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Computing a Most Probable Delay Constrained Path:
NP-Hardness and Approximation Schemes
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✦

Abstract—Delay constrained path selection is concerned with finding a
source-to-destination path so that the delay of the path is within a given
delay bound. When the network is modeled by a directed graph where
the delay of a link is a random variable with a known mean and a known
variance, the problem becomes that of computing a most probable delay
constrained path. In this paper, we present a comprehensive theoretical
study of this problem. First, we prove that the problem is NP-hard.
Next, for the case where there exists a source-to-destination path with
a delay mean no more than the given delay bound, we present a fully
polynomial time approximation scheme. In other words, for any given
constant ε such that 0 < ε < 1, our algorithm computes a path whose
probability of satisfying the delay constraint is at least (1 − ε) times
the probability that the optimal path satisfies the delay constraint, with
a time complexity bounded by a polynomial in the number of network
nodes and 1/ε. Finally, for the case where any source-to-destination
path has a delay mean larger than the given delay bound, we present a
simple approximation algorithm with an approximation ratio bounded by
the square root of the hop-count of the optimal path.

Index Terms—Delay constrained path selection, computational com-
plexity, approximation schemes.

1 INTRODUCTION

Delay constrained path selection is a fundamental prob-
lem in computer networks. Commonly, a connection
request between a source node s and a destination node t
is associated with a bandwidth requirement and a delay
bound. Given a connection request, the network operator
needs to find an s–t path such that the bandwidth of
the path is no smaller than the specified bandwidth
requirement, and the delay of the path is no larger than
the specified delay bound. In order to compute such a
path, we need to know the network state information
(NSI) such as the bandwidth and delay of each network
element. When exact NSI is available, one can employ
the shortest path algorithm to either compute an s–t
path satisfying the bandwidth and delay requirements
or confirm the nonexistence of such a path [16].

In practice, exact NSI is not always available [1], [2].
One source of inaccuracy in NSI is infrequent flooding
of changes to reduce communication overhead as in
OSPF [16]. Guerin and Orda [6] gave a detailed de-
scription of the sources of inaccuracy in NSI. We refer
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the readers to [6] and [20] for sources of inaccuracy in
NSI and their impact on QoS routing. The existence of
inaccuracy in NSI has led to study the routing problem
with uncertain parameters [6], [12], [14]. The objective
here is to find a path that is most likely to satisfy the
delay requirement. This problem is referred to as the
most probable delay constrained path problem (MPDCP).

In their pioneering work [6], Guerin and Orda studied
several aspects of this problem and related computa-
tional issues. They defined the most probable delay
constrained path problem, proved that it is NP-hard, and
studied several special cases. To simplify this problem,
Korkmaz and Krunz [12] used the central limit theorem
and made mild assumptions on the probability distri-
bution of link delays which lead to a formulation that
requires determining an optimal path with respect to a
metric involving the mean of the path delay and the
variance of the path delay. They considered two cases
of the MPDCP problem. Case-1 is concerned with the
scenario where there exists an s–t path whose path delay
mean is no more than the given delay requirement. Case-
2 is concerned with the scenario where the path delay
mean for any s–t path is greater than the given delay
requirement. They developed iterative algorithms that
converge very fast. For Case-1, numerical results show
that their algorithm can quickly find a path within a
given specified bound from the optimal solution. How-
ever, there is no theoretical bound on the number of
iterations required to compute the desired solution.

In [25], we presented a fully polynomial time approx-
imation scheme (FPTAS) for Case-1 of MPDCP. For any
given constant ε such that 0 < ε < 1, the FPTAS in [25]
can compute a path whose probability of satisfying the
delay constraint is at least (1 − ε) times the probability
that the optimal path satisfies the delay constraint, in
time bounded by a polynomial in 1

ε and the input size of
the instance. In [17], Nikolova et al. presented an exactly
algorithm for Case-1 with a running time of O(nΘ(n)),
where n is the number of nodes in the network. In [18],
Nikolova used a novel approach to design FPTAS for
a class of stochastic optimization problems, including
Case-1 of MPDCP. The time complexity of the FPTAS
in [18] also depends on the input size of the instance.

