasing due to mobility of enemy. And the second deadline will be the point of 

time when the probability of getting the enemy at that position is zero.  

A global transaction is defined as a transaction that requires data items from different sites. The 

part of a global transaction, which is executed at a particular site, is defined as a sub-transaction. We have 

assumed that for each global transaction there will be no more than one sub-transaction for one site.  

Depending on whether transactions can be compensated or not after they have been committed, they are 

categorized as compensatable and non-compensatable transactions. In the battlefield, updating the 

location of enemy is an example of a non-compensatable transaction because if the location of enemy is 

updated with wrong information, then a soldier can kill another soldier of his own group who happens to 

be in that location by mistake, and this cannot be compensated. A transaction that marks the status of a 

soldier (alive/dead) in the database can be considered compensatable.  

Considering transaction criticality with respect to transaction commitment, sub-transactions of a 

global transaction can be classified as vital and non-vital sub-transactions. All vital sub-transactions of a 

global transaction must succeed for the global transaction to succeed.   An abort of a non-vital sub-

transaction does not require a global transaction to be aborted. For example in the battlefield, a soldier 

can ask for images of different objects (enemy troops, rivers, roads, terrains, etc) from the databases 

stored in tanks and humvees. In this type of transactions, the soldier may specify that the image of one 

object (e.g. enemy troop) is vital and the image of another object (e.g. road) is non-vital. This means that 

the image of enemy troop is more important to the soldier.  
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4.3. Handling Energy Limitation 

Our transaction management solution is aimed at reducing energy consumption at each MH and 

providing a balance of energy consumption among MHs so that MHs with low energy do not run out of 

energy quickly, and thus decreasing the number of MH disconnections due to energy exhaustion. To 

reduce energy consumption, each MH will operate in three modes, Active, Doze, and Sleep, as follows: 

1 Active Mode: The MH performs its usual activities. Its CPU is working and its communication 

device can transmit and receive signals. 

2 Doze Mode: The CPU of the MH will be working at a lower rate. It can examine messages from 

other MHs. The communication device can receive signals. So the MH can be awaken by a 

message from other MHs [4]. 

3 Sleep Mode: Both the CPU and the communication device of the MH are suspended.  This 

is equivalent to a system failure considered in classical transaction processing work. 

We have considered all the three modes of mobile hosts in our proposed solutions for managing 

transactions at SMHs and LMHs as described in Sections 4.5 and 4.6. 

4.4. Overall Transaction Flow between MHs 
 

We assume that when an SMH initiates a transaction, it will send the entire transaction to an 

LMH to process before it moves away.  This LMH will act as a coordinator for this global transaction. 

Then the coordinator LMH will check the global schema to find which data item is stored at which LMH 

and divide the global transaction into sub-transactions (or also called site-transactions) in such a way that 

all data required by a sub-transaction resides at only one LMH, which is called the participant LMH of the 

global transaction. The coordinator LMH will submit the sub-transactions to the respective participant 

LMHs for execution. Then the coordinator LMH with the help of the participant LMHs will commit/abort 

the global transaction and return the result to the requesting SMH.   In the next two sections, 4.5 and 4.6, 

we describe in detail how an SMH processes the transactions initiated at its site and how an LMH 

executes the transactions once it received them from an SMH or from another LMH. 
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4.5. Handling Transaction Submission from SMH to LMH 

Since in our architecture MHs have energy limitation and transactions have timing constraints, we 

need to have a transaction management policy that provides a balance of energy consumption among 

MHs to reduce the chance that MHs get disconnected due to power exhaustion, while at the same time 

reduces the number of transactions that must be aborted due to missing their deadlines.  Here we consider 

time as the most important factor in handling firm transactions and energy in handling soft transactions. 

So the SMH will submit its firm transactions to the nearest LMH so that the transactions can meet their 

deadlines. But for soft transactions, the SMH will submit them to the LMH which has the highest 

available energy. Here we are sacrificing the first deadlines of soft transactions in favor of balancing the 

energy consumption because soft transactions can still be executed after their first deadlines have expired. 

Thus when an SMH initiates a firm transaction, it will search its local database to identify the nearest 

LMH, find a route to this nearest LMH using some route discovery scheme and submit the transaction to 

this LMH for processing.  We can use the LAR Scheme 2 proposed in [20] to find a route because this 

technique needs only the position of the destination, which is available in the local database of each SMH. 

Now if the nearest LMH is in active mode, it will process the transaction. If it is in doze mode 

and if the transaction is firm, it will wake up and process the transaction in order to reduce the chance that 

the transaction will miss its deadline.  But if the LMH is in sleep mode, the requesting SMH will wait for 

some time to get the result of the submitted transaction. If it does not receive the result of the transaction 

in this time period, it will assume that the nearest LMH is either in sleep mode or disconnected. So it will 

again check its local database to find the next nearest LMH, find a route to this LMH and submit the 

transaction.   The SMH can determine the amount of time it must wait for the LMH to return the 

transaction results using the runtime estimate of the transaction, communication overhead and possible 

delay due to disconnection obtained from the transaction history as follows. 

Let  Runtime estimate of the transaction = r time units. 
Estimated communication time for submitting the transaction to the LMH and getting back the 

result = c1 time units 
Average estimated communication cost for a sub-transaction = c2 time units 
Number of sub-transactions = n (from history) 
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Total Communication cost = (c1 + n c2) time units. 
Then Waiting_period = r +  (c1 + n c2) 

If the transaction is soft, the SMH will search its local database for the LMH with the highest 

available energy, find a route to this LMH and submit the transaction to it.  If the SMH does not get the 

result of the transaction after some time, it will search the local database to find the LMH with the next 

highest available energy.  If the requesting SMH moves after submitting a transaction to an LMH, it will 

inform the LMH of its new position. The algorithm is shown in Fig. 2.  

