
Implementation of a Novel Cache Replacement

Strategy Based on Frequency & Query Cost

Objectives for a Mobile Cloud Database System
Zachary Arani#1, Christoph Kinzel#2, Jason Arenson#3, Chenxiao Wang #4, Le Gruenwald #5, Laurent d’Orazio *6

School of Computer Science, University of Oklahoma

Norman, Oklahoma, USA
1 myrrhman@ou.edu 2 christoph.c.kinzel@gmail.com 3 arensonjt@ou.edu 4 chenxiao@ou.edu

5 ggruenwald@ou.edu

* Univ Rennes, CNRS, IRISA

Lannion, France
6 laurent.dorazio@univ-rennes1.fr

Abstract—We introduce the Value-Relevance Score, a new

measure of the importance of cache entries in mobile-cloud

database environments. We use this score to create a new cache

replacement policy, the Value-Relevance Cache Replacement

Policy. Using the MOCCAD mobile-could database environment,

we compare user costs for this new replacement policy and the

Least Recently Used cache replacement policy during query

execution. We find that in the general use case, the Value-

Reference method is not as effective as a Least Recently Used

Implementation. We hope to refine the experiments presented

here to demonstrate more precisely the effects and uses of the

Value-Relevance Replacement Policy.

I. INTRODUCTION

 A mobile-cloud database environment consists of a user on

a mobile device querying a database on a cloud server. Some

of the data queried may be fully or partially available in the

mobile device’s cache storage, so that it may be desirable to run

parts of the query on the cache in the interests of saving time,

energy, or money. A semantic cache allows for the calculation

of which parts of the query are already present in cache.

However, it may not always be desirable for the user to run

large amount of queries on the cache, as this could drain energy

more quickly than querying the cloud. A candidate for how and

where to run a specific query is referred to as a Query Execution

Plan (QEP). A given QEP might involve executing the query in

cache or on the cloud server, or a combination of the two. The

problem of selecting a QEP given user preferences is discussed

in [1]. A Specific solution to this problem is discussed in more

detail in the Background/Purpose section.

In a general setting, the choice of which elements to keep in

the cache in the event of cache overflow is dictated by a Cache

Replacement Policy. Many well-studied cache replacement

policies exist; the optimal policy depends on the specifics of the

situation. One of the simplest cache replacement policies is the

Least Recently Used Policy (LRU). In this model, the cache

entries are maintained in a queue in order of least recent use, so

that the most recently used cache element is in the back of the

queue and the least recently used is at the front. When elements

must be removed from the cache, they are removed from the

front of the queue until the cache no longer overflows. Other

models base removal on frequency [4] or some predefined

cost/benefit relation [2]. In a mobile-cloud database

environment, choosing which elements remain in cache is

especially important. If the cache maintains a list of entries that

Figure 1. Mobile - Cloud Database Environment [1]

are valuable and relevant to the user, then associated costs for

the user should decrease. In an attempt to accomplish this, this

paper introduces a cache replacement policy based on

cost/benefit (value) and frequency (relevance).

II. BACKGROUND AND PROPOSAL

A. Background

This paper builds on the existing Mobile Cloud Cost-Aware

Database System (MOCCAD) prototype described in [1]. The

MOCCAD prototype implements a strategy for determining

which QEP to execute based on user preferences and the current

contents of the cache. These preferences are expressed in terms

of weights the user assigns to monetary cost, energy cost, and

time. Monetary cost is the amount charged by the cloud service

to run the QEP, energy cost is measured in charge expended by

the user’s phone to run the QEP, and time is the time the QEP

takes to complete. A user whose only priority is getting results

quickly might assign time a weight of 1 and energy and

monetary costs weights of 0, while a user having little charge

remaining on their phone might assign energy cost a higher

weight than the other costs.