In [21], Uludag et al. studied a variant of MPDCP
where the link delay follows the Weibullian distribu-
tion, and presented an efficient algorithm to compute
an optimal solution. In [22], Uludag et al. presented a
Laplace transform-based heuristic method for a more



general class of MPDCP problems.
In this paper, we present a comprehensive theoretical

study of the MPDCP problem defined in [12]. Our contri-
butions are three-fold. First, we prove that the problem is
NP-hard. Next, we present an FPTAS for Case-1. In other
words, for any given constant ε such that 0 < ε < 1,
our algorithm computes a path whose probability of
satisfying the delay constraint is at least (1 − ε) times
the probability that the optimal path satisfies the delay
constraint, with a time complexity bounded by a polyno-
mial in the number of network nodes and 1/ε. Finally, we
present an efficient approximation algorithm for Case-2.

We now differentiate our work from closely related
existing works. Guerin and Orda [6] proved the NP-
hardness of a more general version of the MPDCP
problem. Since the hardness of a problem does not imply
the hardness of a restricted version of the problem, we
are the first to present a hardness result for MPDCP.
Guerin and Orda [6] presented an FPTAS for a rate-
based most probable delay constrained path problem,
which is different from the MPDCP problem studied
in [12] and this paper. Also, the techniques used in [6]
and those used in this paper are very different. The focus
of Korkmaz and Krunz [12] is on the design of practically
effective algorithms for the MPDCP problem, while that of
our paper is on the theoretical study of the problem. Our
results complement those of Korkmaz and Krunz [12].
The techniques used to develop our FPTAS for Case-1
follow the same principles of scaling and rounding that
were used in the works for multi-constrained routing [8],
[15], [28], [29], but are different in two major aspects.
First, all of these earlier papers are dealing with multiple
QoS parameters that are additive, but the square root
of the delay variance considered in this paper is not
additive. Second, each FPTAS in these earlier papers
depends on a pair of tight lower and upper bounds
on some function of the optimal path, but the FPTAS
in this paper does not compute such a pair of tight
lower and upper bounds explicitly. Instead, we search
over a set of ordered pairs with polynomial cardinality
that contains a pair of tight lower and upper bounds.
Part of this paper is based on our preliminary work
reported in QShine’2004 [25]. However, the results in
this paper are significantly stronger than those in [25].
For example, the running time of the FPTAS in [25] is
not strongly polynomial (in the sense that it depends
on the input size of the instance), but the running time
of the FPTAS in this paper is strongly polynomial. The
running time of the FPTAS in Nikolova [18] for Case-
1 of MPDCP also depends on the input size of the
instance. The approximation algorithm for Case-2 in this
paper is new. The techniques that we used to design the
approximation algorithm may find applications in other
multi-constrained routing problems.

Since the MPDCP problem is related to the traditional
multi-constrained QoS routing problems, we briefly re-
view some of the related works in this area. Handler and
Zang [7] presented a dual algorithm for the constrained

shortest path problem, which forms the basis for all
of the Lagrangian relaxation based approaches for QoS
routing problems [10], [26], [27]. Jaffe [9] presented a
provably good approximation algorithm for the problem
of finding a path subject to multiple constraints. Chen
and Nahrstedt [4] used a scaling and rounding technique
to design very effective algorithms for computing a
path subject to two additive constraints. Korkmaz and
Krunz [11] proposed a randomized heuristic algorithm.
Hassin [8] designed an FPTAS for the delay constrained
least cost path problem (DCLC), which was later im-
proved by Lorenz and Raz [15], Xue et al. [28] and Xue et
al. [29]. Other recent works on the QoS routing problem
can be found in [13], [19], [23], [24].

The rest of this paper is organized as follows. In
Section 2, we formally define the problem to be studied,
along with notations that will be used in later sections.
In Section 3, we prove the NP-hardness of the MPDCP
problem. In Section 4, we study Case-1 of the MPDCP
problem, and present our FPTAS. In Section 5, we study
Case-2 of the MPDCP problem, and present a very
simple polynomial time approximation algorithm. We
conclude this paper in Section 6.

