
Banker’s Deadlock Avoidance Algorithm for
Distributed Service-Oriented Architectures

Matthew Martin†, Nicolas G. Grounds†, John K. Antonio‡, Kelly Crawford†, Jason Madden†
†RiskMetrics Group, 201 David L. Boren Blvd, Suite 300, Norman, OK, USA

‡School of Computer Science, University of Oklahoma, Norman, OK, USA

Abstract— A distributed service-oriented architecture com-
prises interconnected machines that together support a num-
ber of services. Concurrent service requests made to an
individual machine are supported with shared, and limited,
resources associated with that machine. A call to a service
method may in turn invoke methods from other services,
resulting in a nesting of service calls that is represented
by a call tree. Deadlock occurs when a circular dependence
is formed as a result of requests (calls) waiting for machine
resources to be released by other requests. A deadlock
avoidance technique is derived from Dijkstra’s Banker’s
Algorithm that accepts or denies preferred scheduling and
method-to-machine assignments proposed by underlying
policies. Assumed to be known and available are estimates
for the resource requirements of methods and the structures
of the call trees. Simulation studies are conducted that
demonstrate the effectiveness of the approach in avoiding
deadlock, while not degrading (and in most cases improving)
the performance of the underlying policies.

1. Introduction and Background
Deadlock describes an undesirable phenomenon in which

two or more processes hang indefinitely. Processes can
enter the deadlock state—also known as the deadly embrace
[1]—when each process is stalled because it is waiting for
resources held by another process to be freed. For the case
of two processes, deadlock occurs when the first process
is waiting on the second process to free resources that the
first process needs in order to proceed; however, the second
process is also stalled because it is waiting for resources
to be freed by the first. In general, deadlock can involve
more than two processes; occurring when the resource
requirements of the involved processes form a circular chain
of dependencies with one another.

Deadlock is a fundamental problem that has been studied
extensively, often in the context of operating systems [2].
The seminal paper [3] defines four necessary conditions for
the occurrence of deadlock. Even when these conditions are
operative, it is generally not straightforward to determine if,
or when, deadlock will occur.

There are three broad approaches for dealing with dead-
lock: deadlock prevention; deadlock detection/recovery; and
deadlock avoidance. The approach evaluated in the present

paper, which is the application of Dijkstra’s Banker’s Al-
gorithm [1] in the context of a distributed service-oriented
architecture (SOA), is characterized as a deadlock avoid-
ance technique. For more discussion on the advantages that
deadlock avoidance can have over deadlock prevention and
detection/recovery approaches see [4].

In a distributed SOA [5], services define the different cat-
egories of computational operations that are available. Each
service includes a number of associated service methods.
Each machine in an SOA contains one or more service
instances and must supply the resources necessary to carry
out the methods associated with those instances. In general,
machine resources include available memory, CPU capacity,
persistent storage, I/O resources, network resources, and
threads. The primary machine resources considered in the
simulations conducted in the present paper are memory and
CPU.

The implementation of a given method may itself call
upon other methods, and the called methods are not neces-
sarily executed on the same machine as the calling method.
Furthermore, method calls can be nested to an arbitrary
depth; nested method calls are represented by a call tree.
During the execution of a call tree, at most one method of the
call tree is actively executing at a time; however, one or more
methods may be in the holding state (i.e., waiting on the
return from a called method). Executing methods consume
both CPU an memory resources; holding methods consume
memory. Concurrent execution of two or more call trees
in a distributed SOA can lead to deadlock. An illustrative
example of call trees deadlocking in an SOA is provided in
[4].

The remainder of the paper is organized as follows.
Section 2 provides a detailed description of the call tree exe-
cution model, including important state phasing definitions.
The deadlock avoidance algorithm is developed in Section 3
and simulation studies are conducted in Section 4, followed
by conclusions in the final section.