The costs associated to a given QEP are estimated by the

MOCCAD prototype. In general, running queries on the cache

decreases monetary and temporal costs and increases energy

costs, while the opposite holds true for running queries on the

cloud. To decide which of the potential QEPs is selected, the

MOCCAD implements the Normalized Weighted Sum

Algorithm (NWSA). In the NWSA, each QEP is associated

with a score, computed as

𝑺𝒊 =∑𝒘𝒋

𝒏

𝒋=𝟏

𝒂𝒊𝒋

𝒎𝒋

(1) NWSA QEP score calculation

Here 𝑆𝑖 is the score for the 𝑖𝑡ℎ QEP, 𝑤𝑗 is the user-

provided weight associated with cost 𝑗, 𝑚𝑗 is a normalization

constant, and 𝑎𝑖𝑗 is the computed value of cost 𝑗 for plan 𝑖. In

this case, there are only three costs: time, money, and energy,

so that j ranges from 1 to 3; but the NWSA is applicable to

arbitrary n. 𝑚𝑗 is the maximum acceptable value for the given

dimension. For instance, if a query should take at most 5

seconds, 𝑚𝑗would be set to 5. The QEP score synthesizes user

preferences and estimated costs, so that it represents a single

user-specific cost for the QEP.

The QEP with minimum score is selected by the MOCCAD

prototype. The authors of [1] demonstrate improved quality of

QEP selections using this score method over single-

optimization strategies.

B. Integration of NWSA into MOCCAD Semantic Cache

Our purpose is to explore the effects of alternative cache

replacement strategies on the performance of the MOCCAD

prototype. In [1], the prototype implemented an LRU cache

replacement strategy. By choosing a more sophisticated

strategy tailored to query history and user preference, the

contents of the cache may be made more relevant and valuable

to the user. As this occurs, QEP scores should decrease as more

common and expensive queries have the option of being run on

the cache. We propose a cache replacement policy based on a

score involving relevance and value. In this policy, the

elements of the cache are kept in sorted order by this constantly

updating score throughout execution of the MOCCAD

prototype. In the event of cache overflow, the element with the

smallest score is removed from the cache; this process is

repeated until the cache overflow is resolved. The cache score

for cache entry 𝑘 is computed as

𝐶𝑘 =
𝑓𝑘𝑆𝑘
𝐿𝑘

(2) Value-Relevance Score for cache entries.

Here 𝑓𝑘is a measure of the frequency with which the contents

of cache entry 𝑘 has intersected with subsequent queries. Many

frequency measures are possible; for our experiments, we chose

to reset all frequencies to 0 every p queries, where the value of

p was altered over various experiments; see the results section

for the values of p tested. This frequency measure reflects how

often the data has been used recently; hence it should correlate

with relevance. Its limitations are discussed in future work.

Sk is the QEP score of the query corresponding to cache entry

k. Since this QEP score represents a user-specific cost, a cache

entry with higher QEP score is more valuable to the user; hence

QEP score should correlate with value. In our implementation,

we assume the user’s preferences do not change during the

execution of the MOCCAD prototype. This means QEP scores

do not need to be recalculated once elements are placed in the

cache. This greatly reduces the number of recalculations

needed once elements are in the cache. This is arguably not a

realistic assumption; see the future work section for more

discussion.

Lk is the size of cache entry k. Since larger entries prevent

more data from being stored in the cache, we divide by Lk to

encourage smaller entries that are still valuable and relevant.

There are many candidates for size; in our implementation, we

chose a linear measure of size.

In general, we call scores of the form
𝑓𝑆

𝐿
, where f is a measure

of frequency, S is the QEP score associated with the cache entry,

and L is a measure of cache entry size, a Value-Relevance Score.

Cache replacement policies induced by such a score are Value-

Relevance cache replacement policies.

By using a Value-Relevance Replacement policy instead of

the LRU cache replacement policy, we hope elements of the

cache will be more valuable and relevant to the user. As a result,

QEP scores for new queries should be lower once the cache is

filled for this score-based replacement policy compared to the

original LRU cache replacement policy. As lower QEP scores

represent lower user-specific costs, this would represent an

improvement in the performance of the MOCCAD prototype.

B.A.1 Implementation of the Value-Relevance Cache

Replacement Method

A min-heap implementation of a priority queue is used for

the query cache. When an entry is added, the cache first checks

if the entry already exists within the cache, if so, it runs an

update procedure, which updates the score of each cache entry.

If the entry does not exist in the cache, it then checks to see if

other entries need to be removed in order to fit the new entry.

If so, it iteratively deletes the lowest scoring entries until there

is enough space to fit the new entry. Then, the entry is added

to the cache, updating each score.

