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ABSTRACT

Network system designers need to understand the error performance of wireless
mobile channels in order to improve the quality of communications by deploying
better modulation and coding schemes, and better network architectures. It is also
desirable to have an accurate and thoroughly reproducible error model, which would
allow network designers to evaluate a protocol or algorithm and its variations in a
controlled and repeatable way. However, the physical properties of radio
propagation, and the diversities of error environments in a wireless medium, lead to
complexity in modeling the error performance of wireless channels. This article
surveys the error modeling methods of fading channels in wireless communications,
and provides a novel user-requirement (researchers and designers) based approach
to classify the existing wireless error models.

odeling the error performance of wireless channels

is usually a complex task, because the performance

of wireless channels inherently depends on radio
propagating modes, such as, line of sight (LOS) radiation,
reflections from a smooth surface, diffractions around a cor-
ner, and scattering caused by an object with dimensions on
the order of the wavelength. The radio link is highly variable
over short distances due to the statistical distribution of path
loss (PL) and the physical properties of propagation environ-
ments, thereby making it difficult to generalize the results of
error performance analysis.

Schemes to improve the reliability of wireless channels
range from innovative transport-layer protocols to robust
physical-layer schemes, including better modulation and cod-
ing. The development and selection of the schemes are based
on the understanding of the statistical nature of errors. There-
fore, a good understanding of the nature of errors in wireless
channels is critical in having a reliable wireless communication
for upper-layer applications. Some of the main causes of bit
errors, and consequently packet losses, in the widely deployed
CDMA wireless channel are described below.
= Attenuation: This is due to a decrease in the intensity of

electromagnetic energy at the receiver (e.g., due to long

distance), which leads to low signal-to-noise ratio (SNR).

= Intersymbol interference (IS1): This is caused by delay
spread (the arrival of a transmitted symbol is delayed),
resulting in partial cancellation of the current symbol.

= Doppler shift: This is due to the relative velocities of the
transmitter and the receiver. Doppler shift causes fre-
quency shifts in the arriving signal, thereby complicating
the successful reception of the signal.

= Multipath fading: This is caused by multipath propaga-
tion of radio frequency (RF) signals between a transmit-
ter and a receiver. Multipath propagation can lead to
fluctuations in the amplitude, phase, and angle of the sig-
nal received at a receiver. We will describe multipath
fading in more detail later.

It is challenging for wireless network protocol developers
to consider the large number of factors that affect the error
performance of wireless channels. Typically, if a wireless
channel’s propagation characteristics are not specified, one
usually assumes that the signal attenuation versus distance
behaves as if the propagation takes place over ideal free
space [1]. The free space model treats the region between
the transmitter and the receiver as free of all objects that
might absorb or reflect radio frequency energy. It also
assumes that the atmosphere is perfectly uniform and non-
absorbing. However, in practice, the free space model is not
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accurate enough to describe the performance of a real wire-
less mobile channel.

Three main physical phenomenon affect radio propagation
in a real-world scenario: reflection, diffraction, and scattering.
When electromagnetic radiation reflects off objects or diffracts
around objects, it can travel from the transmitter to the
receiver over multiple paths, giving rise to multipath propaga-
tion [2]. This can result in fluctuations in the received signal’s
amplitude, phase, and angle of arrival, giving rise to multipath
fading. System modeling and design, which mitigate the
effects of fading, are usually challenging [1]. Therefore, error
models of fading channels in wireless mobile communications
are very helpful in designing and evaluating the performance
of wireless networks and communication systems.

The error performance of wireless channels is usually mod-
eled by capturing the statistical nature of the interaction
among reflected radio waves. The statistical calculations for
Bit Error Rate (BER), which is generally used to characterize
channel errors at the physical layer, is a well known practice.
From the perspective of higher layers, network protocol devel-
opers and algorithm designers are interested in block errors
(packet errors), since most of the higher-layer applications
(running on top of link layers) exchange blocks of data
between peers. For example, bit errors in a link-layer packet
may result in the loss of the entire packet; a single packet loss
within a message may lead to the loss of the entire message.
Therefore, it is desirable to have accurate packet-level error
models for wireless channels, which can be used by network
protocol developers and network system engineers to simulate
and analyze the end-to-end performance at the packet level. It
has been observed empirically [3] that errors in wireless fad-
ing channels can be approximated by a two-state Markov pro-
cess. In other words, a well designed channel may enter a
state where bursty errors occur for a small time interval.

