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Abstract—We introduce the Value-Relevance Score, a new 

measure of the importance of cache entries in mobile-cloud 

database environments. We use this score to create a new cache 

replacement policy, the Value-Relevance Cache Replacement 

Policy. Using the MOCCAD mobile-could database environment, 

we compare user costs for this new replacement policy and the 

Least Recently Used cache replacement policy during query 

execution. We find that in the general use case, the Value-

Reference method is not as effective as a Least Recently Used 

Implementation. We hope to refine the experiments presented 

here to demonstrate more precisely the effects and uses of the 

Value-Relevance Replacement Policy. 

I. INTRODUCTION 

 A mobile-cloud database environment consists of a user on 

a mobile device querying a database on a cloud server.  Some 

of the data queried may be fully or partially available in the 

mobile device’s cache storage, so that it may be desirable to run 

parts of the query on the cache in the interests of saving time, 

energy, or money. A semantic cache allows for the calculation 

of which parts of the query are already present in cache. 

However, it may not always be desirable for the user to run 

large amount of queries on the cache, as this could drain energy 

more quickly than querying the cloud. A candidate for how and 

where to run a specific query is referred to as a Query Execution 

Plan (QEP). A given QEP might involve executing the query in 

cache or on the cloud server, or a combination of the two. The 

problem of selecting a QEP given user preferences is discussed 

in [1]. A Specific solution to this problem is discussed in more 

detail in the Background/Purpose section. 

In a general setting, the choice of which elements to keep in 

the cache in the event of cache overflow is dictated by a Cache 

Replacement Policy. Many well-studied cache replacement 

policies exist; the optimal policy depends on the specifics of the 

situation. One of the simplest cache replacement policies is the 

Least Recently Used Policy (LRU). In this model, the cache 

entries are maintained in a queue in order of least recent use, so 

that the most recently used cache element is in the back of the 

queue and the least recently used is at the front. When elements 

must be removed from the cache, they are removed from the 

front of the queue until the cache no longer overflows. Other 

models base removal on frequency [4] or some predefined 

cost/benefit relation [2]. In a mobile-cloud database 

environment, choosing which elements remain in cache is 

especially important. If the cache maintains a list of entries that 

Figure 1.   Mobile - Cloud Database Environment [1] 



are valuable and relevant to the user, then associated costs for 

the user should decrease. In an attempt to accomplish this, this 

paper introduces a cache replacement policy based on 

cost/benefit (value) and frequency (relevance). 

II. BACKGROUND AND PROPOSAL 

A. Background 

This paper builds on the existing Mobile Cloud Cost-Aware 

Database System (MOCCAD) prototype described in [1]. The 

MOCCAD prototype implements a strategy for determining 

which QEP to execute based on user preferences and the current 

contents of the cache. These preferences are expressed in terms 

of weights the user assigns to monetary cost, energy cost, and 

time. Monetary cost is the amount charged by the cloud service 

to run the QEP, energy cost is measured in charge expended by 

the user’s phone to run the QEP, and time is the time the QEP 

takes to complete. A user whose only priority is getting results 

quickly might assign time a weight of 1 and energy and 

monetary costs weights of 0, while a user having little charge 

remaining on their phone might assign energy cost a higher 

weight than the other costs. 

The costs associated to a given QEP are estimated by the 

MOCCAD prototype. In general, running queries on the cache 

decreases monetary and temporal costs and increases energy 

costs, while the opposite holds true for running queries on the 

cloud. To decide which of the potential QEPs is selected, the 

MOCCAD implements the Normalized Weighted Sum 

Algorithm (NWSA). In the NWSA, each QEP is associated 

with a score, computed as  
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(1) NWSA QEP score calculation 

Here 𝑆𝑖  is the score for the 𝑖𝑡ℎ   QEP, 𝑤𝑗  is the user-

provided weight associated with cost 𝑗, 𝑚𝑗 is a normalization 

constant, and 𝑎𝑖𝑗 is the computed value of cost 𝑗 for plan 𝑖. In 

this case, there are only three costs: time, money, and energy, 

so that j ranges from 1 to 3; but the NWSA is applicable to 

arbitrary n. 𝑚𝑗 is the maximum acceptable value for the given 

dimension. For instance, if a query should take at most 5 

seconds, 𝑚𝑗would be set to 5. The QEP score synthesizes user 

preferences and estimated costs, so that it represents a single 

user-specific cost for the QEP. 

