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Correspondence

Multiresolution Hough Transform—An Efficient
Method of Detecting Patterns in Images

M. Atiquzzaman

Abstract—The Hough transform is highly compute bound and demands
a large amount of storage. In this correspondence, a novel multiresolution
implementation of the Hough transform has been proposed. To reduce the
computing time, it exploits the reduced information content of multires-
olution images and accumulator arrays and uses a simple peak detection
algorithm. Logarithmic parameter-range reduction ensures faster con-
vergence than other methods. The algorithm takes care of discretization
errors.

Index Terms—Discretization errors, Hough transform, image process-
ing, multiresolution algorithms, pattern recognition.

I. INTRODUCTION

The method of Hough transform [1), [2] for detecting patterns
was first proposed by Hough. It is essentially a voting process
where each point belonging to the pattern votes for all the possible
patterns passing through that point. The votes are accumulated in an
accumulator array, and the pattern receiving the maximum vote is
taken to be the desired pattern. Accuracy of the transform has been
discussed in [3]-[5]. Hardware implementations are described in [6]
and {7]. Industrial applications of the transform are discussed in [8].

The main advantages of the transform are its robustness to noise
in the image and discontinuities in the pattern—both of which are
frequently encountered in real-world images. The disadvantages of
the standard Hough transform (SHT) are its demand for a tremendous
amount of computing power and large storage. Both the requirements
increase linearly with the resolution at which the parameters are to be
determined. Two efficient implementations of the Hough transform,
namely, the adaptive Hough transform (AHT) [9] and the fast Hough
transform (FHT) [10], have been proposed in order to minimize the
above mentioned requirements.

The AHT uses a small accumulator array and the idea of a flexible
iterative “coarse-to-fine” accumulation and search strategy for peak
detection. It first analyzes the accumulator array at a coarse resolution
and then zooms down into the vicinity of the peak at successive
iterations. The initial binary edge image and the same accumulator
array are repetitively used in all the iterations. The FHT method
is based on a hierarchical approach whereby the parameter space is
successively divided into hypercubes from low to high resolution and
performs the Hough transform only on the hypercubes with votes
exceeding a selected threshold.

AHT and FHT are similar in the sense that they analyze the
parameter space at several spatial resolutions, and the space is
evaluated in fine detail in those regions where a high density of
points occur. AHT allows more freedom in redefining the parameter
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limits than the FHT, whereas the FHT is based on a regular (bintree)
data structure resulting in a simple algorithm. During the iterative
search, the methods use full-resolution images at every iteration.
Moreover, discretization errors have not been considered, thereby
requiring computation-intensive peak detection algorithms.

A novel efficient implementation of the Hough transform, called
the multiresolution Hough transform (MHT), is proposed in this
paper. Although the proposed implementation is based on a coarse-
to-fine iterative search, it has the following significant differences
over other methods:

* Multiresolution images and accumulator arrays are used in the
iterations.

* A logarithmic parameter-range reduction method that is suitable
for the transform has been proposed. This results in faster
convergence and better stability. A sharp peak in the accumulator
array is obtained when this method is used.

* Consideration of discretization errors has led to the use of a
simple peak detection algorithm that requires small amounts of
computing power.

It is shown that the computation time is significantly reduced and
results in a faster convergence as compared with other Hough
transform implementations.

A binary edge image will be denoted by f2,,0 < x < 20;,. —
1,0 < y < y%.. — 1, where the origin is the bottom left corner of the
image, and x2;,. and yJ;,. are the spatial resolutions of the image.
For simplicity, a square image is assumed, i.c., 2%.. = y%.. =
£2.... The results are equally applicable if 2%,e # ¥0ise-

Without loss of generality, a straight line is assumed as the pattern
to be detected. The line will be denoted by p = zcosf + ysinb,
0 < 8 < 2m, where p is the perpendicular distance from the origin
to the line, and 6 is the angle the perpendicular makes with the x
axis. The ranges of p and 6, which are denoted by prange and 8range
respectively, are therefore 0 < p < V2f%,.and 0 < 6 < 2.
Orange can be reduced to 0 < 6 < 7 if prange is extended to
—V25%,. < p < V2f%,.. These modified ranges of p and 6 will
be used.