2 PROBLEM DEFINITIONS

We model the network by a directed graph G(V,E),
where V is the set of n nodes and E is the set of m
links. For each link e ∈ E, there is a nonnegative link
delay d(e) ≥ 0. If e = (u, v), we will use e and (u, v)
interchangeably. Therefore d(e) and d(u, v) both denote
the delay of link e = (u, v). W.O.L.G, assume that n > 2.

Following Korkmaz and Krunz [12], we assume that
the link delays are nonnegative random variables (RV’s)
with mean µ and variance σ2, and that these RV’s are
mutually independent.

Let p be a path connecting source node s to destination
node t. The delay of path p is a random variable defined
by

d(p) ,
∑

e∈p

d(e), (2.1)

with delay mean
µ(p) ,

∑

e∈p

µ(e), (2.2)

and delay variance

σ2(p) ,
∑

e∈p

σ2(e). (2.3)

Let D > 0 be a given delay bound. The probability that
the delay of path p is no larger than D is

π(D, p) , Pr{d(p) ≤ D}. (2.4)

For a given delay bound D and a source-destination
pair (s, t), we are interested in computing an s–t path p
such that π(D, p) is maximized. Under mild assumptions
that the link delays are mutually independent, and that
the probability distribution function of the link delays is
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continuous and differentiable, Korkmaz and Krunz [12]
have shown that the path delay is approximately nor-
mally distributed. As a result, they have shown that

π(D, p) ≈ Φ

(

D − µ(p)

σ(p)

)

, (2.5)

where σ(p) ,
√

σ2(p) and

Φ(x) ,
1√
2π

∫ x

−∞

e−y2/2dy. (2.6)

Since Φ(x) is a monotonically increasing function, the
most probable delay constrained path problem (MPDCP) can
be defined as follows [12].

Definition 2.1 (MPDCP): Let G(V,E) be a directed
graph, where each link e ∈ E has a delay with mean
µ(e) > 0 and variance σ2(e) > 0. Let s be the source
node, t be the destination node, and D > 0 be the delay
bound. The most probable delay constrained path problem
(MPDCP) asks for a simple s–t path popt such that for any
simple s–t path p, we have χ(D, popt) ≥ χ(D, p), where
χ(D, p) = D−µ(p)

σ(p) . 2

Korkmaz and Krunz [12] have concentrated on practi-
cal algorithms for MPDCP that can obtain good solutions
quickly. In this paper, we present a comprehensive theo-
retical study of this problem. In particular, we study its
computational complexity, and present efficient approx-
imation algorithms.

The following defines some of the notations that will
be used in this paper. For each link e ∈ E, we will use
σ(e) to denote the value

√

σ2(e). For a path p in G, we
will use H(p) to denote the hop count of the path. We will
also use σ(p) ,

√

σ2(p) to denote the σ-length of path p.
Note that σ(p) is different from

∑

e∈p σ(e) in general.

3 COMPUTATIONAL COMPLEXITY

In this section, we study the computational complexity
of the MPDCP problem. We will prove that the MPDCP
problem is NP-hard. In other words, there exists no
polynomial time optimal algorithm for the MPDCP problem
unless P = NP.

Theorem 3.1: The MPDCP problem is NP-hard. 2

PROOF. We will prove the NP-hardness of the MPDCP
problem by a polynomial time reduction from the
longest path problem, which is known to be NP-hard [5].

Let an instance I1 of the longest path problem be
defined by an undirected graph GU (V,EU ), a source node
s ∈ V , and a destination node t ∈ V . The goal of the
longest path problem is to find a longest simple path
connecting node s to node t in GU .

We define an instance I2 of the MPDCP problem by a
directed graph GD(V,ED) (whose construction and link
weights are explained below), source node s, destination
node t, and delay bound D = 1. The directed graph GD

is constructed in the following way: For each undirected
edge (u, v) ∈ EU , ED contains a pair of directed links
(u, v) and (v, u). The link weights of GD are defined in
the following way: For each link (u, v) ∈ ED, we set

σ2(u, v) = 1. For each link of the form (u, v) ∈ ED where
u = t or v = t, we set µ(u, v) = M + 1, where M =
(n− 1)2(

√

n/(n − 1) + 1), and n is the number of nodes.
For all the other links (u, v) ∈ ED where u 6= t and v 6= t,
we set µ(u, v) = 1.