The QEP with minimum score is selected by the MOCCAD 

prototype.  The authors of [1] demonstrate improved quality of 

QEP selections using this score method over single-

optimization strategies. 

B. Integration of NWSA into MOCCAD Semantic Cache 

Our purpose is to explore the effects of alternative cache 

replacement strategies on the performance of the MOCCAD 

prototype. In [1], the prototype implemented an LRU cache 

replacement strategy. By choosing a more sophisticated 

strategy tailored to query history and user preference, the 

contents of the cache may be made more relevant and valuable 

to the user. As this occurs, QEP scores should decrease as more 

common and expensive queries have the option of being run on 

the cache. We propose a cache replacement policy based on a 

score involving relevance and value. In this policy, the 

elements of the cache are kept in sorted order by this constantly 

updating score throughout execution of the MOCCAD 

prototype. In the event of cache overflow, the element with the 

smallest score is removed from the cache; this process is 

repeated until the cache overflow is resolved. The cache score 

for cache entry 𝑘 is computed as 

 

𝐶𝑘 =
𝑓𝑘𝑆𝑘
𝐿𝑘

 

(2) Value-Relevance Score for cache entries. 

 

Here 𝑓𝑘is a measure of the frequency with which the contents 

of cache entry 𝑘 has intersected with subsequent queries. Many 

frequency measures are possible; for our experiments, we chose 

to reset all frequencies to 0 every p queries, where the value of 

p was altered over various experiments; see the results section 

for the values of p tested. This frequency measure reflects how 

often the data has been used recently; hence it should correlate 

with relevance. Its limitations are discussed in future work. 

Sk is the QEP score of the query corresponding to cache entry 

k. Since this QEP score represents a user-specific cost, a cache 

entry with higher QEP score is more valuable to the user; hence 

QEP score should correlate with value. In our implementation, 

we assume the user’s preferences do not change during the 

execution of the MOCCAD prototype. This means QEP scores 

do not need to be recalculated once elements are placed in the 

cache.  This greatly reduces the number of recalculations 

needed once elements are in the cache. This is arguably not a 

realistic assumption; see the future work section for more 

discussion. 

Lk is the size of cache entry k. Since larger entries prevent 

more data from being stored in the cache, we divide by Lk to 

encourage smaller entries that are still valuable and relevant. 

There are many candidates for size; in our implementation, we 

chose a linear measure of size. 

In general, we call scores of the form 
𝑓𝑆

𝐿
, where f is a measure 

of frequency, S is the QEP score associated with the cache entry, 

and L is a measure of cache entry size, a Value-Relevance Score. 

Cache replacement policies induced by such a score are Value-

Relevance cache replacement policies. 

By using a Value-Relevance Replacement policy instead of 

the LRU cache replacement policy, we hope elements of the 

cache will be more valuable and relevant to the user. As a result, 

QEP scores for new queries should be lower once the cache is 

filled for this score-based replacement policy compared to the 

original LRU cache replacement policy. As lower QEP scores 

represent lower user-specific costs, this would represent an 

improvement in the performance of the MOCCAD prototype. 



 

B.A.1 Implementation of the Value-Relevance Cache 

Replacement Method 

A min-heap implementation of a priority queue is used for 

the query cache. When an entry is added, the cache first checks 

if the entry already exists within the cache, if so, it runs an 

update procedure, which updates the score of each cache entry. 

If the entry does not exist in the cache, it then checks to see if 

other entries need to be removed in order to fit the new entry. 

If so, it iteratively deletes the lowest scoring entries until there 

is enough space to fit the new entry. Then, the entry is added 

to the cache, updating each score.  

III. DATA ANALYSIS 

A. Experimentation Background 

For general experimentation, several SQL tables were 

created using Apache Hive. A set of 25,000 tuples were 

programmatically generated with the format shown in Table 2. 

Five tables, with increasing tuple sizes (5,000 to 25,000, 

incrementing by 5,000), were populated, meaning table five 

contained each of tables one, two, and so on, along with 5,000 

other entries. 