Suppose an SMH whose ID is SMH_ID and position is SMH_Position initiates a Transaction T1 with type T1_type, 
deadline T1_deadline  
 
Submit_transaction_from_SMH_to_LMH (T1, T1_type, T1_deadline, SMH_Position, SMH_ID)  
Begin 

If T1_type is firm 
  Search the LMH_List  to get the nearest LMH that is not yet visited (LMH_c) 

Else 
  Search the LMH_list to get the LMH with highest energy and not yet visited (LMH_c)  
      End If 

Find a route to LMH_c 
 Submit T1 to LMH_c 
 Set Waiting_period = value 
 Set timer =Waiting_period 
 While timer ≠ 0 do 
          If the result of T1 is received 
  Find a route to LMH_c 
  Send an acknowledgement to LMH_c 
  Exit 
        End If 
      timer-- 
 End While 
 T1_deadline = T1_deadline – Waiting_period 
 If T1_deadline = 0              // T1 has missed the deadline  
      Abort T1 
 Else 
     Mark LMH_c as visited 
                 Submit_transaction_from_SMH_to_LMH (T1, T1_type, T1_deadline, SMH_Position, SMH_ID) 

End If 
End 

Fig. 2. SMH Execution Algorithm 
 

4.6. Handling Transaction Processing at LMH and Result Submission to SMH 

An LMH can receive global transactions from an SMH or sub-transactions from other LMHs. 

Each LMH has three components: 1) Transaction Scheduler (TS) which schedules all global transactions 

and sub-transactions stored in the LMH’s transaction queue; 2) Transaction Coordinator (TC) which 
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divides the global transaction into sub-transactions and submits them to corresponding LMHs, and returns 

the results to the requesting MH; and 3) Transaction Manager (TM) which manages the execution of sub-

transactions.   After receiving a transaction from an SMH, if the LMH is in active mode, it will pass the 

transaction to the TS. If the LMH is in doze mode and if the transaction is firm, it will wake up and pass 

the transaction to TS. But if the transaction is soft, the LMH will not wake up. Here we are sacrificing 

soft transactions for energy consideration because the LMH will usually go into doze mode to reserve its 

energy, and for soft transactions, they still will be executed after they missed their first deadlines.   

The TS at LMH will use a real-time energy-efficient dynamic scheduling algorithm (presented in 

the next section 4.7) to schedule transactions that it received.  When executing a transaction, the TC will 

pass the transaction to the LMH’s TM if the transaction is a local transaction.  Otherwise it will divide the 

global transaction into sub-transactions, initiate these sub-transactions on the remote participant LMHs, 

and distribute the deadline of the global transaction among the sub-transactions using a deadline 

distribution algorithm such as the EQF Strategy proposed in [17]. Then the TC will use the Commit 

Protocol and Concurrency Control Protocol (presented in Sections 4.8 and 4.9) to decide the fate of the 

global transaction.  After the TC has decided to commit a transaction, it will submit the result to the 

requesting SMH. If the requesting SMH is in active mode, it will receive the result.  If it is in doze mode 

and if the transaction is firm, then in order to meet the deadline of the transaction, the SMH will wake up 

and receive the result. But if the transaction is soft, it is up to the SMH to decide whether it should come 

into active mode and receive the result or remain in doze mode to reserve its energy for firm transactions.  

If the requesting SMH is in sleep mode, it will not be able to receive the result. So if the TC does 

not receive any acknowledgement till the deadline of the transaction, it will abort the transaction if the 

transaction is firm.  Otherwise, the TC will calculate the slack time using the second deadline of the 

transaction. If this slack time is zero, it will abort the transaction. Otherwise it will divide the slack time 

into some time intervals and will submit the result again to the requesting SMH during those intervals. 

The motivation behind this technique is that since the transaction is soft and transmission consumes a 
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significant amount of energy, the LMH will not continuously keep sending the result to the sleeping SMH 

and lose its energy. The length of the time-interval is calculated as follows.  

Let the second deadline of the soft transaction = d2 time units and Current time = t time units 
Slack time s = (d2 – t) time units. 
Average Energy level of LMH = E energy units 
Average energy consumption to process a sub-transaction = m energy units 
Average energy consumption to process a global transaction = M energy units 
Average energy consumption to transmit a message = k energy units  
The average number of sub-transactions on an LMH = n 
The average number of global transactions on an LMH = N 
Total Energy Consumption for all transactions on an LMH = (m*n + M*N) 
Average Remaining Energy R = E - (m*n + M*N) 
Thus the total number of intervals α = R / k 
And the length of an interval = s / α  
 

The LMH execution algorithm is captured in Fig. 3a and 3b. 
Suppose an LMH receives a transaction T with ID T_ID, transaction type T_type, deadline T_d, Runtime estimate 
T_e, Requester ID R_ID, Requester position R_pos, Requester energy R_energy, Data item List L. 
// This module will be executed when an LMH receives a transaction 
Execute_transaction_at_LMH (T, T_ID, T_type, T_d, T_e, R_ID, R_Pos, R_energy, L) 
Begin 
   Schedule (T_ID, T_type, T_d, T_e, R_energy) and take the first transaction Tf from the queue  
 If  Tf_ID is for a sub-transaction // Tf  is a local transaction 
  Execute the sub-transaction Tf. 
  Submit_result_to_the_requester(Tf, R_ID, R_Pos)         
  Else   // Tf is a global transaction 
  Execute global transaction (Tf, Tf_ID, Tf_type, Tf_d, Tf_e, R_ID, R_Pos, R_energy, L) 

 While LMH has not received Ack from requesting SMH and slack time for1st deadline of Tf  > 0 do  
   If LMH has received an Ack       
    Commit Tf 