III. DATA ANALYSIS

A. Experimentation Background

For general experimentation, several SQL tables were

created using Apache Hive. A set of 25,000 tuples were

programmatically generated with the format shown in Table 2.

Five tables, with increasing tuple sizes (5,000 to 25,000,

incrementing by 5,000), were populated, meaning table five

contained each of tables one, two, and so on, along with 5,000

other entries.

Queries were also programmatically generated. Given a

table and a set amount, a list of queries would be generated that

were guaranteed to be contained within the given table. Each

query was a simple SELECT command, containing only one

attribute, as seen in Table 3. A set of 250 queries were

generated and used for all testing. For instance, the query

workload experiment used different portions of the generated

sample: a test of fifty queries used only the first fifty queries

generated, a test of one hundred used the first hundred, and so

on.

B. Default Parameter Values

Following is a list of the default parameter values.

These are the values of each parameter in each experiment

unless explicitly stated otherwise.

Query Cache Segment

Amount

20

Query Cache Size Limit 10 MB

Cloud/Mobile Estimation

Cache Segment Amount

INF

Cloud/Mobile Estimation

Cache Size Limit

INF

Relation Size 25,000

Queries Tested 250

NWSA Weights .33

Number of Instances

Simulated on Cloud

5

Frequency Locality 40 Cache References

Table 1: Static Parameter Values

C. Frequency Locality

As defined in (2), the frequency 𝑓𝑘 will reset to 0 for

all entries in the cache after p queries. This value p defines

a locality for frequency that is very useful in maintaining

relevancy. In this experiment, we tested several locality

values, ranging from ten queries to ninety queries, to

measure the locality’s effect on cost, time, and energy. As

experimentation shows, there is an ideal range for

frequency locality that coincides to roughly twice that of

the cache’s segmentation limit.

Figure 2: Comparison of Average Processing Time and

Frequency Locality

Figure 3: Comparison of Average Query Processing Energy and

Frequency Locality

12

12.5

13

13.5

14

0 20 40 60 80 100
A

ve
ra

ge
 Q

u
er

y
P

ro
ce

ss
in

g
Ti

m
e

(s
ec

o
n

d
s)

Frequency Locality (# of Cache Refrences)

Comparison of Average Query Processing
Time and Frequency Locality

1.7

1.75

1.8

1.85

1.9

1.95

2

0 20 40 60 80 100

A
ve

ra
ge

 Q
u

er
y

P
ro

ce
ss

in
g

En
er

gy

(m
A

h
)

Frequency Locality (# of Cache Refrences)

Comparison of Average Query Processing
Energy and Frequency Locality

Name noteid patientfirstname patientlastname doctorfirstname doctorlastname description P_date_time heartrate

Type Integer String String String String String String String

Valid Range (0, INF) A-Z A-Z A-Z A-Z A-Z 1940-2014

00:00-23:59

(15,185)

Example 25 Zachary Johnson Christoph Wang Endoscopy 1985-08-02

22:51:00

85

Table 2: Relation Specification for Generated Tuples

Attribute noteid patientfirstname patientlastname doctorfirstname doctorlastname description p_date_time heartrate

Example SELECT *

FROM

table

WHERE

noteid

<

 25

SELECT *

FROM table

WHERE

patientfirstname

 =

‘Zachary’

SELECT *

FROM table

WHERE

patientlastname

=

‘Johnson’

SELECT *

FROM table

WHERE

doctorfirstname

 =

‘Christoph’

SELECT *

FROM table

WHERE

doctorlastname

 =

 ‘Wang’

SELECT *

FROM table

WHERE

description

 =

‘Endoscopy’

SELECT * FROM

p_date_time WHERE

substr(p_date_time,0,10)
 >= ‘2003-09-23’

SELECT * FROM

p_date_time WHERE
substr(p_date_time,12)

= ’05:22:00’

SELECT *

FROM

table

WHERE

heartrate

=

85

Table 3: Examples of Generated Queries

Figure 4: Comparison of Average Query Processing Time and

Frequency Locality

These results are consistent with our expectations. It

is predictable that a small locality would lead to a lack of

relevant data in the cache, causing constant unnecessary

replacement. We also assumed that having an overtly

large locality would also be inefficient, as a large portion

of the cache would contain irrelevant data, thereby

wasting precious space.