Clearly, the construction process takes O(|V | + |EU |)
time. To finish the proof, it suffices to show that any
optimal solution of I2 must be an optimal solution of I1.
To the contrary, assume that popt is an optimal solution
to I2, but is not an optimal solution to I1. Since popt is
not an optimal solution to I1, we have

σ2(popt) ≤ σ2(pl) − 1, (3.1)

where pl is a longest simple s–t path in GU (V,EU ). Since
there are at most n−1 links in a simple s–t path, we have
σ2(pl) ≤ n − 1. Therefore we have

σ2(pl)

σ2(popt)
≥ σ2(pl)

σ2(pl) − 1
≥ n − 1

n − 2
. (3.2)

Since popt is an optimal solution to instance I2 and pl is
a feasible solution to instance I2, we have

1 − µ(popt)

σ(popt)
≥ 1 − µ(pl)

σ(pl)
. (3.3)

Following the definition of the link weights, we have
M + 1 ≤ µ(popt) and M + 1 ≤ µ(pl) ≤ M + n. Therefore
µ(popt) > 1 and µ(pl) > 1. Hence equation (3.3) implies

σ2(pl)

σ2(popt)
≤
(

µ(pl) − 1

µ(popt) − 1

)2

≤
(

M + n − 1

M

)2

. (3.4)

Summarizing the above, we have

n

n − 1
<

n − 1

n − 2

(3.2)

≤ σ2(pl)

σ2(popt)

(3.4)

≤
(

M + n − 1

M

)2

=
n

n − 1
.

This contradiction proves the theorem.
Theorem 3.1 presents a negative result. It shows that it

is unlikely to design polynomial time optimal algorithms
for the MPDCP problem. In the rest of this paper, we will
present several important positive results on the MPDCP
problem. As in [12], we distinguish two disjoint cases of
the MPDCP problem.
Case-1: There exists an s–t path p such that µ(p) ≤ D.

We denote this case as MPDCP1.
Case-2: For any s–t path p, we have µ(p) > D.

We denote this case as MPDCP2.
The following lemma presents important properties of

the two cases, as well as the time required to find out
which case an instance of MPDCP belongs to.

Lemma 3.1: For any given instance of the MPDCP
problem, we can decide whether it is Case-1 or Case 2
using O(m + n log n) time. Furthermore,

1) For Case-1, we can compute, in O(m+n log n) time,
an s–t path p such that π(D, p) ≥ 0.5.

2) For Case-2, there does not exist an s–t path p such
that π(D, p) ≥ 0.5. 2
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PROOF. We can compute a shortest s–t path pµ using µ(e)
as the metric on the links. This requires O(m + n log n)
time. We have Case-1 if and only if µ(pµ) ≤ D.

Assume it is Case-1. We have µ(pµ) ≤ D. Therefore

π(D, pµ) ≥ Φ(0) = 0.5. (3.5)

Assume it is in Case-2. For any s–t path p, we have
µ(p) > D. Therefore

π(D, p) < Φ(0) = 0.5. (3.6)

This completes the proof of the theorem.
As a byproduct of this theorem, we know that it is less

likely for the network operator to find a path satisfying
the delay requirement in Case-2 than in Case-1. Hence
the recognition of Case-2 may suggest to the network
operator that the delay bound is too small, and should
be increased. Therefore Case-1 is the more interesting
case of the two.

Our hardness proof of MPDCP is based on the hard-
ness of Case-2, and it does not imply the hardness of
Case-1. Since the best-known exact algorithm for Case-1
has a time complexity of O(nΘ(log n)) [17], we believe that
Case-1 itself is also NP-hard.

4 CASE-1: A FULLY POLYNOMIAL TIME AP-
PROXIMATION SCHEME

In this section, we concentrate on Case-1 of the MPDCP
problem, MPDCP1. We will present an FPTAS for this
problem. We will apply scaling and rounding on the link
weight σ2(e), and use dynamic programming to solve
the corresponding problems where the delay variance
of each link is a positive integer (as a result of scaling
and rounding).