2. Call Tree Execution Model
2.1 Overview

The execution of call tree T of Fig. 1 involves calls to
six service methods, labeled a through e. A method is a
sequence of one or more method segments; the boundaries

a

b c

d

f

a0

b0

c0

d0

e0

f0

a1

c1

a2

a3

c2

blocked ready assigned executing completed
(B) (R) (A) (E) (C)

e

assignable

a0 a1 a2 a3

b0 c0 c1 c2 f0

d0 e0

a

cb f

ed

T chain of
segments

pre-assigned

Fig. 1: Example call tree T and expanded view illustrating
sequential ordering of its method segments.

between segments are defined where a method calls another
method. Also shown in the figure is an expanded view of T ,
illustrating the sequential ordering in which the methods’
segments are interleaved. Thus, during execution of a call
tree, at most one of its methods is executing at a time.
Methods that do not call other methods are the single-
segment leaves of the tree, e.g., b0, d0, e0, and f0 in the
figure. The non-leaf methods (a and c in the figure) each
include calls to other methods and thus are comprised of
multiple segments.

Once a method’s initial segment is assigned to a machine,
it is assumed that its subsequent segments are pre-assigned to
the same machine, i.e., method migration is not considered.
Thus, the segments subsequent to the initial segment are
shaded in Fig. 1 to indicate that their assignment is inherited
from the assignment of the initial segment of the method.

2.2 Method Segment States
Fig. 2 illustrates the sequential ordering (vertically) in

which the chain of segments of call tree T of Fig. 1 are
executed. The possible states of the segments are defined
by the labeled columns: blocked (B); ready (R); executing
(E); and completed (C). Upon initialization of call tree T ,
segment a0 transitions from blocked to ready, and all other
segments remain blocked. After zero or more time units
in the ready state, a0 is assigned to a machine (by some
independent assignment policy) and begins executing, which
is represented by a0’s transition from the ready state to the
executing state.

a

b c

d

f

a0

b0

c0

d0

e0

f0

a1

c1

a2

a3

c2

blocked ready executing completed

(B) (R) (E) (C)

e

assignable

a0 a1 a2 a3

b0 c0 c1 c2 f0

d0 e0

a

cb f

ed

T
chain of

segments

pre-assigned Fig. 2: Execution ordering of method segments of call tree T
from Fig. 1 (shown vertically) with state transition diagram
for each segment (shown horizontally).

Segment a0 stays in the executing state until the segment
completes execution. The completed state is a terminal state
for a segment. The dashed transition arc emanating from the
completed state signifies that the completion of a segment
triggers the next segment in the chain to transition out of the
blocked state. This transition is associated with the transfer
of control of execution when either a method calls another
or when a method returns control back to its calling method.
For the transition from a0 to b0, note that b0 moves from
blocked to ready upon a0’s completion. However, upon b0’s
completion, the next segment, a1, transitions directly from
blocked to executing, bypassing the ready state. This is
because a1 is pre-assigned according to a0’s assignment.
Fig. 2 incudes the state transition diagram for the entire
execution of T of Fig. 1.

In general, a segment gi is in exactly one defined state at
a time. Let σ(gi) denote a mapping from a segment gi to a
representation of its state. Making use of the abbreviations
for the states provided in Fig. 2, the set of possible states
for an initial segment g0 is defined by:

σ(g0) ∈ {B,R,E,C}. (1)

Similarly, the set of possible states for a subsequent segment
gi, i > 0 is defined by:

σ(gi) ∈ {B,E,C}. (2)

The R (ready) state is not a possible state for a subsequent
segment because a subsequent segment inherits its assign-

ment from its associated initial segment; thus, it transitions
directly from B to E.

The total number of segments associated with a call tree
is an important parameter, and shall be denoted by NT . For
the call tree T of Fig. 1, NT = 11. In general, the value of
NT is the sum of the number of vertices and edges in the
call tree graph, which for T of Fig. 1 is NT = 6 + 5.

The two time instances when each of the NT segments
of a call tree begin executing, and complete executing, are
important markers in defining life cycle phases of a call
tree. Define tEi

as the ith begin execution time marker for
a call tree, which is the time instant when the ith segment
of a call tree begins executing. Similarly, define tCi

as the
ith completion time marker for a call tree, which is the
time instant when the ith segment of a call tree completes
executing.

2.3 Method States
In general, a method g can be in one of five possible

states. Four of the states for a method g are named the same
as the four possible states of a segment, i.e., {B,R,E,C}.
The definitions for these states for method g follow logically
from the states of g’s underlying segments.