The p-8 accumulator array will be denoted by a,4, 0 < p <
psize — 1, 0 < 0 < b5, — 1, where p,i.. and ;.. are the
spatial resolutions of a, ¢. The values of psi.. and ;.. determine
the memory required and the accuracy with which the parameters
can be determined. The number of computations required for the
voting process in the SHT is O(n £6si.. ), where ny is the number of
feature points. The voting process is followed by detection of peak
in the accumulator array. The coordinates (ppeak,8peak) of the cell
@ppeak Bpear COTTESPONding to the peak are the parameters of the line
to be detected.

In Section II, we describe the MHT in detail. A comparison of
the computational and space complexity of the MHT with other
algorithms is presented in Section III. Section IV analyzes simulation
and experimental results followed by conclusions.

II. PROPOSED METHOD—THE
MULTIRESOLUTION HOUGH TRANSFORM

The MHT exploits the reduced information content of multiresolu-
tion images and accumulator arrays at the different iterations. A set
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of reduced-resolution images are generated from the original image.
The Hough transform is first applied to the smallest image using a
very small accumulator array. Subsequent iterations use images and
accumulator arrays of increasing sizes. The algorithm is described
below in detail.

f2, is successively reduced by a factor of o in each dimension
to generate a set of images denoted by f;,y, fﬁyy . fi,y ..., €tc.,
where fi.,y =1%../ o! represents the image after [ reductions. The
spatial resolution of square arrays will be denoted by the size of
one of its dimensions. Multiresolution images can be very efficiently
constructed using the difference of Gaussian operator [11] which is
an approximation of the Laplacian of Gaussian operator [12].

If pmin, Pmaxs Omin, and Bmax are the parameter limits for a
particular iteration, the step sizes are given by Ap = (pmax —
Pmin)/Psize, and A = (Bmax —bmin )/bsi-e. The method of building
the accumulator array is slightly different from the SHT and is
given below for ¢ = 2. If ¥ is the set of feature points, then

V(i j)(fi; € ).

i) a,0=0,0<p < paize —1,0< 8 < 6450 — 1.
ii) If I = O then
pr = icosbi + jsinde; 0 < k < fgize — 1
else
bk = (i +0.25) cos by + (j + 0.25)sin b, 0 < k < b, — 1.
iii) If pmin < Pk < Pmax- then

ﬁk — Pmin é - 0min
= | ——— 0 = | ———
Pk { A, J, k l Ao J

else
go to i).
iv) oy 0, = Qpy 0, t+ 1.

F(')rla =2 a:ld 1 #0, f,-’,j represents the pixel positions f;:éj,
f2&+05),21’ f2:,;(j+0.5)’ and f2la-1|—0.5),2(j+0.5)' Therefore, it is more
realistic to take the average values (i + 0.25) and (j + 0.25) to
represent the ¢ and j values, respectively. This interpolation yields
sharper peaks in the accumulator array.

B. Peak Detection Methods

Due to discretization errors and the use of reduced-resolution
images and accumulator arrays, the peak in the parameter space
tends to spread, thereby creating problems in the peak detection
stage. Consequently, we have investigated different computationally
efficient peak detection algorithms.

1) Absolute Peak (AP) Method: The element of the accumulator
" array having the maximum vote is taken to be the peak.

(Ppeaks Opeak) T

{k,1:ar; =max(ai;;0 < i< psize — 1,0 < j < bsize — 1}.
1)

It is very simple and efficient in terms of computation time, but in
some cases, it is unreliable in finding the actual peak because of
peak spread.

2) Summing Over n, Cells (NR) Method: Van Veen [13] showed
that due to oversampling of the parameter space, the peak in the
accumulator array may spread instead of being localized in one cell,
whereas undersampling may result in inaccuracies in the result due to
a step size that is too large. In the case of an infinitesimally thin line,
the maximum number of cells (n,) over which the peak is spread in
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Fig. 1. Thick line in infinitesimal quantization.

the p direction is given by ((5) in [13])

n = [dsin (A0/2)J o

Ay @

where d is the maximum length of the line segment. From (5) and
(8) in [13], the condition required to minimize spread of the peak
in the p and @ directions in the case of an infinitesimally thin line
is given by Ap > dsin(Ad/2). It is important to note that smaller
Ap results in a smaller extension of the peak in the ¢ direction but
increases the spread of the peak in the p direction. Optimum values
of the step sizes are related by Ap = dsin(A6/2).