Remove Tf from the active transaction list 
    Exit  
   End If 
  End While 
  If LMH has not received an Ack from requesting SMH  // SMH is in sleep mode 
   If Tf_type is firm 
    Abort the transaction. 
    Submit_result_to_the_requester (Tf, R_ID, R_Pos) 
   Else       // Transaction type is soft   
    Find the slack time using the second deadline 

   If slack time =0 
     Abort the transaction 
     Submit_result_to_the_requester (Tf, R_ID, R_Pos) 
    Else 
     Divide_slack_time_and_submit(Tf, Tf_d,  slack_time, R_ID, R_Pos ) 
    End If 
   End If 
  End If 
 End If 
End 

Fig. 3a. LMH Execution Algorithm (part 1) 
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// This module will be executed when the transaction is a global transaction 
Execute_global_transaction (T, T_ID, T_type, T_d, T_e, R_ID, R_Pos,  R_energy, L)  
Begin 
 Search the global schema. 
 Get the LMH_list for Data item List L. 
 Divide the Global Transaction into sub-transactions. 
 (Refer to this list of sub-transactions as S_list) 
 Distribute deadline T_d among  S_list using EQF Strategy [Kao,1993] 
 For each LMH in the LMH_list 
  Find a route to LMH using LAR Scheme 2 [Ko, 1998] 
  Submit the corresponding sub-transaction from S_list to this LMH 
 End For 
 Wait until all the vital sub-transactions are completed 
 Run PGSG Algorithm [Dirckze, 1998,2000] to check Atomicity and Isolation (A/I)  property violations 
      //Details of PGSG are given in Section 4.9 
 If PGSG Algorithm's outcome is to abort T due to A/I violations 

If slack time of T  is greater than 0  // For soft, slack time is calculated using second deadline 
   Execute_transaction_at_LMH (T, T_ID, T_type, T_d, T_e, R_ID, R_Pos, R_energy, L)  
                              Else 
   Abort T 
  End If 
 Else      
  Submit_result_to_the_requester(T, R_ID, R_Pos)  // PGSG ’s outcome is to commit T  
 End If 
End 
 
// This module submits the result of the transaction to the requesting SMH 
Submit_result_to_the_requester (T, R_ID, R_Pos)  
Begin 

Find a route to the requester 
Send result of T to the requester 

End 
 
//This module divides the slack time into intervals and submit result to the requester in these intervals 
Divide_slack_time_and_submit(Tf, Tf_d, slack_time, R_ID, R_Pos )  
Begin 

Divide the slack time into α  intervals 
Loop_count = 0 

 While Loop_count is less thanα and LMH has not received an Ack from  requesting SMH do 
  Submit_result_to_the_requester (Tf, R_ID, R_Pos) 
  Set WaitingTimePeriod = interval   // max .time that LMH waits for an Ack from requesting SMH  
  While LMH has not received an Ack and WaitingTimePeriod≠0 do 
   If LMH has received an Ack from requesting SMH  
    Commit Tf 
    Remove Tf from active transaction list 
    Exit 
   End If 
  End While 
  Increment Loop_count 
 End While 
 End 

Fig. 3b. LMH Execution Algorithm (part 2) 
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4.7.  Energy-Efficient Real-Time Transaction Scheduling  

Each LMH will schedule transactions it receives from SMHs and other LMHs for execution.  The 

scheduling algorithm has to consider not only transaction types (firm and soft), transaction deadlines, but 

also the energy limitation of the MHs.  Here we can use the Least Slack (LS) cognizant technique 

proposed in [2] with certain modifications with respect to energy constraints, disconnections and 

transaction types. In the LS technique, transactions with less slack time are scheduled before transactions 

with more slack time.  Our scheduling algorithm follows the same principle but calculates the slack time s 

of a transaction based on its deadline d, runtime estimate c, probability of disconnection during execution 

Pd, and average time loss due to disconnection Td using the following formula:  

s = d – (t + c + Pd*Td)  (Formula 1) 

The values of Pd and Td can be obtained from the transaction execution history as follows. The 

LMH can keep track of how many times each SMH had been disconnected when the LMH wanted to 

submit the result of a transaction to it and what was the duration of the disconnection. From these values, 

the LMH can determine the probability of disconnection and the average time loss due to disconnection 

for a particular SMH. 

If two firm transactions have the same slack time, then a higher priority will be given to the one 

whose requester has less energy available in order to reduce the chance that the requester will run out of 

energy before the transaction can be completed. The MHs while submitting their transactions/sub-

transactions to the LMH will also send their energy levels to the LMH. The same policy will be adopted if 

two soft transactions have the same slack time. If the slack time of a firm transaction is equal to the slack 

time of a soft transaction, then a higher priority will be given to the firm transaction considering that the 

firm transaction will be aborted if it misses its deadline. Now if the slack time of a soft transaction is 

found to be negative, then its slack time will be recalculated using its second deadline and its priority will 

be recalculated. If the recalculated slack time is again found to be negative, then the transaction will be 

discarded. The algorithm is captured in Fig. 4. 
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 Schedule (T_ID, T_type, T_d, T_e, R_energy) 
Begin 

  Calculate the slack time for all transactions using Formula 1. 
  If the slack time of a transaction T is less than 0 and T_type is firm 

Remove T from the queue and discard it. 
  End if 
  Sort all the transactions that have slack time > 0  according to their slack times. 
  Assign higher priorities to transactions with shorter slack times. 

If two firm transactions or two soft transactions have the same slack time  
Give a higher priority to the one whose requesting MHs has less energy. 