σ(g) = B⇔ σ(g0) = B (3)

σ(g) = R⇔ σ(g0) = R (4)

σ(g) = E⇔ ∃i s.t. σ(gi) = E (5)

σ(g) = C⇔ σ(gi) = C,∀i (6)

In addition to the four states defined above, a method has
another possible state called holding (H), defined as follows:

σ(g) = H⇔

 σ(g0) = C &
∃i s.t. σ(gi) 6= C &
σ(gi) 6= E,∀i > 0

(7)

Based on the definition of the holding state provided by
Eq. 7, a method that is a leaf of a call tree can never be in
the holding state. To show this, recall that a leaf method has
only one segment, e.g., g0. Thus, it is not possible for such
a method to be in the holding state because it is not possible
to satisfy the two conditions σ(g0) = C & σ(g0) 6= C, refer
to Eq. 7.

Fig. 3 illustrates the state transition diagrams for both
non-leaf and leaf methods. For non-leaf methods, notice the
presence of the cycle involving states E and H. The state
transition for a leaf method contains no cycle; its transitions
are the same as the initial segment transitions illustrated
previously in Fig. 2.

A method g that is in the executing state (i.e, σ(g) = E)
is assumed to require both memory and CPU resources. A
method g in the holding state (i.e., σ(g) = H) is assumed to
require only memory resources. A method in a state other
than E or H is assumed to have no resource requirement.

blocked ready executing holding completed

(B) (R) (E) (H) (C)

non-leaf

method

leaf

method

blocked ready assigned executing completed

(B) (R) (A) (E) (C)

not holding

(H)

holding

(H)

blocked ready assigned executing holding completed

(B) (R) (A) (E) (H) (C)

non-leaf and

leaf methods

non-leaf

methods only

Fig. 3: State transition diagrams for non-leaf and leaf meth-
ods.

2.4 Life Cycle Phases of a Call Tree
Recall from Subsection 2.2 that a call tree T has NT begin

execution time markers and NT completion time markers,
which define time instances when each of the NT segments
of a call tree begin and complete execution, respectively.
These markers are denoted by tEi

and tCi
, and are used

here in partitioning the time line of a call tree’s life cycle
into NT + 2 phases, numbered 0, 1, . . . , NT + 1. The ith

phase of a call tree’s life cycle is denoted by φi and defined
by

φi =


[0, tE1), i = 0[
tEi
, tEi+1), i ∈ {1, 2, . . . , NT − 1}

[tEi
, tCi

), i = NT

[tCi ,∞), i = NT + 1

(8)

Phases φi, i ∈ {1, 2, . . . , NT − 1}, can be further parti-
tioned into two sub-phases called the ith primary sub-phase,
denoted φ1

i , and the ith secondary sub-phase, denoted φ2
i :

φ1
i = [tEi , tCi), i ∈ {1, 2, . . . , NT − 1} (9)

φ2
i =

[
tCi , tEi+1), i ∈ {1, 2, . . . , NT − 1} (10)

From Eqs. 8 through 10, it follows that

φi = φ1
i ∪ φ2

i , i ∈ {1, 2, . . . , NT − 1} (11)

and
φ1

i ∩ φ2
i = ∅, i ∈ {1, 2, . . . , NT − 1} (12)

The primary sub-phase φ1
i represents the time interval

when segment i is executing. The secondary sub-phase φ2
i

represents the time interval after segment i has completed
execution, but before segment i+ 1 begins executing. Thus,
φ2

i represents a “delay” time in which neither segment i nor
segment i+ 1 is executing.

3. Deadlock Avoidance
3.1 Dijkstra’s Banker’s Algorithm

The classic approach to deadlock avoidance in a resource-
constrained environment is Dijkstra’s Banker’s algorithm
[1]. In the original formulation, Banker is assumed to have

control of a finite amount of capital (resource), which may
be loaned to borrowers. Banker is responsible for accepting
or denying (postponing) loan requests made by borrowers.
Each borrower has a maximum loan limit, which bounds the
total amount of capital each borrower may owe Banker at
any instant. In addition to receiving loans, borrowers may
pay back all or part of their outstanding loan balance to
Banker. A key assumption is this: once a borrower’s loan
amount reaches its maximum, the borrower will repay this
amount back to Banker in finite time. Two example loan
scenarios, one which is declared by Banker to be “safe” and
the other “unsafe” are provided in [4].