The extension of the peak in the p direction can be taken care of
by summing over a window of n, cells in the p direction for each
value of @ and searching for the maximum in this sum. We have
used the maximum element within the “maximum-sum window(s)”
as the peak.

np—1
r,c= {m,n : max( E Am—pn: Np —1 <

p=0
m S Psize — 170 S n S esize - 1)}

(ppeakq gpeak)NR =

{k,c:ar.=max(aje; 7 —n,+1<j<r)} ?3)

3) Absolute Peak with Adaptive Adjustment (AD) Method: Infinitesimally

thin lines are not obtained in real-world images. In the case of a thick
line in an infinitesimally small quantized image (see Fig. 1)
dsin (% + 5)

=|—2— 2 4

n, \\ A, + “)

where § = arcsin(b,/d), bo is the width of the line, and d is the

diagonal of the line in the case of a thick line.

For digitized lines in finitely quantized images, a line will have an

apparent width (b,) as shown in Fig. 2. In such cases

by =
Labs(cot (9 - ;))Jabs(sin (9 - g)) if 2 <6< §41 -
|abs(tan (6 — 7)) [abs(cos (- 3))it0 s 0< 5. T <o <

If Ap < b,, the peak will spread in the p direction creating
problems in using the absolute peak method. In order to be able to
use the absolute peak detection method because of its computational
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Fig. 2. Apparent width of a digitized line in finite quantization.

simplicity, we propose adaptively changing the accumulator array
size, which is denoted by asize, such that

_dsin (52 +9)

Ta

Ap if Ap-7a < dsin (% + 6) 6)
where 7, is an adaptation factor, and A and A4 are the values before
adaptation. Ap and Af are then slightly adjusted to make @size an
integer. Note that for infinitesimally small quantization, 7, = 1. For
synthetic lines discretized according to Freeman’s method [14], we
have experimentally found that 7, = 3 results in a good compromise
between sharp peaks, good parameter resolution, and successful peak
detection.

B. Reduction of Parameter Ranges

Assume that each parameter is to be resolved to 1/a of its full
range. Therefore, if we wish to determine p to an accuracy of one
pixel, @ = 2v2f%... In the rest of this section, the logarithmic
range-reduction method is proposed and compared with the linear
method.

1) Linear Reduction: Let there be L iterations of the Hough
transform. If the parameter range reduction at each iteration is same
and equal to v, then

1\* 1
() =5 O

For f%,. = 512 and L = 4, v = 6.17. This method was used in [9].

2) Logarithmic Reduction: Images lose detail due to successive
reduction in spatial resolution, resulting in large errors in the es-
timated p,6 values. Therefore, parameter ranges in the different
iterations cannot be reduced linearly. The ranges should be reduced
less when the sizes of the image and accumulator array are small
and vice versa. We have found that, for the MHT, the linear
reduction method frequently results in the actual parameter values
falling outside the range of investigation. This is due to too small
Ap and Af resulting from the cumulative effect of decreasing
the parameter ranges and increasing the accumulator array sizes at
successive iterations. The actual parameter values, once they fall
out of the range of investigation, are not likely to come within the
range at a subsequent iteration. Consequently, the estimated parameter
values diverge instead of converging. To overcome this problem, a
logarithmic reduction in range is proposed. Without loss of generality,
we assume the same reduction factor for both the parameters.

According to this method, if the parameter ranges are reduced by
~ after the Lth iteration, then the reduction ratio should be v/ okt
after the éth, 1 < i < L, iteration. Therefore

ﬂ i a? crL*l__ 1
L ¥ 2v/2£8,.
L-1) % 40 T
or,y = [o ¥ 2 3, ], ®)

The ranges of p and 8 to be investigated at the ithiteration1 < i < L
are denoted by pf,;,‘ge and Of‘a_,,’ge, respectively. At the first iteration,
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the ranges are taken to be the maximum possible, ie., ploke =
2v/2 - fE71 and 055, = 7. After the first iteration, prange and
Orange are reduced by the factor 'y/oL‘l. Therefore

L Prang
-2 range
= —— X Oa
Prange ’Y/G'Lul g ( )
L oL—l
-2 _ range
0range - 7/0_11_1 . (9b)