Analytical models which can be used for the statistical cal-
culation of BER at the physical layer, and error approxima-
tion at higher layers, are described in this survey. In addition
to analytical models, it is highly desirable to model wireless
networks in a thoroughly repeatable fashion. This is especially
important for people who must experiment with realistic
channel parameters. However, the results from analytical
models are either inaccurate due to errors in the approxima-
tion and simplification of environmental characteristics, or
unlikely to be reproduced due to complex and inefficient algo-
rithms. This gives rise to empirical distribution-based models.

In this article, our objective is to survey the existing error
modeling methods for fading channels in wireless communica-
tion systems, and classify them according to their modeling
approach, viz., analytical and empirical. In contrast to traditional
classification methods, our approach is based on differing
requirements of wireless communication (and network)
researchers and designers. The goal of this article is to help
researchers who need to analyze characteristics of wireless error
channels, and network protocol designers who need to synthe-
size wireless error channels for their simulations and evalua-
tions, find appropriate error models for wireless fading channels.

We must emphasize that it is not the aim of this article to
present various wireless channel propagation models, but to
describe some existing efforts on error (specifically, BER at
the physical layer, and packet loss rate at upper layers) model-
ing methods for wireless fading channels. The propagation
models for wireless communication channels are used to pre-
dict the path propagation loss (e.g., the Lee model [4]). Design
engineers use an accurate estimation of path loss to help select
the locations of base stations, and determine a proper frequen-
cy plan. The field signal strength (or signal power) can be
derived from the estimation result of path loss. However, the
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m FIGURE 1. Three radio propagation mechanisms.

system error performance (typically measured by SNR) not
only depends on the desired signal power, but also depends on
the noise power. It is the objective of this article to present
existing error modeling methods where both parameters are
considered. Readers who are interested in wireless channel
propagation models are encouraged to read the article by
Neskovic, et al. [5], which presents a good overview of popular
prediction models based on two main categories, outdoor
(macrocell and microcell) and indoor propagation models, and
describes some useful algorithms to improve their accuracy.

The rest of this article is organized as follows. The nature
of radio propagation, and characteristics and models of fading
channels, are described. Several fading-channel error model-
ing schemes are classified and introduced. Finally, concluding
remarks are presented.

MULTIPATH FADING

Electromagnetic waves reflecting off objects or diffracting
around objects can result in the signal travelling over multiple
paths from the transmitter to the receiver. This phenemonon,
called multipath propagation, can cause fluctuations in the
received signal’s amplitude, phase, and angle of arrival, giving
rise to multipath fading. In this section, we briefly describe the
various types and models of fading channels.
There are three main mechanisms that impact radio propa-
gation in wireless channels [6], as illustrated in Fig. 1.
Reflection, which may interfere constructively or destruc-
tively at the receiver, occurs when an electromagnetic wave
impinges on a smooth surface with very large dimensions
when compared to the wavelength of the radio wave.
Diffraction occurs when the path of the electromagnetic
wave is obstructed by an impenetrable body of large dimen-
sions as compared to the RF signal wavelength. This causes
secondary waves to be formed behind the obstructing body,
without any LOS path between the secondary waves. Diffrac-
tion, which is also called shadowing because the diffracted
field can reach the receiver even when shadowed by an
impenetrable obstruction, explains how RF energy can travel
in urban and rural environments without a LOS path.
Scattering occurs when the radio channel contains objects
of dimensions that are on the order (or less) of the electro-
magnetic wavelength, causing energy from a transmitter to be
radiated in many different directions. In urban environments,
typical objects that cause scattering are lamp posts, street
signs and foliage.
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ionosphere, ship-to-ship radio links [11].