3.2 Banker’s Algorithm for a Distributed SOA
The Banker’s Algorithm is used here as a basis for

avoiding deadlock when scheduling the execution of call
trees in a distributed SOA. Assumed to be known to Banker
is a phase number for each call tree and the requirements
(e.g., memory and CPU) of the methods associated with the
call trees. Having access to such information is realistic in
the assumed environment in which off-line profiling and/or
historical logging can be performed to collect/estimate these
requirements. In this context, each call tree is a borrower
of resources from the machines of the distributed SOA. As
illustrated through the example presented in [4], deadlock
can occur if too many methods from distinct call trees are
allowed to advance their phase concurrently; but deadlock
can be avoided if proper phasing (i.e., timing for the execu-
tion of the underlying methods) is employed.

Unlike the implicit assumption of a centralized pool
of resources—used to describe the original Banker’s
Algorithm—the resources in an SOA are distributed across
multiple machines. Thus, when applying Banker’s Algorithm
in this context, an accounting must be made for the machine
location(s) associated with available resources.

Let Banker denote the implementation of the Banker’s
Algorithm developed here for avoiding deadlock in a dis-
tributed SOA. In this context, Banker serves as a consul-
tant to Advancer, which is the orchestration component
of the system responsible for incrementing the phases of
“advance-able” call trees in order to meet desired system
objectives. Examples of such objectives might include max-
imizing throughput, minimizing latency, and/or minimizing
tardiness. The role of Banker is to declare whether a
proposed phase advancement is safe. In order to meet
desired system objective(s), Advancer relies on an un-
derlying SelectionPolicy module. Thus, Advancer
first consults with SelectionPolicy to obtain a pro-
posed phase advancement, and then consults with Banker
to determine if it is safe to implement the (proposed)
phase advancement. In its attempt to meet desired objec-
tives, SelectionPolicy may propose the execution of
many call trees concurrently and/or aggressively advance
the phasing of many call trees, concurrently. Before com-

T: set of all call trees

I: current phasing; maps trees to phase numbers
I : T→ {0, 1, . . . , Nmax}
where Nmax = max{NT : T ∈ T}

I∗: proposed phasing; maps trees to phase numbers

M: set of machines where methods assigned to each
M ∈M are associated with current phasing I

M∗: set of machines where methods assigned to each
M ∈M∗ are associated with proposed phasing I∗

Fig. 4: Notation and definitions used by pseudocode of Fig. 5

Advancer(T, I,M)

1 T̃← {T ∈ T : TE 6= ∅}
2 while(T̃ 6= ∅)
3 (T ∗, g∗,M∗)← SelectionPolicy(T̃, I,M)
4 if(!M∗)
5 break
6 I∗ ← I− {(T ∗, I(T ∗))}+ {(T ∗, I(T ∗) + 1)}
7 M∗ ← update(g∗,M∗,M)
8 if(Banker(T, I∗,M∗)=SAFE)
9 I← I∗

10 M←M∗

11 T̃← T̃− {T ∗}

Fig. 5: Banker used as a consultant by Advancer.

mitting to the proposed advancement, Advancer consults
with Banker to determine safety. If Banker declares
the proposed phasing to be UNSAFE, then Advancer
again calls on upon SelectionPolicy to produce a
modified phasing until one is determined that Banker
declares to be SAFE. The interaction between Advancer,
SelectionPolicy, and Banker is provided in Fig. 5.
The notation and definitions used in the pseudocode of Fig. 5
are provided in Fig. 4.