End if 
If the slack time of a firm transaction is equal to the slack time of a soft transaction 

   Give a higher priority to the firm transaction. 
  End if 
  If the slack time of a soft transaction is negative 
   Recalculate the slack time using its second deadline and Formula 1. 
   If the recalculated slack time of a soft transaction is negative 
    Discard the soft transaction. 
   Else 
                 Recalculate its priority. 
   End if 
  End if 
   

End 
 Fig. 4.  Energy-Efficient Real-Time Transaction Scheduling Algorithm    
 

4.8. Transaction Commitment 

For committing a global transaction, we need a Commit Protocol that considers the host mobility, 

energy limitation and the time constraint characteristics of our environment. So our primary aim is to 

reduce the number of communication messages between the coordinator LMH and the participant LMHs 

when committing a global transaction. The motivation behind this idea is threefold. Firstly fewer 

communication messages means less transmission from a mobile host, which means less energy 

consumption because transmission consumes a substantial amount of energy. Secondly if we can commit 

a transaction with fewer messages, then there is higher chance that we will meet the deadline of the 

transaction. Finally since the hosts will be mobile in our environment, the commit protocol with less 

communication will have fewer disconnections.  

We propose to use Semantic Atomicity [23] to handle commitment of compensatable 

transactions, that is, we allow them to commit if all their vital sub-transactions are committed. This will 

allow the transactions to commit early. As a result resources will be released early and LLTs will be 

supported. In order to take care of the non-compensatable transactions, we can relax the local autonomy 
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requirement by adding the “Pre-commit” stage in our commit protocol. If a participant LMH wants to 

commit a non-compensatable sub-transaction, first it should pre-commit at its site. It can commit the sub-

transaction only after getting the “Commit” message from the Coordinator LMH. 

Case 1: Transaction is compensatable: 

The participant LMHs can commit the sub-transactions locally at their sites. After   committing the sub-

transactions, they will inform the coordinator LMH about their decision. When the coordinator LMH gets 

all the vital sub-transactions committed and if the PGSG algorithm verified that the global transaction 

does not conflict with any active transaction, it can commit the global transaction. If any of the vital sub-

transactions is aborted, the coordinator LMH will abort the global transaction and ask the participants 

which have committed their sub-transactions to run compensating transactions for those sub-transactions. 

Case 2: Transaction is non-compensatable: 

The participant LMHs will pre-commit the sub-transactions at their sites and inform the LMH 

Coordinator about their decision.  If the coordinator LMH finds all the vital sub-transactions pre-

committed and if the PGSG algorithm verified that the global transaction does not conflict with any active 

transaction, then it will commit the global transaction and inform all the participants about its decision.  If 

the coordinator LMH finds any of the vital sub-transactions aborted, it will send an Abort message to all 

the participants. If the participant LMH gets a Commit message from the coordinator, it will commit the 

sub-transaction; if it gets a Abort message, it will abort the sub-transaction.  When any data item is in the 

pre-committed state, no other transactions can use the data item because it may lead to cascading aborts.   

4.9.  Transaction Concurrency Control 

To verify the Isolation property of compensatable transactions we adopt the Partial Global 

Serialization Graph (PGSG) concurrency control algorithm that has been developed for the General 

Mobile Computing Architecture by [9,11].  This algorithm uses the optimistic concurrency control 

principles, which means data conflicts (Isolation property violations) caused by a transaction are not 

checked during its execution but during its commit time.  However, the algorithm provides a way to 

minimize unfair treatment of long-lived mobile transactions by allowing their vital sub-transactions to 
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commit independently without knowing the fate of their global transactions, and by allowing a global 

transaction to be verified for the Isolation property violation once its vital sub-transactions have 

committed.  So first the requesting SMH has to define the vital and non-vital [7] sub-transactions when it 

submits a global transaction to an LMH. When all the vital sub-transactions are completed, the 

coordinator LMH can run the PGSG algorithm to verify the Isolation property based on the concept of 

serialization graphs.  Each participant LMH will maintain a site serialization graph, which shows the 

order of execution of all sub-transactions at that site. When the coordinator LMH wants to verify the 

Isolation property for a global transaction, it will ask for a Predecessor Graph for the global transaction 

from all the participating LMHs. Then the coordinator LMH will construct the PGSG by merging all the 

Predecessor Graphs, and check for cycles in the PGSG. If there is no cycle, then the Isolation property is 

not violated; otherwise the Isolation property is violated.  Then it will propagate the PGSG graph to the 

participating LMHs in order to guarantee serializability [11].   

If the Isolation property is not violated, then the transaction is toggled and its execution continues 

until all its remaining non-vital sub-transactions are either committed or aborted.  The coordinator LMH 

can then commit the transaction and submit the result to the requesting SMH. A toggled transaction is 

guaranteed not to be aborted due to concurrency conflicts because all its vital sub-transactions have been 

committed unless it obstructs the execution of another global transaction while in a Suspended state (note 

that PGSG assumes that all transactions and sub-transactions are compensatable; this is one of the 

limitations of this algorithm that we intend to examine further as a part of our future research discussed in 

Section 7).  A transaction is said to be in a Suspended state (i.e. the transaction is halted, no new sub-

transaction can be initiated) if its MH is disconnected from the network. Normally, if such a failure 

occurs, the transaction should be aborted.  However, since in our environment, there are many MHs that 

may be disconnected from the network, this determination may be incorrect.  In order to minimize 

erroneous aborts, Suspended global transactions are not aborted until they obstruct the execution of other 

global transactions.  When the MH reconnects to the network, its transaction comes out of the Suspended 

state. The design of toggled transactions addresses the issues of disconnection and migration of MHs that 
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cause prolonged execution of mobile transactions.  The design of Suspended transactions addresses the 

issue of disconnection due to catastrophic failures. 

If the Isolation property is violated and the transaction has not yet missed its deadline (or its 

second deadline if it is a soft transaction), the coordinator LMH will abort the transaction, and then restart 

the transaction. But if the Isolation property is violated and the transaction has missed its deadline (or its 

second deadline if it is a soft transaction), the coordinator LMH will abort the transaction and send the 

result to the requesting SMH.  An abort of a global transaction requires all participant LMHs to run the 

compensating sub-transactions for its sub-transactions that have been locally committed.  PGSG has been 

proved to correctly verify the Isolation property of all transactions and incur little overhead [11].  