Mobile systems with no LOS path between transmitter and receiver antenna,
propagation of reflected and refracted paths through troposphere and

Rayleigh [10].

Satellite links subject to strong ionospheric scintillation [12].

Nakagami-q (Hoyt) (spans range from one-sided
Gaussian (g = 0) to Rayleigh (g = 1)) [13].

mobile, picocellular indoor and factory environments [15].

Propagation paths consisting of one strong direct LOS component and many
random weaker components — microcellular urban and suburban land

Nakagami-n (Rice) (spans range from Rayleigh (n = 0)
to no fading (n = ¢ )) [14].

radio links.

Land mobile [16], indoor mobile multipath propagation as well as ionospheric

Nakagami-m (spans range from one-sided Gaussian
m = 1/2), Rayleigh (m = 1) to no fading (m =« )) [17].

systems [19].

Terrain, buildings, trees — urban land mobile systems, land mobile satellite

Log-normal shadowing [18].

Nakagami-m multipath fading superimposed on log-normal shadowing.
Congested downtown areas with slow-moving pedestrians and vehicles.
Also in land mobile systems subject to vegetative and/or urban shadowing [20].

Composite gamma/log-normal [18].

shadowed fading. Land mobile satellite systems [21].

Convex combination of unshadowed multipath and a composite multipath/

Combined (time-shared) shadowed/unshadowed [21].

m Table 1. Models that can be used to characterize various wireless environments.

The above three radio propagation mechanisms impact the
strength of the received signal in different ways. If there is a
strong LOS between the transmitter and the receiver, diffrac-
tion and scattering are not the dominant factors in the propa-
gation of the radio waves. However, in the absence of a LOS
between the transmitter and the receiver, diffraction and scat-
tering become the dominant factors in the propagation. Typi-
cally, the received signal is a sum of the components arising
from the above three phenomena. The strength of the received
signal fluctuates rapidly with respect to time and the displace-
ment of the transmitter and the receiver.

LARGE-SCALE FADING AND SMALL-SCALE-FADING

Based on the distance over which a mobile moves, there are
two different types of fading effects: large-scale fading and
small-scale fading [1]. If the mobile moves away from the
transmitter over a large distance, the received signal will
experience large-scale signal variation. Large-scale fading
represents the average signal power attenuation due to
motion over large areas. The receiver is often represented
as being shadowed by prominent terrains, such as hills,
forests, billboards, clumps of buildings, etc. Small-scale fad-
ing refers to the dramatic changes in signal amplitude and
phase that can be experienced as a result of small changes
(as small as a half-wavelength) in the distance between the
transmitter and the receiver. When there are a large num-
ber of reflective paths with no LOS signal components, the
envelope of the received signal can be statistically described
by the Rayleigh distribution [7, 8]. If dominant non-fading
components exist, such as a LOS propagation path, the
small-scale fading envelope is Rice distributed [7, 8]. A
mobile radio propagating over a large area will experience
both types of fading, i.e., small-scale fading superimposed
on large-scale fading.

DIFFERENT TYPES OF FADING-CHANNEL MODELS

In this section, we present the different types of fading chan-
nels that are typical in communication environments, and the
mathematical models that can be used to describe the chan-
nels. Table 1 [9] shows various fading-channel models, classi-
fied by the environments to which they apply.

Multipath fading arises from the constructive and destruc-
tive combination of randomly delayed reflected, scattered,
diffracted signal components. Based on the nature of the
radio propagation environment, different mathematical mod-
els exist to describe the statistical behavior of the multipath
fading envelope.
= The Rayleigh distribution [10] is used to model the prop-
agation environment where the mobile antenna receives
a large number of reflected and scattered waves. Because
of wave cancellation effects, the instantaneous received
power seen by a moving antenna becomes a random vari-
able, dependent on the location of the antenna.

= The Nakagami-q distribution [13] is typically observed on
satellite links subjected to strong ionospheric scintilla-
tion.

= The Nakagami-n distribution, known as the Rice distribu-
tion [14], is often used to model similar environments to

Rayleigh fading channels, except that the set of reflected

and scattered waves are dominated by one strong compo-
nent.