From Fig. 5 Advancer takes as input the set of call
trees under consideration, along with their current phas-
ing, and the set of machines. At line 1, a temporary set
T̃ is constructed containing all trees that do not have
a method executing; these represent trees that are eligi-
ble for phase advancement, i.e., they are advance-able.
SelectionPolicy selects a tree, T ∗, and a machine
assignment, M∗, on which T ∗’s ready method g∗ should
execute (line 3). Assuming an assignment is made, a corre-
sponding proposed phasing is constructed by incrementing
the phase number of the selected tree (line 6). Likewise, the
proposed states of the machines are updated by assigning
ready method g∗ to machine M∗ (line 7). Banker is then
consulted to determine safety of the proposed phasing and

(a)

(b)

......

...

...

u

v

w

Fig. 6: Three-level aggregate tree structure associated with
tree T of Fig. 1.

associated machine states. If safety is declared by Banker,
then the proposed phasing and machine states are committed
(lines 8 through 10). The selected tree T ∗ is removed from
the temporary set T̃ (line 11) and execution continues until
T̃ = ∅ (line 2) or SelectionPolicy does not return a
machine assignment (lines 4 and 5).

The pseudocode for Banker is provided in Fig. 7.
Banker returns a value of either SAFE or UNSAFE. By
returning SAFE, Banker asserts that given the call trees’
proposed phase numbers, there exists future scheduling
phases to complete execution (without deadlock) of all call
trees in T. By returning UNSAFE, Banker declares that
continuing execution of call trees from their current state
could lead to deadlock.

Assumed to be known for each tree phase is a worst-case
estimate of future resource requirements for executing the
tree to completion. This estimate is modeled by an aggregate
tree and denoted by A(T(I∗(T))). The depth of an aggregate
tree equals the depth of the original tree and the number of
methods comprising an aggregate tree equals its depth (i.e.,
it is a linear tree). For example, an aggregate tree associated
with tree T of Fig. 1 has three methods and a depth of three.
The resource requirements of each method of an aggregate
tree equals the maximum resource requirements of methods
yet to be completed at that level. Shown in Fig. 6 is the struc-
ture of the aggregate tree associated with tree T of Fig. 1.
For phase 0 (before beginning execution of segment a0) the
resource requirements of the associated aggregate tree are
as follows: r(u) = r(a); r(v) = max{r(b), r(c), r(f)};
r(w) = max{r(d), r(e)}. For phase 3 (after completion
of segment a1 and before beginning execution of c0) the
resource requirements of the associated aggregate tree are
as follows: r(u) = 0; r(v) = max{r(c), r(f)}; r(w) =
max{r(d), r(e)}.

From Fig. 7, Banker takes as input the set of call trees
under consideration, along with their proposed phasing, and
the set of machines with proposed method assignments. At
line 1, a temporary copy of T is constructed, denoted by T̂.
For each tree, Banker determines if sufficient resources are
available to satisfy future resource requirements for that tree.
This is accomplished by employing SelectionPolicy to
assign a machine to each method of the associated aggregate
tree (lines 7 and 8). If all methods of the aggregate tree are

Banker(T, I∗,M∗)

1 T̂← T
2 while(T̂ 6= ∅)
3 aTreeFits ← FALSE

4 for(T ∈ T̂)
5 futurePhasesFit ← TRUE

6 M̂←M∗

7 for(g ∈ A(T (I∗(T))))
8 M∗ ← SelectionPolicy({g}, 0, M̂)
9 if(!M∗)
10 futurePhasesFit ← FALSE
11 break

12 M̂← update(g,M∗, M̂)
13 if(futurePhasesFit)
14 M∗ ← release(T (I∗(T)),M∗)
15 aTreeFits ← TRUE

16 T̂← T̂− {T}
17 if(!aTreeFits)
18 return UNSAFE
19 return SAFE

Fig. 7: Banker: Dijkstra’s Banker’s Algorithm for a dis-
tributed SOA.

assigned to a machine, then resources consumed by the tree
are released (line 14). Also, the tree is removed from T̂.
Banker iterates over T̂ until either: T̂ is empty, in which
case Banker returns SAFE (line 19) or all remaining trees’
future resource requirements cannot be satisfied in which
case Banker returns UNSAFE (lines 17 and 18).