5. SIMULATION MODEL 

We study the performance of our proposed solution by means of simulation.  The solutions we have 

discussed in Section 4 depend on many factors (e.g. the ratio of firm and soft transactions, deadlines of 

transactions, number of SMHs and LMHs, power level of SMHs and LMHs, routing protocols, speed of 

SMHs and LMHs, data conflicts during execution). It is difficult to correctly formulate their relationship 

using an analytical model without making many unrealistic assumptions. That is why we have decided to 

analyze the performance of our solution using simulation - an approach that many existing works have 

adopted ([6], [11], [14], [18], [21], [22], [24]). As we did not find any standard simulation model or 

benchmark in the literature specially built for database transaction processing in MANET, we have built 

our simulation model using simulation parameters taken from different published articles as presented in 

Section 5.2.  The simulation model is implemented using the AweSim simulation tool [31].  The initial 

energy levels of all LMHs are identical, and the same holds true for SMHs.  The locations of MHs are 

assumed to be inside a 1000Χ1000 square units region [20]; their initial locations (x and y coordinates) 

are obtained using a random distribution within the region.  All MHs are in active mode initially.  When 

an MH is not generating any transaction or not processing any transaction, it goes into doze mode. When 

the power of any MH goes down to zero, its mode is changed to sleep mode. The energy consumption for 

transition of modes of MHs is not considered. We also assume that every MH can communicate with 
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other MHs, either directly or via multiple hops. To validate our simulation model, we have conducted 

experiments and analyzed whether we are getting the expected results or whether we can justify the 

obtained results. For example, if there are more LMHs in the system, then fewer transactions missing 

deadlines are expected. So we have varied the number of LMHs in the system and checked the number of 

transactions missing deadlines. Similarly, we have varied the rest of the simulation dynamic parameters in 

a wide range of possible values to observe the behaviors of our solution under different operating 

conditions.  Note that the purpose of our simulation experiments is to study the relative performance of 

different solutions when certain parameters are varied to answer the questions such as “Will a specific 

algorithm cause more transactions to miss their deadlines or consume more energy or achieve more 

balance in energy consumption distribution among mobile servers when a parameter X increases?” This 

kind of answer will help the users decide whether they should increase a particular parameter X (e.g. 

number of servers) when using the algorithm.  Our purpose is not to obtain an absolute performance. 

5.1. Performance Measurements 

The performances of the proposed techniques are measured in terms of the percentage of 

transactions missing deadlines, the energy consumption by mobile hosts, and the average difference in 

energy consumption between two LMHs using the following equations: 

% Transactions missing deadlines = %100×
totalTrans

nemissDeadli

N
N

 

where NmissDeadline  is the number of transactions missing their deadlines, and NtotalTrans is the total number 

of transactions in the system. 
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where n is the total number of LMHs, m is the total number of SMHs, and Li and Si are the energy 

consumption of LMHi and SMHi, respectively.  Li and Si are computed using the following equation: 

Li     or   Si = (Tactive × Pactive) + (Tdoze × Pdoze) 
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where Tactive is the total time a MHi spent in active mode, Pactive is the power dissipation rate of a MHi in 

active mode, and Tdoze and Pdoze are defined similarly for doze mode. 

 The average difference in energy consumption between two LMHs is computed to study the 

distribution of energy consumption among LMHs.  Since we assume all LMHs have the same initial 

energy amount, an ideal transaction management technique should yield a balance of energy consumption 

in the system in order to reduce the chance of LMH disconnection due to power exhaustion.  The average 

difference in energy consumption between two LMHs is computed as follows: 

Average Difference in energy consumption = 
nn

xx
n

i

n

j
ji
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−∑∑
= =

)1(
1 1  

where n is the total number of LMHs and xi  is the total energy consumption of LMHi. 

5.2. Simulation Parameters  

Tables 1 and 2 show the static and dynamic simulation parameters, respectively.  Static 

parameters retain the same values throughout all the experiments.  Dynamic parameters are those for 

which we want to conduct testing cases to study their effects on the overall system performance.   While 

we are studying the effect of one dynamic parameter, the other dynamic parameters take their default 

values as listed in Table 2.   Below we provide the explanations of some of the parameters. 

Global Transactions are created with an exponential distribution of inter arrival times. This 

distribution is chosen because of its popularity in modeling the arrivals of transactions in database 

applications.  All MHs are assumed to have the same speed.  The LMH location and energy error rates are 

the percentages of error in the location and energy information of an LMH, which is broadcasted to SMHs 

and other LMHs.  The slack factor is used to calculate the global transaction deadlines as follows:  

Transaction deadline = transaction creation time + run time estimate * slack factor 

  The runtime estimate for each global transaction is computed by estimating the time to 

preprocess the transaction, process all reads/writes operations in the transaction (each read/write requires 

one main memory word access since we assume that our database is memory resident); terminate the 
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transaction, and communicate.  The communication time is calculated as the time taken to transfer a 

message from the position of the SMH to the average position of the LMHs.   The second deadline of a 

soft transaction is twice of its first deadline. 