Queries were also programmatically generated. Given a 

table and a set amount, a list of queries would be generated that 

were guaranteed to be contained within the given table. Each 

query was a simple SELECT command, containing only one 

attribute, as seen in Table 3. A set of 250 queries were 

generated and used for all testing. For instance, the query 

workload experiment used different portions of the generated 

sample: a test of fifty queries used only the first fifty queries 

generated, a test of one hundred used the first hundred, and so 

on. 

 

B. Default Parameter Values 

Following is a list of the default parameter values.  

These are the values of each parameter in each experiment 

unless explicitly stated otherwise. 

 

Query Cache Segment 

Amount 

20 

Query Cache Size Limit 10 MB 

Cloud/Mobile Estimation 

Cache Segment Amount 

INF 

Cloud/Mobile Estimation 

Cache Size Limit 

INF 

Relation Size 25,000 

Queries Tested 250 

NWSA Weights .33 

Number of Instances 

Simulated on Cloud 

5 

Frequency Locality 40 Cache References 

Table 1: Static Parameter Values 

 

 

C. Frequency Locality 

As defined in (2), the frequency 𝑓𝑘  will reset to 0 for 

all entries in the cache after p queries. This value p defines 

a locality for frequency that is very useful in maintaining 

relevancy. In this experiment, we tested several locality 

values, ranging from ten queries to ninety queries, to 

measure the locality’s effect on cost, time, and energy. As 

experimentation shows, there is an ideal range for 

frequency locality that coincides to roughly twice that of 

the cache’s segmentation limit.  

 

 
Figure 2: Comparison of Average Processing Time and 

Frequency Locality 

 

 
Figure 3: Comparison of Average Query Processing Energy and 

Frequency Locality
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Name noteid patientfirstname patientlastname doctorfirstname doctorlastname description P_date_time heartrate 

Type Integer String String String String String String String 

Valid Range (0, INF) A-Z A-Z A-Z A-Z A-Z 1940-2014 

00:00-23:59 

(15,185) 

Example 25 Zachary Johnson Christoph Wang Endoscopy 1985-08-02  

22:51:00 

85 

 

Table 2: Relation Specification for Generated Tuples 

 

 

 

 

 

 

 

 

Attribute noteid patientfirstname patientlastname doctorfirstname doctorlastname description p_date_time heartrate 

Example SELECT * 

FROM 

table 

WHERE 

noteid  

< 

 25 

SELECT * 

FROM table 

WHERE 

patientfirstname 

 =  

‘Zachary’ 

SELECT * 

FROM table 

WHERE 

patientlastname  

=  

‘Johnson’ 

SELECT * 

FROM table 

WHERE 

doctorfirstname 

 =  

‘Christoph’ 

SELECT * 

FROM table 

WHERE 

doctorlastname 

 = 

 ‘Wang’ 

SELECT * 

FROM table 

WHERE 

description 

 = 

‘Endoscopy’ 

SELECT * FROM 

p_date_time WHERE 

substr(p_date_time,0,10) 
 >= ‘2003-09-23’ 

 

SELECT * FROM 

p_date_time WHERE 
substr(p_date_time,12) 

= ’05:22:00’ 

SELECT * 

FROM 

table 

WHERE 

heartrate  

= 

85 

 
Table 3: Examples of Generated Queries 

 

 

 

 

 

 

 



 
Figure 4: Comparison of Average Query Processing Time and 

Frequency Locality 

  

These results are consistent with our expectations. It 

is predictable that a small locality would lead to a lack of 

relevant data in the cache, causing constant unnecessary 

replacement. We also assumed that having an overtly 

large locality would also be inefficient, as a large portion 

of the cache would contain irrelevant data, thereby 

wasting precious space.  

As the results show, time and energy expenses grow 

quickly as the locality reaches the segmentation size of 

the cache. However, when the locality reaches roughly 

twice the size of the cache’s segmentation limit, both 

time and energy are optimized. Conversely, the average 

cost of a query decreases as the energy and time required 

for processing increase. As these three objectives are 

related, it is expected that cost would react to the changes 

in energy and time. 

In a simple case, it is clear that using a locality 

approximately twice the size of the query’s segmentation 

limit leads to the most optimal results. In the following 

experiments, a locality of 40 cache references for the rest 

of our experimentation.  