The multiplying factor of ¢ in (9a) is required because the picture
size increases in spatial resolution by a factor of ¢ at each subsequent
iteration. prange and Brange for the ith iteration can be generalized
as follows:

phai = 2Vafkt ot gt e T (/) T 1SS L

(10a)

L-1

L—i L—2
Oronge =T -0 -0

cgtTHL L (1/4) T, 1 < d < Lo (10b)
As an example, for £%,. =512,0 = 2, and L = 4, ~ comes out to
be 17.45. The parameter ranges are reduced by factors of 2.18, 4.36,
8.72, and 17.45 after iterations 1, 2, 3, and 4, respectively.
Simulation results show that the logarithmic range-reduction
method produces much faster convergence than the linear reduction
method. Moreover, the actual parameter values remain within the
ranges of investigation during the iterations. The step sizes for the
ith iteration 1 < i < L are given by A=y = pf,;,ige/pi:é
and AP0 = 6L, /8L7i. For square accumulator arrays, let

plol =Ll = fEi-l/o#, u = integer > 0, and let psize, Bsize

size size size

for subsequent iterations be increased by a factor of o. Therefore
ol = 0k = (#h2 o*)o a

Using (10) and (11), Ap and Af for the ith iteration can be
generalized as follows:
90V/Z. gl gl gl

L~z __ R
AT p = po 4

(12a)

w(1/y) "t ot o 2% g 231
£

size

Substituting values of AL~'p and AT~9 in (2), the expression for
n, in the case of very fine quantization will be

L—i x(1/v i—l_‘,Lfl‘a,L—2“”u,L—i+l n
Vafhs sm(”’ e ‘o

AlFTig = -o*. (12b)

gi=l.

L—i
3

+ 2

n 2v2.ol—1.gL—2..gL—i+1

=T e

T (13)

For small 8/n, sin(8/n) = (1/n)sin(#). Under such circumstances

V2R g ghotol=2 gtoitloh g (m/2)

Lein, size an—lA,y:—lf:;;l
n, = 2\/§.UL_1_:1L__12_,_,,L—1'+1 o + 2
~ [sin (11'/2)J 42
2
~0.5]+2=2. (14

AL—ig will successively get smaller for increasing i, and the above
approximation will be satisfied. For the ith iteration, the worst-
case value of d = /2 x fEI! has been assumed. For use in
the algorithms, the value of n, should, of course, be determined
from the exact equation (13), and d should be calculated from the

approximate values of p and § determined at the previous iteration.
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The approximate equation (14) has been derived only to show that n,
becomes almost independent of ¢ and is equal to 2. This implies that
when multiresolution images and parameter arrays are used, summing
over only two consecutive accumulator cells along the p direction
(for a fixed ) is required. This requires less computation than if n,
was higher. Fori = 4,0 =2, L = 4, p = 3, and stz;l = 64,
the value of |-| in (13) stabilizes at 0.78. Having determined the
parameter ranges for the /th iteration, the upper and lower limits for
the parameter ranges are chosen in such a way that the p, 6 values
estimated at the (i — 1)th iteration are at the middle of the new limits.

{II. CoMPARISON OF COMPLEXITY

In this section, we compare the computational and space com-
plexity of the MHT with the SHT and AHT. The complexity
will be denoted by C§, where & = {c,s} denotes the type of
complexity—computational (c) or space (s), and Q = {S, A, M}
denotes the method of Hough transform used—SHT (S), AHT (A),
or MHT (M).

A. Computational Requirements

Let ', n?, af.., and a,, be the number of iterations and
accumulator array sizes required in the AHT and MHT methods.
Since C5 = anyg, and cA = 2nf(al,. + lny ~ 211?(1;‘,'”7”,
we have

cs @
73 l . (15)
A 9 [m]
size | Tog 4
For the MHT
M M
Cé\/l — gilze Qsize . ﬂ .. Asize ny 16
Ugigelty + =55~ + Y e (16)
Therefore
CéA - Z‘R?G;}ze
o = s, a7n