The bandwidth of the wireless medium is adopted from [20]. The CPU power, memory access 

time and word size are chosen based on the DEC 3000 model machine [8] for LMHs. All SMHs are 

assumed to have the same radius of influence, and the same assumption is made for LMHs.  The 

additional experiments in which we used more powerful machines and generated the radius of influence 

of MHs randomly were conducted as reported in Section 7.   The time to preprocess a transaction includes 

the time to add the transaction to the active transaction list and log “begin transaction”. The time to 

preprocess an operation denotes the time to fetch one instruction.  The time to end a transaction includes 

the time to remove the transaction from the active transaction list and move it to the committed/aborted 

transaction list.  The power dissipation rates of an SMH and LMH are taken from [16] and [28], 

respectively. The number of sub-transactions for each global transaction is determined using the 

triangular distribution, which is usually used when the exact form of distributions is unknown [19]. The 

number of operations per sub transaction is calculated from the uniform distribution UNIF (5,10).  
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Parameter Value Reference Parameter Value Reference

Bandwidth of wireless      
medium 

100 kbps [20] Time to end one transaction 0.0054 ms [8] 

CPU power of LMH 140 MIPS  
1700 MIPS 

[8]          
[5]

Probability of read operations 60% [8] 

CPU power of SMH 4 MIPS       
100 MIPS 

[16]         
[5] 

Power dissipation rate for              
LMH in active 

170W/hour [28] 

Radius of influence         
of SMH 

100 units∗ [20] Power dissipation rate for              
LMH in doze 

20W/hour [28] 

Radius of influence         
of LMH 

200 units* [20] Power dissipation rate for              
SMH in active 

7W/ hour [16] 

Main memory access time 
per word 

0.00018 ms [8] Power dissipation rate for              
SMH in doze 

1W/hour [16] 

Number of bytes per memory 
word 

8 [8] No. of sub-transactions per             
global transactions

TRIAG(3,4,5) [9] 

Time to preprocess one 
transaction 

0.0072ms [8] No. of operations per                 
sub-transactions 

UNIF(5,10) [9] 

Time to preprocess one 
operation 

0.000007ms [8]    

 

Parameter Default 
Value 

Value Range Reference Parameter Default 
value 

Value 
Range 

Reference 

Global transaction 
inter-arrival time 

EXPON 
(0.2) 

EXPON(0.2) 
to EXPON(10) 

[33]         
[14] 

MH moving speed 50 0-100 [14] 

Probability that a 
transaction is Firm  

0.5 0.1-1 [14] LMH location error 
rate 

0% 0%-100% [14] 

Number of SMHs 40 20-40 [14] LMH energy error 
rate 

0% 0%-100% [14] 

Number of LMHs 20 5-20 [14] Slack factor 15 5-25 [14]

Table 1. Static Parameters of the Simulation Model 
 

Table 2. Dynamic Parameters of the Simulation Model 

 

                                                 
∗ The parameters are also varied dynamically in the range of (50,100) and (100, 200) for SMH and LMH, respectively, for additional experiments 
in Section 7. 

 
 

24



 
6. SIMULATION RESULTS 

For each set of the simulation experiments reported in the following sections, 6.1-6.6, the results 

are calculated as averages of 20 independent runs. In each run, at least 1000 transactions are completed in 

the system. 90% confidence intervals are obtained and the width of the confidence interval of each data 

point is within 5% of the point estimate.   

6.1. Evaluation of LMH Assignment Alternatives 

To assign LMHs to handle transactions initiated by SMHs, as presented in Section 4.5, we have 

proposed that firm transactions are always submitted to the nearest LMHs and soft transactions to the 

highest energy LMHs. This technique is called Transaction Type Based Server Assignment (TTBSA). Its 

objective is to reduce the number of transactions missing their deadlines as well as to balance the energy 

consumption among the LMHs in the system by taking transaction types into consideration. We examine 

two other alternatives for LMH assignment. One alternative considers only LMH location and the other 

considers only LMH energy. These techniques are called Location Based Server Assignment (LBSA) and 

Energy Based Server Assignment (EBSA), respectively. In LBSA, all transactions initiated by SMHs are 

always sent to their nearest LMHs. In EBSA, all transactions initiated by SMHs are always sent to the 

LMHs that have the highest energy available at that time. We then perform a set of experiments to 

compare these three alternatives when the ratios of firm and soft transactions are varied. 
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Fig. 5. Effects of firm/soft transaction ratio        Fig. 6. Distribution of energy consumption in LMHs 
       on % transactions missing deadlines                    when ratio of firm/soft transactions is 50/50 
 

 
 

25



 From Fig. 5 we observe that when all transactions are submitted to the nearest LMH, the 

percentage of transactions missing deadlines is always lower than the one that incurs when all 

transactions are submitted to the highest energy LMHs or when firm transactions are submitted to the 

nearest LMHs and soft transactions to the highest energy LMHs. The average percentage of transactions 

missing deadlines is the lowest (42.76%) for LBSA and the highest (78.26%) for EBSA. The performance 

of TTBSA is in between those of the LBSA and EBSA.  On average the percentage of transactions 

missing their deadlines in TTBSA  is 27% higher than that in LBSA and 8% lower than  that in EBSA. 

We have experimented with different ratios of firm and soft transactions in studying the energy 

consumption distribution among LMHs. Due to space limitation, we show the energy consumption in 

each individual LMH only for the case when the ratio is 50/50 (Fig. 6).  In all experiments, we observe 

that EBSA gives the best-balanced energy consumption among LMHs, TTBSA gives the second best, and 

LBSA gives the worst. 

We can conclude from the above results that when a system needs only to reduce the number of 

transactions missing deadlines, LBSA is the best technique. When a system only requires a good balance 

in energy consumption by LMHs, EBSA is the best technique. But when a system needs to reduce the 

percentage of transactions missing deadlines as well as to balance the energy consumption among the 

LMHs, then TTBSA should be the choice.   

TTBSA is used in the rest of the simulation experiments reported in the subsections 6.2-6.6. 

6.2. Varying Number of LMHs 

In this experiment, we have varied the number of LMHs for different mixtures of firm and soft 

transactions. Fig. 7 shows that fewer transactions will miss their deadlines when there are more LMHs in 

the system.  This is expected since LMHs are servers, and as there are more LMHs, transactions need less 

waiting time to use the servers, and thus fewer transactions will miss their deadlines. In Figure 8, we 

observe that the total energy consumption in LMHs increases as the number of LMHs increases, except 

for the case when the number of LMHs is above 15 and there are some soft transactions in the system.   