As the results show, time and energy expenses grow

quickly as the locality reaches the segmentation size of

the cache. However, when the locality reaches roughly

twice the size of the cache’s segmentation limit, both

time and energy are optimized. Conversely, the average

cost of a query decreases as the energy and time required

for processing increase. As these three objectives are

related, it is expected that cost would react to the changes

in energy and time.

In a simple case, it is clear that using a locality

approximately twice the size of the query’s segmentation

limit leads to the most optimal results. In the following

experiments, a locality of 40 cache references for the rest

of our experimentation.

D. Effects of Relation Size on Caching Efficiency

After establishing an optimal frequency locality, our next

experiment compared the effects of relation size (i.e., the

number of entries in a database) on the performance of the

reference-value cache replacement method. Relations sizes

ranging from 5,000 to 25,000 were tested. For comparison

purposes, the Least Recently Used (LRU) cache replacement

strategy was also tested.

Figure 5: Comparison of Average Query Processing Time between

Value Relevance and LRU Cache Replacement Policies

Figure 6: Comparison of Average Query Processing Energy

between Value Relevance and LRU Cache Replacement Policies

Figure 7: Comparison of Average Query Processing Cost between

Value Relevance and LRU Cache Replacement Policies

 LRU generally outperforms Value-Relevance in

cost, energy, and time efficiency for every relation size

0.0048

0.005

0.0052

0.0054

0.0056

0.0058

0.006

0 20 40 60 80 100

C
o

st
 (

$)

Frequency Locality (# of Cache Refrences)

Comparison of Average Query Processing
Cost and Frequency Locality

0

2

4

6

8

10

12

5,000 10,000 15,000 20,000 25,000A
ve

ra
ge

 Q
u

er
y

P
ro

ce
ss

in
g

Ti
m

e
(s

ec
o

n
d

s)

Relation Size (# of Tuples)

Comparison of Average Query Processing
Time and Relation Size

Value-Relevance LRU

0

0.5

1

1.5

2

5,000 10,000 15,000 20,000 25,000

A
ve

ra
ge

 Q
u

er
y

P
ro

ce
ss

in
g

En
er

gy

(m
A

h
)

Relation Size (# of Tuples)

Comparison of Average Query Processing
Energy and Relation Size

Value-Relevance LRU

0
0.00001
0.00002
0.00003
0.00004
0.00005
0.00006
0.00007

5,000 10,000 15,000 20,000 25,000

A
ve

ra
ge

 Q
u

er
y

P
ro

ce
ss

in
g

C
o

st
 (

$
)

Relation Size (# of Tuples)

Comparison of Average Query Processing
Cost and Relation Size

Value-Relevance LRU

tested, despite using what is seemingly the most optimal

frequency locality. It should be noted, however, that the

differences in performance between the two are generally

minute and, in a few cases the Value-Relevance method

performs better than the LRU replacement strategy.

E. Effects of Query Workload on Caching Efficiency

In a similar experiment, we tested how increasingly

large query sets affected the performance of the Value-

Relevance replacement method and, by comparison, the

Least Recently Used replacement method.

Figure 5: Comparison of Average Query Processing Time and

Query Workload between Value-Relevance and Least Recently

Used Cache Replacement Strategies

Figure 5: Comparison of Average Query Processing Energy and

Query Workload between Value-Relevance and Least Recently

Used Cache Replacement Strategies

Figure 5: Comparison of Average Query Processing Cost and

Query Workload between Value-Relevance and Least Recently
Used Cache Replacement Strategies

As query workload increases, the Least Recently

Used algorithm tends to be slightly more efficient than the

Value-Relevance replacement method in terms of cost,

energy, and time (when weighted equally). This difference is

very minimal but appears to increase as the workload grows.

IV. CONCLUSION

In a general use case, the Value-Relevance replacement

method simply does not hold up to the more simplistic Least

Recently Used strategy. Even though there are potential

advantages in using Value-Relevance in certain situations, the

general performance of the replacement method does not

justify amount of overhead required to maintain the cache.