= The Nakagami-m distribution [17] can be used to model
fading-channel conditions that are more severe than the

Rayleigh distribution. It often gives the best fit to land-

mobile, indoor-mobile multipath propagation, as well as

scintillating ionospheric radio links.

In terrestrial and satellite land-mobile systems, the link
quality is also affected by slow variation of the mean signal
level, resulting from the effects of shadowing from terrain,
buildings, and trees. The shadowing can generally be mod-
eled by a log-normal distribution for various outdoor and
indoor environments [22]. If the receiver is able to average
out the fast multipath fading, the performance of mobile
systems depends only on shadowing. However, in an envi-
ronment consisting of multipath fading superimposed on
shadowing, the receiver does not average out the fading
envelope. This scenario, called composite multipath/shad-
owing, is typically observed in congested downtown areas
with slow moving pedestrians and vehicles [20]. A detailed
discussion of this topic, and the corresponding probability
density functions of fading amplitude and SNR, can be
found in [23].
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ERROR MODELS OF FADING CHANNELS

With the proliferation of wireless networks, much research has
focussed on improving the quality of fading channels. This has
led to a growing interest in characterizing the packet loss behav-
ior of fading channels. A number of error models have been pro-
posed in the literature to characterize the loss behavior of fading
channels. The error models can be classified into two groups:
analytical models and empirical distribution-based models.

ANALYTICAL MODELS

Errors occurring in wireless channels are due to the diversity
of wireless connections and the complicated physical impair-
ments. As a result, it is difficult to generalize the mathemati-
cal results from one specific domain to another. Therefore,
analytical models are highly dependent on the characteriza-
tion of error environments, such as fading channels. The tra-
ditional metric used for characterizing channel errors at the
physical layer is the average BER. This gives rise to the first
type of analytical modeling methods, called physical-layer ori-
ented modeling, which deals with bit errors.

It is expected that future wireless communications will
include image, video, and data applications. Accordingly,
higher-layer encoding algorithms for multimedia transmissions
will have to be carefully designed to overcome the impact of
errors on wireless channels. Higher-layer applications, running
on top of a link layer, usually manage data transfer in blocks
of multiple bits or symbols, and employ various block error
detection and retransmission mechanisms. In this case, it is
important to examine the effects of multipath fading-channel
dynamics on block data throughput, delay, and queuing per-
formance. This gives rise to the second type of analytical mod-
eling methods, called higher-layer oriented modeling, which is
based on block errors. In the following subsections, we
describe physical-layer oriented modeling and higher-layer
oriented modeling.

Physical-Layer Oriented Modeling — This method aims at
determining the BER performance of a wireless communica-
tion system over fading channels. Based on the specific chan-
nel model and modulation/detection combination, the average
BER is obtained through statistical calculations. One of the
approaches is to approximate the probability density function
(PDF) of SNR at the receiver, and then average

Proakis [25] derived a generic equation for evaluating the
BER of multichannel noncoherent and differentially coherent
reception of binary signals over multiple independent additive
white Gaussian noise (AWGN) channels. Lindsey [26] devel-
oped a generic expression for the average BER of binary cor-
related FSK for multichannel reception over multiple
independent Rician fading channels, where the strength of the
scattered component is assumed to be constant for all the
channels. Charash [27] performed the average BER perfor-
mance analysis for binary orthogonal FSK with multichannel
reception over multiple independent and identically distribut-
ed (i.i.d.) Nakagami-m fading channels. Weng et al. in [28]
derived a closed form average BER expression for binary
DPSK with multichannel reception over multiple Nakagami-m
fading channels. In [29] Patenaude et al. extended the results
of [27] and [28]. They derived a closed form expression for
the average BER of binary orthogonal square-law detected
FSK and binary DPSK with multichannel reception over mul-
tiple independent, but not necessarily i.i.d., Nakagami-m fad-
ing channels. Tjhung et al. [30] and Tanda [31] analyzed the
average BER for Differential Quadrature PSK (DQPSK) over
Rician and Nakagami-m fading channels, respectively. Tellam-
bura et al. [32] presented an alternate unified BER analysis of
DQPSK over Rician and Nakagami-m fading channels.