This is due to the fact that when there are more servers, fewer transactions will be aborted, and thus 
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LMHs will consume more energy to complete more transactions. The results also show that the more firm 

transactions the system has, the more transactions will miss their deadlines (thus the less LMH  energy 

will be needed). This is because soft transactions are aborted only if they missed their second deadlines, 

while firm transactions are aborted as soon as they missed their deadlines.  When the number of LMHs is 

high (above 15 in this experiment) and not all transactions are firm, the total energy consumption in LMH 

decreases.  This is because when there are more LMHs to process transactions, each individual LMH will 

have fewer transactions in its queue, and thus it does not have to spend much time and energy on 

scheduling so many transactions, checking for conflicts between firm and soft transactions, and checking 

whether soft transactions have missed their first or second deadlines. 
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      Fig. 7. Effects of number of LMHs on             Fig. 8. Effects of number of LMHs on total  
                 % transactions missing deadlines                     energy consumption in LMHs 
 
6.3.  Varying Inter Arrival Time of Soft Transactions 

 In this experiment, we have varied the inter-arrival time of soft transactions and calculated the 

energy consumption for each LMH. In our simulation model, the energy level of each LMH is updated 

when it has processed a transaction or a sub-transaction by calculating the time it was in active mode. But 

if another transaction enters the system before the energy level of the LMH is updated, then there is a 

possibility that the SMH, which initiated that transaction, will identify a wrong LMH as the one with the 

highest energy. That means if the inter-arrival time of transactions is small, i.e. the system load is high, 

then many SMHs will not have the recent energy levels of LMHs. As a result, they will not be able to 

correctly identify the LMH with the highest energy for soft transactions. So the total energy consumption 
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in the system will not be evenly distributed among all the LMHs. But if the inter-arrival time is large, i.e. 

the system load is low, then the energy consumption in LMHs will be balanced. From Fig. 9, we can see 

that the energy consumption of LMHs are not uniformly distributed when the inter-arrival time is 

EXPON(1).  But when the inter-arrival time increases to EXPON(5), the energy consumption  of LMHs 

are almost uniform (Fig.10.) 
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 Fig. 9. Distribution of energy consumption            Fig. 10. Distribution of energy consumption 
             in individual LMHs for soft transactions                 in individual LMHs for soft transactions 
             with inter-arrival time = EXPON(1)                         with inter-arrival time = EXPON(5) 

 
6.4. Varying Location Error Rate 

In this experiment, we have varied the location error rate, which is the percentage of error in the 

location information of each LMH that is periodically broadcast to the SMHs and other LMHs.  We have 

examined the case when only firm transactions exist in the system, as the SMHs will be using the 

location information of LMHs to manage firm transactions.   Fig. 11 shows that when the location error 

rate is not very high (below 80%), it does not have a severe impact on the system performance. By 

averaging all values shown in Figure 11, we have found that on average, only 6% more transactions 

missed their deadlines when the LMH location information was less than 50% accurate. However, when 

the error rate was extremely high (above 80%), more transactions (20% more) missed their deadlines. A 

certain amount of location error was tolerated by the system because the percentage of firm transactions 

missing their deadlines depends not only on the accuracy of the LMH location information, but also on 

the LMH workload, provided that other parameters remain unchanged.  
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6.5.  Varying Energy Error Rate 

In this experiment, we have varied the percentage of error in the energy information of each 

LMH, which is periodically broadcast to the SMHs and other LMHs.  We have conducted this experiment 

with soft transactions as the SMHs will be using the energy information of LMHs to manage soft 

transactions only. Fig. 12 shows that when the energy error rate is low (10% or below), the energy 

consumption among the LMH is almost balanced. As the energy error rate increases the uniformity in 

energy consumption among LMHs decreases. This is because of the fact that as the energy error rate 

increases, the SMHs have a higher chance to identify a wrong LMH as the one with the highest energy (in 

this experiment, LMH 11 happened to be identified by SMHs as the one which has the highest energy, 

and thus, it must process more transactions, and subsequently consumed a lot more energy than the other 

LMHs did).  The average difference in energy consumption among LMHs is almost 80% higher when 

there is 20% error in energy information. So the energy balance is very sensitive to the accuracy of the 

energy information.   
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Fig. 11. Effects of location error rate on % firm    Fig. 12. Effect of error rate in energy information 
transactions missing deadlines            on energy consumption of each LMH 

    
6.6. Varying the Speed of Mobile Hosts 

The goal of this set of experiments is to study the effects of mobility of MHs in terms of speed, 

which is equal to the distance the MHs traveled divided by the total time they took to travel. Initially the 

moving directions of all MHs are randomly generated from the set of eight possible directions 

( , , , , , , , ).  Regardless of its speed, an MH always moves in the same direction as its initial 

direction.  A MH is considered moving out of the network area (i.e. 1000Χ1000) if its location exceeds 
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the boundary. In that case, the MH gets disconnected for a randomly generated time period, and 

reconnected again after the time period by moving in the opposite direction of the last move.   