For a 512 x 512 image, a2,. = 9 has been used in [9], for which
a =2 %2 x 512, and n?* = 7. Therefore, Cf/Cf’! = 3.44 for
aM, =32, nM = 4,and 6 = 2. A 512 x 512 image containing
a synthetic straight line with p = 90.6307 and § = 2.007128
was processed by the MHT. p and 6 were estimated as 90.6382
and 2.007247, respectively, giving percentage errors of 0.008% and
0.006% for p and 6, respectively. Percentage errors for such a
synthetic line as reported in [9] were 0.64 and 0.1% for m and
c, respectively ([9] uses the m-c parameterization for a straight
line). With fewer iterations in the MHT, for example, a,, = 16,
nM =3, and o = 2, the percentage errors for p and 6 were 0.04 and
0.015% respectively, and C2/CM = 6.9. It is evident that MHT
is computationally much more efficient than the AHT. The errors
in MHT are also significantly lower. In the MHT, if multiresolution
images are used while keeping a/,, constant during iterations, then
a%ze = af,-ze. Therefore

cA 2nf
W i EE—— (18)
> (1/02)
k=0
Substituting numerical values as above, C4 /Cﬁw = 10.54 for
nM = 4 and ¢ = 2.

Note that the above comparisons of computational complexity are
based only on the time required for vote accumulation. The overall
performance of MHT as compared with AHT will be much better than
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the numerical figures given above when the peak detection algorithm
is also taken into consideration because MHT uses a peak-detection
algorithm, which is much simpler and less compute-bound than that
used in AHT [15}.

B. Space Requirements

= -size 19)

For example, CA/CM = 0.56 for all., = 9, a},, = 16. If
multiresolution images are used keeping a,. constant, C2/ cM =
1. Considering the fact that memories are getting cheaper and smaller
with the advancement of technology while computing demands are
ever increasing, the decrease in computational cost in the MHT
outweighs the small memory saving in AHT.

IV. RESULTS

In order to test the accuracy and the convergence of the pro-
posed algorithm, extensive simulations on synthetic test images using
different peak detection algorithms have been carried out.

A. Simulation Results on Synthetic Images

Performance is measured by the errors in p and 6, which are
denoted by €,(i) and €q(:), respectively, which are obtained at the
ith iteration. Plotting the errors versus iteration number shows the
rate of convergence toward the actual value. We present below the
performance figures using synthetic lines for fo..=>512and L = 4.
The errors were obtained by averaging the errors for a set of 45
straight lines of varying ps and fs. Table I shows the errors for
different peak detection methods when multiresolution images and
accumulator arrays are used. As p decreases, the accumulator size
increases resulting in decreasing Ap and Af. Small Ap and A6 result
in the spread of the peak, thereby making the AP method of peak
detection unreliable. The NR method gives better results than the AP
method but is not as good as the AD method. The AD method results
in faster convergence. Table II shows the errors obtained using the AP
and AD methods of peak detection when multiresolution images and
fixed-size accumulator arrays are used. For increasing @,;.., Ap and
A6 become very small, and peak detection becomes unreliable in the
AP method. The AD method results in faster convergence than the
AP method. A representative convergence diagram for p is shown in
Fig. 3. The outer curves are p=1* and pL 7%, whereas the inner ones
are the actual and determined values of p. Fast convergence due to
logarithmic range reduction is evident from the figure.

B. Experiments with Real-World Images

LaPlacian binary images obtained from a real-world gray-level
image are shown in Fig. 4. p and 6 of the line were measured
manually to be 56.4122 and 2.3829, respectively, whereas those
estimated by MHT were 56.7131 and 2.3836, respectively, for p = 2,
f%.. = 256, and using the AP method with multiresolution images
and accumulator arrays. For pu = 3, fJ;,. = 256, estimated p and ¢
were 56.4313 and 2.3858, respectively.