 

D. Effects of Relation Size on Caching Efficiency  

After establishing an optimal frequency locality, our next 

experiment compared the effects of relation size (i.e., the 

number of entries in a database) on the performance of the 

reference-value cache replacement method. Relations sizes 

ranging from 5,000 to 25,000 were tested. For comparison 

purposes, the Least Recently Used (LRU) cache replacement 

strategy was also tested.  

 

 
Figure 5: Comparison of Average Query Processing Time between 

Value Relevance and LRU Cache Replacement Policies 
 

 
Figure 6: Comparison of Average Query Processing Energy 

between Value Relevance and LRU Cache Replacement Policies 

 

 
Figure 7: Comparison of Average Query Processing Cost between 

Value Relevance and LRU Cache Replacement Policies 

 

 LRU generally outperforms Value-Relevance in 

cost, energy, and time efficiency for every relation size 
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tested, despite using what is seemingly the most optimal 

frequency locality. It should be noted, however, that the 

differences in performance between the two are generally 

minute and, in a few cases the Value-Relevance method 

performs better than the LRU replacement strategy. 

 

E. Effects of Query Workload on Caching Efficiency  

In a similar experiment, we tested how increasingly 

large query sets affected the performance of the Value-

Relevance replacement method and, by comparison, the 

Least Recently Used replacement method. 

 

 
Figure 5: Comparison of Average Query Processing Time and 

Query Workload between Value-Relevance and Least Recently 

Used Cache Replacement Strategies 

 

 
Figure 5: Comparison of Average Query Processing Energy and 

Query Workload between Value-Relevance and Least Recently 

Used Cache Replacement Strategies 

 

 
Figure 5: Comparison of Average Query Processing Cost and 

Query Workload between Value-Relevance and Least Recently 
Used Cache Replacement Strategies 

 

As query workload increases, the Least Recently 

Used algorithm tends to be slightly more efficient than the 

Value-Relevance replacement method in terms of cost, 

energy, and time (when weighted equally). This difference is 

very minimal but appears to increase as the workload grows. 

IV. CONCLUSION  

In a general use case, the Value-Relevance replacement 

method simply does not hold up to the more simplistic Least 

Recently Used strategy. Even though there are potential 

advantages in using Value-Relevance in certain situations, the 

general performance of the replacement method does not 

justify amount of overhead required to maintain the cache. 

V. FUTURE WORK 

 

The experiments discussed here are incredibly 

general and arguably have an abundance of unrealistic 

assumptions about the user and the information in the 

database. Each assumption represents a potential avenue for 

future work.  

In our implementation of the Value-Relevance 

Score, we assume the preferences of the user do not change, 

so that effective QEP scores, Sk in (2), do not change for 

cache elements. In practical applications, it’s likely the user’s 

preferences do not remain constant. Hence, it may be 

desirable to recalculate QEP scores when new user 

preferences are provided. The simplest option is to 

recalculate QEP score based on these new weights. More 

sophisticated methods include averaging previous user 

preferences to produce a set of weights that takes into 

account historical usage, possibly weighting more recent 

preferences more. The prediction of user weight preferences 

is also a potential application of machine learning. Of course, 

even these concepts assume that the environment of the 

MOCCAD prototype remains constant, so that the costs aij in 
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(1) remain constant. If this assumption is not justified, a 

recalculation scheme for these costs must be implemented as 

well. 

Many measures of size are possible for Lk in (2). Although 

we implemented a linear measure, it’s possible a quadratic 

measure of size may be more appropriate, as multiplying the 

size of a cache entry by a given factor increase its value 

(QEP score) and relevance (frequency) by similar factors. 

Our measure of frequency, fk, in (2) was chosen for 

its ease of implementation and low overhead. A more 

sophisticated measure of a cache entry’s hit frequency might 

calculate frequency based on the last p queries instead of 

resetting every p. Although this clearly represents a better 

notion of frequency than our reset-based measure, it requires 

more calculations and a new data structure, which may 

introduce significant added energy and time costs. 

Our assumptions in data generation also limit the 

applicability of these results. Both the database and the 

queries were randomly generated. This makes the relevance 

portion of the Value-Relevance Score, in a sense, useless in 

this application. If more query patterns were tested (e.g. % 

Cache Hits, % Cache Extended Hits, etc.), the Value-

Relevance Score could better reflect the relative importance 

of cache entries. 
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