Fig. 13 shows that regardless of MH speed, the more firm transactions the system has, the higher 

percentage of transactions missing deadlines the system yields. This is expected since firm transactions 

are aborted if they missed their deadlines while soft transactions are aborted only if they missed their 

second deadlines.   The results also show that changing the speed of mobile hosts has negligible effects on 

the percentage of transaction missing deadlines.  This is because of the fact that as MH moves in random 

directions, some MHs may move closer to each other while some may move further away from each 

other.  As a result, the average distance between MHs that a transaction traveled remains almost constant 

(Fig. 14). The distance traveled is lowest when all transactions are firm because firm transactions, once 

missed their deadlines, will not be continued for processing.   Since the percentage of transaction missing 

deadline shows no significant variation when the the speed of MHs changes, the energy consumed by the 

mobile hosts also shows no significant change as confirmed through our experiments.  
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Fig. 13.Effects of MH speed on % missed             Fig. 14. Effects of MH speed on average distance 
             deadlines                                                                     MHs traveled 
                                                 
7. CONCLUSIONS AND FUTURE WORK 

In this paper, we have introduced a real-time mobile ad-hoc database architecture that can be used 

to handle applications in battlefields and disaster recovery situations.  We have addressed the new issues, 

i.e., time constraints, energy limitation, and mobility of servers and users related to transaction 

management for this environment. We have provided a solution for transaction management considering 
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these issues.  Our solution is aimed at reducing the percentage of transactions missing deadlines for firm 

transactions while trying to balance the energy consumption of the servers for soft transactions.  

We have provided three alternatives to assign servers to handle transactions initiated by clients. 

To address timing constraints, our technique handles both soft and firm real-time transactions, reduces the 

number of firm transactions missing their deadlines by sending firm transactions initiated by an SMH to 

the LMH that is physically closest to the SMH to process. Our solution also provides a real-time 

transaction scheduling algorithm that takes transaction types, transaction deadlines and probability of MH 

disconnection into consideration.   To address the energy limitation issue, our technique includes all three 

modes of MH energy: active, doze, and sleep.  It reduces energy consumption by not blindly waiting for 

an MH to respond to a request but including a formula to compute the time that an SMH should wait for 

an LMH to respond.  To reduce the chance that an MH may get disconnected from the network due to 

power exhaustion, our technique attempts to achieve a balance in energy consumption among LMHs by 

sending soft transactions to the LMHs that have the highest remaining energy to process.  Our solution 

also uses vital and non-vital sub-transaction concepts to handle long-lived transactions, uses semantic 

atomicity to commit compensatable transactions and adds a pre-commit stage to the commit protocol to 

handle non-compensatable transactions.   

We have conducted extensive simulation experiments to analyze the performance of our solution.   

We have studied the effects of some major parameters by varying their values over a wide range of values 

in our simulation experiments; this allows us to observe the performance trends of our proposed solution 

when the parameter values change as they would when the solution is to be applied to an actual system. 

From the simulation results, it can be observed that there are some parameters that have 

significant impacts on the performance of our solution.   These impacts are summarized as follows. 

a) When the system needs to reduce the number of transactions missing deadlines only, then 

Location Based Server Assignment (LBSA) is the best technique. When the system only requires 

a good balance among the energy consumption of LMHs, then Energy Based Server Assignment 

(EBSA) is the best technique. But when the system needs to reduce the percentage of transactions 
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missing deadlines as well as to balance the energy consumption among the LMHs, then 

Transaction Type Based Server Assignment (TTBSA) should be the choice. 

b) The percentage of transactions missing deadlines increases either when the number of mobile 

hosts decreases or when the system load measured by the transaction arrival rate increases.  

c) The total energy consumption by LMHs increases when the number of LMHs increases.    

However, when the number of LMHs becomes very high, unless there are only firm transactions 

in the system, the total energy consumed by LMHs decreases. 

d) The system load also influences the balance in energy consumption distribution in the system for 

soft transactions.  When the system load is light, the energy consumptions are uniformly 

distributed among the LMHs, and thus a better balance of energy consumption is achieved. 

e) The system can tolerate some error in the LMH location information unless the error rate is 

extremely high.  The balance in energy consumption of the system is very sensitive to the 

accuracy of the LMH energy information. 

f) When mobile hosts move randomly all at the same speed in restricted directions, their speeds 

have very little impact on the overall performance of the system. 

Besides those reported in Section 6, we have also performed additional experiments in which the 

radius of influence of MHs is a random value in the range of [100,200] for LMHs and in the range of [50, 

100] for SMHs, and the CPU power of MHs is for more modern systems than the ones listed in Table 2.  

We have adopted the CPU power values from [5] where 1700 MIPS is for LMHs and 100 MIPS for 

SMHs. Even though the absolute results obtained are different from those reported in Section 6 (for 

example, when more CPU power was used, fewer transactions missed their deadlines), the relative 

performances of all the techniques studied remain unchanged.  Thus, the same conclusions (a-f) hold 

when applying our solution to the applications in which more powerful LMHs/SMHs are used and/or 

MHs do not follow a uniform radius of influence.     

In this study, we did not include the energy consumed during the sleep mode in our simulation model 

because we observed that in all our simulation experiments, with 1000 transactions being simulated, the 
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time the transactions spent in active mode of MHs is much more than the time they spent in doze mode or 

sleep mode of MHs.  Therefore the inclusion of the energy consumption during the sleep mode would not 

change the overall simulation results. 

As an extension of this research work, whether energy consumption for processing transactions 

can be further reduced should be examined. The PGSG Algorithm [11], which we have used to verify the 

A/I properties of global transactions, is expensive in terms of time and energy for an ad-hoc environment 

because during the execution of the algorithm, the coordinator LMH has to maintain connectivity with the 

participant LMHs. Another disadvantage of the PGSG algorithm is that it does not take care of non-

compensatable transactions, real-time transactions, and energy limitation of MHs. So future research can 

investigate whether this algorithm can be expanded for our environment considering the issues or a new 

technique is required to verify the A/I properties of global transactions.   

Our proposed scheduling algorithm was based on the Least Slack (LS) technique.  This technique 

requires transaction runtime estimates, which is difficult to obtain accurately in a highly dynamic 

environment.  Our future work will examine the Earliest Deadline technique [2]. 

Future research will also investigate the effects of caching data at SMHs. 
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