In contrast to the above approaches, Simon and Alouini [9]
deploy an alternate form of the Marcum Q-function and the
resulting alternate integral representation of the conditional
BER, as well as some well known Laplace transforms, to inde-
pendently average over the PDF of each fading channel. This
results in a useful generalized expression for the average BER
performance of noncoherent and differentially coherent com-
munication systems over AWGN and fading channels, thus
unifying all the results mentioned above.

Figure 2 [9] shows a multilink channel model, which is
used to develop the generalized model for the determination
of the BER performance. This model is general enough to
include the cases where different independent channels are
not necessarily identically distributed, nor even distributed
according to the same family of distributions, and systems that
employ postdetection equal gain combining [18] (EGC). The
transmitted signal is received over L independent channels,
each of them being a fading channel. {r|(t)}'|‘:1 isasetof L
received replicas of the signal, where | is the index of the
channel, and a, g, and t are the random fading-channel

the BER over that PDF. Much work on this mod-
eling approach has been reported in the litera-
ture.

In many applications, it is difficult to track the
phase of the received signal. It is therefore impos-
sible to perform coherent detection, which
requires reference in phase with the received car-
rier signal. In such cases, the design of a commu-
nication receiver must depend on either
noncoherent detection, where no attempt is
made to determine the phase of the incoming
signal, or differentially coherent detection, where
the carrier phase of the previous signaling inter-
val can be used as a phase reference. In a ran-
domly fading channel, it may be difficult to
establish and maintain a coherent reference.

S(t)—

Transmitted
signal

Q P

al exp(-j61) nl (t)
& P2
EGC
02 exp(-j62) n2 (1) noncoherent |

V. (T__r3(t) | diff-coherent
% Delay 13 N receiver
n3 (t)

a3 exp(-j63)

Therefore, a noncoherent system or a differen-
tially coherent system is more desirable. Readers
are encouraged to read [24] for more details. In
the rest of this section, we briefly describe some

oy exp(-j6y)

AWGN

i i )
S ol

n(t)

reported BER calculations for noncoherent and
differentially coherent detections.

m FIGURE 2. Generalized fading channel.
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Detection type Modulation (signal set) Parameters of Marcum Q-Function

Noncoherent Equal energy, equiprobable correlated binary signals > T
(I = complex correlation coefficient) n=1 a= 1-~N1-| 2] b= 1+v1-|A|
' 2 ' 2
Equal energy, equiprobable uncorrelated binary signals, h=1a=0,b=1
e.g., BFSK
Differentially Binary phase-shift-keying (DPSK) h=1,a=0b=+2
coherent
Quadrature phase-shift-keying (DQPSK) with Gray codin
p ying ( ) y [¢] n=1,a=«/2—\/§,b=«/2+\/§

m Table 2. Special cases of generalized equation for specific modulation/detection schemes.

amplitudes, phase, and delays, respectively. The first channel
(with index of 1) is assumed to be the reference channel
whose delay is 0. The fading amplitude, a,, of the Ith channel
is a random variable with a mean squared value of a7 which is
denoted by W. The probability distribution of the random
variable a| is any of the family of distributions presented in
Table 1. Based on this channel model, the authors in [9] use
alternate representations of Gaussian and Marcum Q-func-
tions that are characteristic of error-probability expressions
for differentially coherent and noncoherent forms of detection
to obtain the generalized BER expression as follows:

I|__,0—1(|2L,—1)n|
F*D(E:y)=Ql(a y.byr)- LMT
Xexp_(a2+b2)y @by L (6]
T (121

XLE‘E(??_II)UL' - X[Q (a\/?’bﬂ/?)_Ql(a y,bﬁ)]

L,

R R YR R |

where the function Q(-) is the generalized Marcum Q-function
obtained by the authors in [9] and is given by

X2 +OL2

Q(@py=— [ xexp —( ] g(@de ()
o

The I(:) function in Eq. 2 is the modified Bessel function
of the first kind and order (I — 1). The parameter | in Eq. 1 is
the channel index, and g = S, dl is the total instantaneous
SNR per bit.