4. Simulation Studies

4.1 Overview

The utility of Banker is evaluated through simulation
studies. Two important objectives of the simulation studies
are to determine: (1) the efficacy of Banker at avoiding
deadlock and (2) the impact that Banker has on the
behavior of SelectionPolicy with respect to a metric
of system performance. Related to the first objective, a
number of simulations are performed to verify that the use
of Banker by Advancer does indeed prevent deadlock
from occurring. For the second objective, special simulation
realizations are identified (through trial and error) for which
deadlock does not occur without the use of Banker. For
each of these realizations, the performance obtained by
SelectionPolicy is measured both with and without
the consultancy of Banker. It is discovered that the use of
Banker actually enhances performance for the case study
and implementations of SelectionPolicy considered.

4.2 Simulation Environment
The simulation environment employed models a real

world SOA environment called BlueBox at RiskMetrics
Group where clients submit their jobs to BlueBox in a
number of different ways. In the actual system, these jobs
are executed and the results are sent back to the clients. In
the simulation environment, jobs are modeled as workflow
graphs (WFGs), which are generated by a WFG generator.
Associated with each WFG is a deadline that defines the
point in time at which all computation for the WFG should
be complete. The generated WFGs are one of three types:
Interactive, Batch, or Webservice. During the simulation of
a WFG’s execution, one or more of its trees have underlying
methods that are ready and/or executing. These correspond
to trees held in the set T as defined in Fig. 4, and used by
Advancer (Fig. 5) and Banker (Fig. 7). The simulation
environment also tracks tree phasing and corresponding
methods assigned to each machine, referred to as I and M
in Figs. 4 through 7.

4.3 Selection Policies
The simulation environment relies on Advancer to

advance the phase of eligible trees in T. As shown in
Fig. 5 Advancer relies on SelectionPolicy to make
proposed machine assignments to ready methods. For the
studies considered here, SelectionPolicy is composed
of two steps. In the first step, ready methods associated with
trees in T are prioritized. In the second step, ready methods
are considered in priority order and assigned to machines
with sufficient resources to satisfy resource requirements.
A ready method is synonymous with a service request in
an SOA and is referred to simply as a request for the
remainder of the paper. The priority of requests is defined
according to a request selection policy (RSP). The following
four RSPs are evaluated: First Come First Serve (FCFS),
Earliest Deadline First (EDF), Least Laxity First (LLF), and
Proportional Least Laxity First (PLLF).

The FCFS policy uses the value of the time instant that
a WFG is generated to define the priority for all requests
associated with the WFG. The EDF policy [6] prioritizes all
requests of a WFG using the deadline associated with the
WFG. The LLF policy [7], [6] prioritizes requests of a WFG
according to their laxity, which is defined as the difference
between the deadline of the WFG and the estimated finish
time of the WFG. The PLLF policy [8] is an enhancement
of the LLF policy that uses a “proportional” laxity value to
prioritize ready requests of a WFG. The proportional laxity
value is defined as the laxity value divided by the ideal
execution of the WFG.

4.4 Case Study
A case study is considered in which a single day is

divided into three consecutive epochs. These three epochs
are associated with WFG generation characteristics for a

Fig. 8: Time-line illustrating the three epochs for the case
study.

1 2

Fig. 9: WFG structure used in simulations.

typical operational business day. The first epoch is from
time = 0 to time = 11 hours; the second epoch is from
time = 11 to time = 12 hours; and the third epoch is from
time = 12 to time = 24 hours (refer to Fig. 8). During
the first and third epochs, only Interactive and Webservice
WFGs are generated. During the second epoch, all three
types of WFGs are generated. The first and third epochs
represent periods of time before and after a relatively short
epoch in which Batch WFGs arrive. The start and end
times of the second epoch are defined by terms of service-
level agreements (SLAs) related to timing of Batch WFG
submission and execution. Typical terms of SLAs specify
that daily Batch WFGs submitted within a specified time
period will be completed by an agreed upon deadline.