V. CONCLUSION

A new multiresolution coarse-to-fine search algorithm for efficient
computation of the Hough transform has been proposed. To reduce
the computing time, the algorithm uses multiresolution images and
parameter arrays. Logarithmic range reduction has been proposed
to achieve faster convergence. Discretization errors have been taken
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TABLE 1
COMPARISON OF ERRORS FOR DIFFERENT PEAK DETECTION METHODS USING MULTIRESOLUTION IMAGES AND ACCUMULATOR ARRAYS.
Numl)'er of €(8) 0!
iterations,
i p=0 p=1 p=2 p=0 p=1 p=2
1 6.91 16.7 19.73 0.94 1.81 321
AP 2 1.39 3.03 6.12 0.26 0.46 0.77
Method 3 0.42 0.38 0.63 0.05 0.05 0.09
4 0.32 0.17 0.17 0.04 0.02 0.02
1 7.26 16.22 19.39 1.03 1.63 3.25
NR 2 1.33 2.97 5.86 0.25 0.42 0.76
Method 3 032 038 0.61 0.03 0.05 0.09
4 0.27 0.24 0.17 0.03 0.02 0.01
1 691 16.7 19.73 0.94 1.81 321
AD 2 1.39 3.03 6.12 0.26 0.46 0.77
Method
Ta =3 3 0.36 0.38 0.63 0.04 0.05 0.09
4 0.09 0.12 0.08 0.01 0.01 0.01
TABLE 11
COMPARISON OF ERRORS FOR DIFFERENT PEAK DETECTION METHODS USING MULTIRESOLUTION IMAGES AND FiXED-SIZE ACCUMULATOR ARRAYS.
Number of €p(3) eo(i)
Iterations,
i Asize=300 Asize=500 Asize=800 Asize =300 Asize=500 @size=800
1 2.34 1.93 295 0.23 0.22 0.38
AP 2 121 1.01 118 0.13 0.12 0.13
Method 3 0.29 047 0.74 0.04 0.06 0.07
4 0.24 0.52 0.44 0.03 0.04 0.05
1 2.34 191 3.01 0.23 0.22 0.39
AD 2 1.18 112 1.07 0.13 0.12 0.12
Method
Ta=3 3 0.33 0.29 0.40 0.04 0.03 0.05
4 0.11 0.10 0.09 0.02 0.01 0.01
800
700
00 - Paux
500 ~
40 Puy
@l N\
200 3
o 10 Pa —/
a o
100 (®) © @
a0 Poin Fig 4. Multiresolution Laplacian images used in MHT: (a) 256 x 256; (b)
200 - 128 x 128; (c) 64 x 64; (d) 32 x 32.
400 -
50 4 Tests on synthetic and real-world images show that the parameters
600 converge rapidly toward the true value. The errors in p and 6, as well
700 as the computation time, are much lower than those obtained by other
0 ! T T methods. Since the MHT uses a simple peak detection algorithm, the
. . ’_ *  computation time will be significantly lower than other algorithms if
Number of iterations, | the time for peak detection is also taken into account. The algorithm
Fig. 3. Representative convergence plot of p ranges. can be generalized for patterns with any number of parameters.

into consideration when accumulating the parameter array. This has
permitted the use of a very simple peak detection algorithm, thereby
reducing the computing time further. Comparative results using three
peak detection methods have been presented.

ACKNOWLEDGMENT

We are grateful to the anonymous reviewers of the paper for their
detailed comments and suggestions. Special thanks to H. Rahman for
coding and testing a considerable part of the algorithm.




IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 14, NO. 11, NOVEMBER 1992

REFERENCES

[1] P. V. C. Hough, “Methods and means for recognizing complex patterns,”
U.S. Patent 3 069 654, 1962.

[2] J. Ilingworth and J. Kittler, “A survey of the Hough transform,”
Comput. Vision Graphics Image Processing, vol. 44, pp. 87-116, 1988.

[3] S. D. Shapiro and A. Iannino, “Geometric constructions for predicting
Hough transform performance,” IEEE Trans. Patt. Anal. Machine Intell.,
vol. PAMI-1, no. 3, pp. 310-317, 1979.

[4] C. M. Brown, “Inherent bias and noise in the Hough transform,” IEEE
Trans. Patt. Anal. Machine Intell., vol. PAMI-S, no. 5, pp. 493-505,
1983.

[5] W. Niblack and D. Petkovick, “On improving the accuracy of the Hough
transform,” Machine Vision Applications, vol. 3, pp. 87-106, 1990.

[6] K. Hanahara, T. Maruyama, and T. Uchiyama, “A real-time processor
for the Hough Transform,” IEEE Trans. Patt. Anal. Machine Intell., vol.
10, no. 1, pp. 121-125, 1988.

[7] H. Y. H. Chuang and C. C. Li, “A systolic array processor for straight
line detection by modified Hough Transform,” in Proc. IEEE Comput.
Soc. Workshop Comput. Architecture Patt. Anal. Image Database Mgmt.
(Miami Beach, FL), 1985, pp. 300-304.