Typical values of h, a, and b, corresponding to specific
modulation/detection schemes, are shown in Table 2 [9]. Note
that in all possible cases, a and b are independent of the fad-
ing-channel model. For the case of single-channel reception,
the value of L, in Eq. 1 is equal to one. Otherwise, L, > 1,
which corresponds to the case of multichannel detection.
Details on the derivation of this generalized expression can be
found in [9].

The effectiveness of the generalized BER equation (as
given by Eq. 1) is shown by an example below. The well-
known conditional BER expression for orthogonal DPSK with
single-channel reception is obtained by plugging in appropri-
ate parameters summarized in Table 2.

For L, =1 (i.e., single-channel reception), the latter two
summations in Eq. 1 do not contribute. One can immediately
obtain

RL(Ei7)=Q(ay7.byy)

n_ (a2 +b2)y 3
—[1_'_”]9@{——2 ]Io(aby).

For h =1, a =0, and b = +2 (Table 2), Eqg. 3 can be reduced
to the well known expressions for DPSK as reported by a
number of authors:

Po(Ei1)|DPSK = exp(-1). 4

Contributions made by hundreds of authors dealing with
BER probability performance over generalized AWGN and
fading channels, using alternate representations of Marcum
Q-functions, are now unified in a common framework [9]. The
coverage of this framework is broad enough to represent and
describe almost all combinations of modulation/detection
types and fading-channel types.

Most wireless communication system designers make use
of commercially available tools. To determine the parameters
for a specific design module, they carry out many on-site mea-
surements. However, this does not mean that the analytical
error models we presented here are not useful. The merger of
networking technology and wireless communications requires
a modern wireless network to be more mobile, capable of
higher data rates, easy to configure and use, and more afford-
able. Apparently, achieving such a near-optimal set of require-
ments requires careful balancing of trades. Simulation
assessment of performance is the currently widely used
method to achieve this goal. Results presented in this article
(e.g., BER expression of orthogonal DPSK over Nakagami-m
fading channel) could be easily plugged into the receiver’s
BER calculation procedure of commercially available network
simulation tools (e.g., OPNET) to facilitate the physical-layer
performance analysis.

Although simulation plays an essential role in comparing
competing design alternatives, simulation of wireless network
systems, especially wireless links, is sometimes unreliable, which
may lead to incorrect design choices. This is due to errors in
the modeling, including unwanted approximations and simplifi-
cations. Generally, higher accuracy in modeling requires more
complexity of computation. In this case, it is desirable to have
models with low computation complexity, while maintaining the
desired accuracy. The unified expression of BER performance
for noncoherent and differentially coherent modulations over
generalized fading channels, which is presented above, is a
good example of such models. The expression of average BER
only involves a single finite-range integral whose integrand con-
tains only elementary functions. It can, therefore, be easily
computed numerically. Such contributions are very useful and
helpful to refining the existing simulation models and tools,
resulting in more accurate and fair design choices.

IEEE Communications Surveys & Tutorials « Fourth Quarter 2003



Higher-Layer Oriented Modeling — As mentioned earlier,
modeling of fading errors at higher layers aims at calculating
the average block error rate (packet error rate). In the litera-
ture, most of the models are based on the assumption that
data packet transmissions are i.i.d. In addition, many coding
schemes and protocols were initially designed for i.i.d. chan-
nels. One may consider an apparent alternative solution to
this problem: the study of channels with memory by deploying
some prediction techniques. Unfortunately, little work is avail-
able on such models.