Fig. 9 shows the structure of the two-level WFGs assumed
in the simulations. The WFG has two types of control nodes:
parallel (meaning its children may be executed concurrently)
and sequential (meaning its children must be executed in
sequence). Call trees are the leaves of the WFG, represented
with the triangular shapes. The root node is a sequential
control node; the intermediate control nodes are parallel
control nodes. In this figure, β is the number of parallel
control nodes that are direct children of the root and are
assumed to be sequentially executed. The notation γi repre-
sents the number of call trees associated with the ith parallel
control node. The call trees of each parallel control node are
assumed to be independent and may be executed concur-
rently. The values for β and γi vary for the three different
WFG types. The parameter value ranges and distributions
associated with the simulation studies are summarized in
Table 1. The parallelization factor is needed in determining
a base deadline for each generated WFG; it defines the
degree of parallelism assumed for executing parallel call

Table 1: WFG parameter value ranges used for case study.
Values in [Min, Max] sampled from uniform distribution.

Parameter Interactive Webservice Batch
WFG WFG WFG

∗Inter-Arrival Time (secs) 60 120 60
β [1, 1] [1, 3] [3, 5]
γi [1, 2] [2, 3] [5, 20]
Parallelization Factor 2 2 2
WFG Deadline Factor [1.1, 1.2] [1.3, 1.5] [1.3, 1.5]

∗Poisson process.

trees associated with a common control node. Once a base
deadline is determined for a WFG, it is multiplied by the
Deadline Factor (last row in the table) to define the actual
deadline for the WFG.

Interarrival times of the Interactive and Webservice WFGs
are 60 seconds and 120 seconds respectively. The interarrival
time of the Batch WFGs is assumed to be 60 seconds during
the second time epoch from hour 11 to hour 12; Batch WFGs
do not arrive outside this one-hour interval.

For the simulations conducted, three call tree stuctures
were considered for each WFG type. The structures for
Interactive and Webservice WFGs are shown in Fig. 10.
Likewise, Fig. 11 shows the structures for Batch WFGs. For
a given WFG type, there is a uniform likelihood of selecting
one of the three call tree structures.

Fig. 10: Call tree structures for Interactive and Webservice
WFG types.

Requests belonging to a call tree are assumed to have CPU
and memory resource requirement values that depend upon
the particular WFG type to which they belong. The ideal
durations, CPU utilization factors, and memory requirements
for the three WFG types are summarized in Table 2.

4.5 Results
For the case study described in the previous subsection,

one hundred simulations were conducted with the four RSPs
described in Subsection 4.3. Each of the RSPs have different
characteristics leading to different likelihoods for experi-
encing deadlock. Assuming Advancer does not utilize

Fig. 11: Call tree structures for Batch WFG types.

Table 2: Parameter value ranges for requests associated with
call trees of Figs. 10 and 11.

Request Parameter Interactive Webservice Batch
WFG WFG WFG

Ideal Duration (secs) [1.0, 2.5] [10.0, 50.0] [50.0, 175.0]
CPU Utilization [0.5, 1.0] [0.5, 1.0] [0.5, 1.0]
Memory Usage [0.05, 0.15] [0.05, 0.10] [0.05, 0.10]

 0

 50

 100

 150

 200

 250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

Active Call Trees with Banker
Active Call Trees without Banker

 75
 80
 85
 90
 95

 100
 105
 110
 115

11

Fig. 12: Active call trees for PLLF with and without
Banker for a case study realization in which deadlock does
occur when Banker is not utilized.

Banker’s declaration of safety, the observed statistics for
the occurrence of deadlock for each RSP were as follows:
FCFS = 33%; EDF = 33%; LLF = 83%; and PLLF = 82%. A
second set of simulations was conducted in which Banker’s
declaration of safety was utilized. For this set of simulations,
deadlock was avoided for all RSPs.

As an illustration of how Banker interacts with the
SelectionPolicy to avoid deadlock, consider Fig. 12.
The figure shows the number of active call trees in the sys-
tem for two simulations conducted, both employing PLLF as
the RSP. In one simulation, Advancer utilizes Banker’s
declarations of safety, and in the other it does not. From the
figure, it is apparent that when the system is underloaded
(hour one to hour eleven) Banker does not interfere with
the scheduling decisions of SelectionPolicy. How-
ever, as resources become scarce, Banker begins to force
SelectionPolicy to make only decisions that are SAFE.
Just after hour eleven, large quantities of batch WFGs start
arriving. When this occurs, more and more call trees become
active. As illustrated by the inset portion of the figure, if
decisions of SelectionPolicy go unchecked, deadlock
occurs. In the simulation without Banker, deadlock is
observed at the time instant where the graph ends. Also
from inset portion of the figure, it is apparent precisely
when Banker forces some active call trees to finish, thereby
relieving memory pressure, before allowing more call trees