[8] D. B. Shu, C. C. Li, J. F. Mancuso, and Y. N. Sun, “A line extraction

method for automated SEM inspection of VLSI resist,” IEEE Trans.

Patt. Anal. Machine Intell., vol. 10, no. 1, pp. 117-120, 1988.

J. Ilingworth and J. Kittler, “The adaptive Hough transform,” JEEE

Trans. Patt. Anal. Machine Intell., vol. PAMI-9, no. 5, pp. 690-698,

Sept. 1987.

H. Li, M. A. Lavin, and R. J. LeMaster, “Fast Hough transform,”

Comput. Vision Graphics Image Processing, vol. 36, pp. 139-161, 1986.

P. J. Burt and E. H. Adelson, “The Laplacian pyramid as a compact

image code,” IEEE Trans. Commun., vol. COM-31, no. 4, pp. 532-540,

Apr. 1983.

G. E. Sotak and K. L. Boyer, “The Laplacian-of-Gaussian kernel: A

formal analysis and design procedure for fast, accurate convolution and

full-frame output,” Comput. Vision Graphics Image Processing, vol. 48,

pp- 147-189, 1989.

T. M. Van Veen and F. C. A. Groen, “Discretization errors in the Hough

transform,” Patt. Recogn., vol. 14, pp. 137-145, 1981.

H. Freeman, “A review of relevant problems in the processing of line-

drawing data” in Automatic Interpretation and Classification of Images

(A. Grasselli, Ed.). New York: Academic, 1969, pp. 155-174.

R. Lumia, L. Shapiro, and O. Zunigia, “A new connected component

algorithm for virtual memory computers,” Comput. Graphics Image

Processing, vol. 22, pp. 287-300, 1983.

[9

—

[10}
1]

(12)

[13]

[14}

(15]

1095

Simple Calibration Algorithm for
High-Distortion-Lens Camera

Yoshihiko Nomura, Michihiro Sagara,
Hiroshi Naruse, and Atsushi Ide

Abstract—This paper presents a simple and useful calibration method
for a TV camera with a high-distortion lens. The parameters to be cali-
brated are effective focal length, one-pixel width on an image plane, image
distortion center, and distortion coefficient. A simple-pattern calibration
chart composed of parallel straight lines is introduced as a reference
for calibration. An ordinary 2-D meodel fitting is decomposed into two
1-D model fittings on the column and row of a frame buffer across
the image distortion center by ingeniously utilizing the point symmetry
characteristic of image distortion. Some parameters with a calibration
chart are eliminated by setting up a calibration chart precisely and by uti-
lizing negligibly low distortion near the image distortion center. Thaus, the
number of unknown parameters to be calibrated is drastically decreased,
enabling simple and useful calibration. Furthermore, effectiveness of the
proposed calibration method is confirmed by experimentation.

Index Terms— Camera calibration, high accuracy, image distortion,
intrinsic parameters, model fitting, 3-D measurement.

I. INTRODUCTION

Measuring high-accuracy 3-D position is an important computer
vision task in applications such as automation, robotics, and automatic
vehicle guidance. In this kind of measurement, parameters of the
TV camera’s internal geometrical and optical characteristics must be
calibrated for accurate transformation of the frame buffer coordinates
of the object image into 3-D world coordinates. Nevertheless, most
researchers have neglected TV camera calibration.

Tsai handled both extrinsic and intrinsic parameters [1], [2]. The
former are the 3x3 rotation matrix and the 3x1 translation vector.
The latter are effective focal length, one-pixel width on an image
plane, distortion coefficient, and image distortion center. The opera-
tion of Tsai’s method is very complicated, and special techniques such
as frequency measurement or 1-D FFT [2] are needed for calibration
of the one-pixel width. Estimation error also arises in the case of
high-distortion-lens cameras since extrinsic parameters are calibrated
ignoring image distortion [1]. Thus, calibration has not been well
established. This paper presents a simple and useful calibration
method for high-distortion-lens cameras, ingeniously utilizing the
point symmetry characteristic of image distortion and adjusting the
setup of a calibration chart precisely.

II. CAMERA CALIBRATION METHOD

A. The Camera Model

The basic geometry of the camera model is described in Fig. 1.
The point Q;, where the 3-D camera coordinates are z;, ¥:, and z,,
is a reference point on a calibration chart where ¢ is the order of the
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