It has been shown that the special structure of Markov
approximation makes it naturally useful and tractable for this
purpose [33]. The Markov chain assumes that an adequate
description of a system is given by a finite number of states.
Each state is assigned a probability of the system being in
that state. For example, the typical movement of the stock
market could be considered as a simple two-sate model in
terms of up and down movement of the index. The study of
Markov approximation for fading channels dates back to the
early work of Gilbert [34] and Elliott [35]. They built a two-
state Markov channel known as the Gilbert-Elliott channel.
In a simplified Gilbert model [36], the error probabilities in
bad and good states are 1 and 0, respectively. Assuming 1
and 0 denote successful and erroneous transmission in a
given slot, the state transition diagram is shown in Fig. 3.
Accordingly,

P [ Poo pm) ©)

P10 P11

is the transition matrix for the packet error process. There-
fore, the probability of having packet errors is given by [33]

Po1
g=—">— 6
P10 + Po1 ©

This Markovian model for average packet error probability
can be easily extended for diversity. The performance can be
improved by using two (or more) suitably spaced antennas
over fading channels [33]. For example, if a diversity of order
two (i.e., two antennas) is employed, and the signals received
at the two antennas fade independently, the channel can be
modeled by three states: both channels are good (state 0), two
channels have different states (state 1), and both channels are
bad (state 2). If the transition matrix of each channel has the
same form as Eg. 5, the transition matrix of this three-state
Markov chain can be written as [33]

pdo 2 Po1 Poo Ph1
P=| PoPoo P11Poo + P1oPo1r  Po1Pi1 | ©)
pZo 2p1o P11 Pl

In this three-state Markov model, states 0 and 1 correspond to
successful transmission, while state 2 corresponds to a trans-
mission failure.

A binary symmetric channel (BSC) with a given crossover
probability can be associated with each state so that the
channel quality for each state can be identified. The Gilbert-
Elliott channel is a special case of this type of channel,
where the crossover probabilities of the BSC are 0 and 0.5,
respectively [37]. Each state represents a specific channel
quality that is either totally noisy or noiseless. When the
channel quality varies dramatically, a two-state Gilbert-
Elliott model is not adequate. As a solution, a finite-state
Markov channel (FSMC) model is proposed in [37] as an
extension of the two-state Markov model. By partitioning

p10

p00 pll

pO1

m FIGURE 3. State transition diagram for an example simplified
Gilbert model.

the range of the received SNR into a finite number of inter-
vals, the FSMC model is constructed for Rayleigh fading
channels [37].

As wireless network technology evolves, the design of
communication networks becomes more complicated because
most of the existing network protocols were designed for
wireline networks. Analyzing and evaluating the perfor-
mance of existing protocols in wireless environments pro-
vides many insights and possible solutions on how to adapt
existing network protocols to wireless environments. There-
fore, accurate models of network dynamics such as packet
error probabilities is very essential to wireless network pro-
tocol design and development. The higher-layer oriented
modeling methods directly provide packet error probabilities
without the need to understand the complex physical-layer
schemes and long conditional probability calculations. One
may easily put such a higher-layer oriented model to a
prevalent network simulation tool (e.g., OPNET, or NS),
and evaluate (and furthermore, improve) the existing higher-
layer network protocols. For example, by simulating link-
layer error control protocols, such as automatic repeat
request (ARQ), one may be able to tune the existing param-
eters of the protocol and even find performance improve-
ment schemes. By simulating TCP over wireless links with
random link errors generated by such a higher-layer error
model, many TCP improvement algorithms have been pro-
posed during the past several years. These algorithms pro-
vide different ways for TCP to react differently in front of
congestion errors and link corruption errors.

EMPIRICAL DISTRIBUTION-BASED MODELS

A large number of measurements have been conducted by
telecommunication companies, research laboratories, and
universities in order to determine reasonable fading-chan-
nel parameters (such as error rates) for wireless communi-
cation systems. These measurements show that
environmental factors, such as terrain, construction materi-
als, speed of pedestrians and vehicles, etc., have a direct
impact on radio propagation characteristics. Therefore,
although analytical modeling methods as described here are
sound in theory, in practice it is hard to determine the val-
ues of the parameters in these models, especially when we
want to build a specific model under a special environment.
This gives rise to empirical distribution-based modeling
methods.

The development of empirical distribution-based models
consists of three phases: data collection, statistical analysis
and model construction, and model validation.
= In the data collection phase, a large number of statistical

data are collected and recorded by network tracing or

measurements for many different scenarios.