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-1 0 1 2 3 4 5
 0

 20

 40

 60

 80

 100

Pe
rc

en
ta

ge
 o

f W
or

kf
lo

w
s

Normalized Tardiness

PLLF
B-PLLF

Fig. 13: Percentage of WFGs as a function of normalized
tardiness for PLLF with and without Banker for a case
study realization in which deadlock does not occur.

to begin executing. Banker delays the start/execution of
certain call trees in order to ensure sufficient resources
necessary for active call trees to complete.

Because Banker sometimes forces
SelectionPolicy to make decisions different than it
would if it was running standalone, it follows that Banker
has influence on the performance of SelectionPolicy
in terms of tardiness relative to workflow deadlines.
Interestingly, Banker does not negatively affect the
performance of SelectionPolicy in terms of tardiness.
In fact, in most cases considered, Banker actually
improves the performance of SelectionPolicy. As an
example of such a scenario, consider Fig. 13.

5. Conclusions
A new deadlock avoidance algorithm, derived from Di-

jkstra’s Bankers Algorithm [1], is introduced for avoiding
deadlock on a distributed SOA. The algorithm works by ob-
serving the current state of the resources in the system along
with a worst case estimate of future resource requirements

and permitting the execution of only those call trees that
will keep the system in a safe state. It is also worth noting
that the algorithm takes a non-intrusive approach when the
system resources are plentiful and does not influence the
decisions of the underlying selection policy.

The simulation results indicate that using Banker has
multiple benefits. The selection policies considered in the
simulations: FCFS, EDF, LLF, and PLLF have different char-
acteristics leading to different likelihoods for experiencing
deadlock. However, when Banker is utilized in tandem
with any of the selection policies, deadlock is avoided.
In addition to ensuring deadlock avoidance, Banker can
influence SelectionPolicy to make decisions that im-
prove the performance of the system in terms of workflow
tardiness. One hypothesis is that the performance benefits
observed when utilizing Banker are attributed to Banker
forcing SelectionPolicy to concurrently execute differ-
ent collections of call trees, prefering to run a larger number
of shallow and/or undemanding call trees as opposed to a
fewer number of deeply nested and/or resource intensive call
trees.

References
[1] W. Dijkstra, Edsger, Selected Writings on Computing: A Personal

Perspective. Springer Verlag, 1982.
[2] A. Silberschatz, Operating System Concepts. New York, NY, USA:

John Wiley & Sons, Inc., 2007.
[3] E. G. Coffman, M. Elphick, and A. Shoshani, “System deadlocks,”

ACM Comput. Surv., vol. 3, no. 2, pp. 67–78, 1971.
[4] M. Martin, Deadlock Avoidance in Distributed Service Oriented Archi-

tectures. Norman, OK: MS Thesis, University of Oklahoma, 2010.
[5] M. P. Papazoglou and W.-J. Heuvel, “Service oriented architectures:

approaches, technologies and research issues,” The VLDB Journal,
vol. 16, no. 3, pp. 389–415, 2007.

[6] V. Salmani, M. Naghibzadeh, A. Habibi, and H. Deldari, “Quantitative
comparison of job-level dynamic scheduling policies in parallel real-
time systems,” Proceedings TENCON, 2006 IEEE Region 10 Confer-
ence, November 2006.

[7] S. H. Oh and S. M. Yang, “A modified least-laxity-first scheduling
algorithm for real-time tasks,” Proceedings of the 5th International
Workshop on Real-Time Computing Systems and Applications (RTCSA
’98), pp. 31–36, October 1998.

[8] H. K. Shrestha, N. Grounds, J. Madden, M. Martin, J. K. Antonio,
J. Sachs, J. Zuech, and C. Sanchez, “Scheduling workflows on a
cluster of memory managed multicore machines,” Proceedings of
the International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA ’09), July 2009.