V. FUTURE WORK

The experiments discussed here are incredibly

general and arguably have an abundance of unrealistic

assumptions about the user and the information in the

database. Each assumption represents a potential avenue for

future work.

In our implementation of the Value-Relevance

Score, we assume the preferences of the user do not change,

so that effective QEP scores, Sk in (2), do not change for

cache elements. In practical applications, it’s likely the user’s

preferences do not remain constant. Hence, it may be

desirable to recalculate QEP scores when new user

preferences are provided. The simplest option is to

recalculate QEP score based on these new weights. More

sophisticated methods include averaging previous user

preferences to produce a set of weights that takes into

account historical usage, possibly weighting more recent

preferences more. The prediction of user weight preferences

is also a potential application of machine learning. Of course,

even these concepts assume that the environment of the

MOCCAD prototype remains constant, so that the costs aij in

0

2

4

6

8

10

12

50 100 150 200 250A
ve

ra
ge

 Q
u

er
y

P
ro

ce
ss

in
g

Ti
m

e
(s

ec
o

n
d

s)

Queries Processed

Comparison of Average Query Processing Time
and Query Workload

Value-Relevance LRU

0

0.5

1

1.5

2

50 100 150 200 250

A
ve

ra
ge

 Q
u

er
y

P
ro

ce
ss

in
g

En
er

gy
 (

m
A

h
)

Queries Processed

Comparison of Average Query Processing
Energy and Query Workload

Value-Relevance LRU

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

50 100 150 200 250

A
ve

ra
ge

 Q
u

er
y

P
ro

ce
ss

in
g

C
o

st
 (

$)

Queries Processed

Comparison of Average Query Processing Cost
and Query Workload

Value-Relevance LRU

(1) remain constant. If this assumption is not justified, a

recalculation scheme for these costs must be implemented as

well.

Many measures of size are possible for Lk in (2). Although

we implemented a linear measure, it’s possible a quadratic

measure of size may be more appropriate, as multiplying the

size of a cache entry by a given factor increase its value

(QEP score) and relevance (frequency) by similar factors.

Our measure of frequency, fk, in (2) was chosen for

its ease of implementation and low overhead. A more

sophisticated measure of a cache entry’s hit frequency might

calculate frequency based on the last p queries instead of

resetting every p. Although this clearly represents a better

notion of frequency than our reset-based measure, it requires

more calculations and a new data structure, which may

introduce significant added energy and time costs.

Our assumptions in data generation also limit the

applicability of these results. Both the database and the

queries were randomly generated. This makes the relevance

portion of the Value-Relevance Score, in a sense, useless in

this application. If more query patterns were tested (e.g. %

Cache Hits, % Cache Extended Hits, etc.), the Value-

Relevance Score could better reflect the relative importance

of cache entries.

VI. ACKNOWLEDGEMENT

This work is partially supported by the National Science

Foundation Award No. 1349285.

VII. REFERENCES

[1] Helff, Florian, Le Gruenwald, and Laurent d'Orazio,

"Weighted Sum Model for Multi-Objective Query

Optimization for Mobile-Cloud Database Environments."
EDBT/ICDT Workshops. 2016.

[2] Jean-Chrysostome Bolot, Philipp Hoschka, “Performance

engineering of the World Wide Web: Application to

dimensioning and cache design.” Proceedings of the Fifth
International World Wide Web Conference 6-10 May

1996, vol. 28, no. 7-11. pp. 1398-1405, 1996.

[3] M. Perrin, Time-, Energy-, and Monetary Cost-Aware

Cache Design for a Mobile Cloud Database System,"
Master’s Thesis, University of Oklahoma, School of

Computer Science, May 2015.

[4] Nabil Kouici, Dennis Conan, and Guy Bernard, “Caching

components for disconnection management in mobile
environments.” International Conference on cooperative

Information Systems, pages 1322-1339, 2004.

[5] MOQP: Immanuel Trummer, Christoph Koch: Multi-

objective parametric query optimization. VLDB vol. 26,
no. 1: 107-124 (2017)

[6] Semantic caching: Qun Ren, Margaret H. Dunham, Vijay

Kumar: Semantic Caching and Query Processing. IEEE

Trans. Knowl. Data Eng, vol. 15 no. 1, pp. 192-210,
2003.