= Those statistical data are extracted in terms of interests,
such as packet errors, and are modeled in the statistical
analysis and model construction phase. The model is
built by fitting known probability distributions to data.
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= In the model validation phase, the models are simulated
or analyzed, and validated. The models are refined to
make them consistent with the collected data and traces.

An impressive example is presented in [3], where the loss
behavior of the AT&T WaveLAN, an in-building wireless
interface, is characterized and modeled using empirical distri-
bution-based modeling methods. Though IEEE 802.11b has
been prevalent among wireless LAN technologies, we still
choose this example to show the usefulness and effectiveness
of empirical distribution-based models, because as a result of
conducting network tracing, the traditional method of evaluat-
ing wireless network protocols with a uniform error model has
been shown to be inaccurate by [3]. Furthermore, the authors
in [3] also reveal that the wireless error behavior of Wave-
LAN cannot be accurately modeled by a simple two-state
Markov chain using analytical modeling methods. Instead,
another improved two-state Markov model, based on the dis-
tribution of the error length (defined to be the number of
packets that are lost consecutively) and error-free length
(defined to be the number of packets that are successfully
received between two adjacent bursts of errors [3]) of the
packet stream, has been shown to be more accurate. The key
difference between the two lies in the probability distribution
of the error and error-free length. The simple two-state
Markov model assumes that the error length and error-free
length are geometrical distributed. However, results of the
empirical distribution-based modeling shows that the error
length is better described by a combination of two exponential
distributed segments, and the error-free length is better
described by a combination of three segments, two Pareto dis-
tributions and one exponential distribution.

In addition to validating and refining the existing models,
the empirical modeling method can also be used to find
inappropriate hypotheses that have been used in analytical
modeling in the past. This indicates limitations of some
widely used analytical models. The authors in [38] point out
that the tracing data on wireless links is non-stationary in
nature by performing error traces on a GSM network plat-
form. (The authors define a trace to be stationary when the
error statistics remain relatively constant over time.) They
arrived at the above conclusion by applying the Run Test
[39] (a method used to test stationarity) to the tracing data.
Many users have used the assumption of stationarity of
Markov chains to model errors in wireless channels, includ-
ing the Gilbert model introduced earlier. The authors show
the inaccuracy of the Gilbert model as a result of inappro-
priate stationarity assumptions. Furthermore, they propose a
new method, called Markov-based trace analysis (MTA),
which results in a more accurate error burst distribution
model for wireless networks. MTA takes advantage of a
Markov process by decomposing a non-stationary trace into
a set of piece-wise stationary traces consisting of lossy and
error-free states. The error-free trace is a deterministic pro-
cess, whereas the lossy trace is a stationary random process
that is modeled by a Markov process.

Many advantages and uses of empirical distribution-based
models have been discussed above. However, in order to build
an empirical model, many resources are required. These
include real communication networks, measurement equip-
ment, data tracing and recording tools (hardware and soft-
ware), and data processing algorithms, which definitely lead to
high costs. The authors applying the MTA method in [38]
required access to a GSM network platform. A study of wire-
less communication for aircraft systems, performed by
Aerospace Vehicle Systems Institute (AVSI), even required a
Boeing-777 airplane as part of their testbed. Their purpose of
tracing was to build a model.

SUMMARY

Wireless error modeling methods have been surveyed and
classified in this article. The models that have been developed
to approximate the loss behavior of transmission channels
have been classified into two groups: analytical models and
empirical distribution-based models. Since errors in wireless
channels are due to the diversity of wireless connections and
the complicated error environment, analytical modeling meth-
ods are highly dependent on the characterization of error
environments, such as fading channels. Although physical-
layer oriented modeling methods and higher-layer oriented
modeling methods can be used to evaluate the BER perfor-
mance and packet error performance, respectively, it is highly
desirable that wireless errors be modeled in a thoroughly
reproducible way. This is especially important for developers
of network protocol and mobility algorithms who must experi-
ment with realistic channel parameters. The empirical distri-
bution-based modeling approach, which alleviates the above
problem, has been described in this article.
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