4.1 Approximating MPDCP1 when a Pair of Tight
Lower and Upper Bounds on σ2(popt) Is Known

In this subsection, we present an FPTAS that can com-
pute an arbitrarily good approximation to popt when we
know a lower bound δ on σ2(popt) and an upper bound ∆ on
σ2(popt) such that δ ≤ σ2(popt) ≤ ∆ ≤ 2δ. In particular,
for any given constant ε > 0, our FPTAS computes an s–
t path p∗ such that χ(D, p∗) ≥ χ(D, popt)/

√
1 + ε, in time

O(mn
ε ). This FPTAS is presented in Algorithm 1.

Algorithm 1 has three phases. In the first phase (Lines
1-4), we define the scaling parameter θ and perform
scaling and rounding on the link weight σ2(e) to obtain a
new (positive integer-valued) link weight σ2

θ(e). We also
compute two integers L and U where L < U such that
a) U − L is O(n

ε ), b) for some c = L,L + 1, . . . , U , we
have χ(D, pc) ≥ χ(D, popt), where pc is an s–t path such
that µ(pc) = min{µ(p)|σ2

θ(p) ≤ c}.
In the second phase (Lines 5-15), we compute the

entries µ[v; c] for each node v ∈ V and each value
c = 0, 1, . . . , U using dynamic programming. Essen-
tially, µ[v; c] is the minimum µ-length (measured by
link weight µ(e)) among all s–v paths whose σ2

θ -length
(measured by link weight σ2

θ(e)) is no more than c.

Algorithm 1 AlgMPDCP1(G,µ, σ2, s, t, D, ε, δ,∆)

Input: Graph G with link weights µ and σ2, source
node s, destination node t, delay bound D, precision
ε > 0, bounds δ and ∆ on the delay variance of the
optimal path such that δ ≤ σ2(popt) ≤ ∆ ≤ 2δ.

Output: An s–t path p∗.
1: θ := n

ε·δ ; L := bn
ε c; U := b 2n

ε c + n − 1;
2: for e ∈ E do
3: σ2

θ := bθ · σ2(e)c + 1;
4: end for
5: for c := 0 to U do
6: µ[v; c] := ∞, π[v; c] := null, ∀ v ∈ V ;
7: µ[s; c] := 0;
8: end for
9: for c := 0 to U do

10: for each (u, v) ∈ E s.t. b , c − σ2
θ(u, v) ≥ 0 do

11: if (µ[v; c] > µ[u; b] + µ(u, v)) then
12: µ[v; c] := µ[u; b] + µ(u, v), π[v; c] := [u; b].
13: end if
14: end for
15: end for
16: χ∗ := −∞; p∗ := null;
17: for c := L to U do
18: if µ[t; c] 6= ∞ then
19: Starting from [t; c] to trace out an s–t path pc in

reverse order, using the π field.
20: if (χ∗ < (D − µ(pc))/σ(pc)) then
21: χ∗ := (D − µ(pc))/σ(pc); p∗ := pc;
22: end if
23: end if
24: end for
25: return the path p∗.

Also computed are the π[v; c] entries that can be used
to trace out the corresponding paths. In particular, for
each value of c = L,L + 1, . . . , U such that µ[t; c] 6= ∞,
we can trace out an s–t path pc such that σ2

θ(pc) ≤ c and
µ(pc) = µ[t; c] = min{µ(p)|σ2

θ(p) = c}.
In the third phase (Lines 16-25), we compute an s–t

path p∗ such that χ(D, p∗) ≥ χ(D, pc),∀L ≤ c ≤ U .
Theorem 4.1: If 0 < δ ≤ ∆ ≤ 2δ, then Algorithm 1 has

time complexity O(mn
ε ). If popt is an optimal solution

to MPDCP1 such that δ ≤ σ2(popt) ≤ ∆ ≤ 2δ, then
Algorithm 1 finds a solution p∗ such that χ(D, p∗) ≥
χ(D, popt)/

√
1 + ε. 2

PROOF. The running time of Algorithm 1 is dominated
by the loop in lines 9-15, which is bounded by O(mU) =
O(mn

ε ). We next prove the second part of this theorem.
Let p be any s–t path. Following the definition of σ2

θ(e),
we have

θ ·
∑

e∈p

σ2(e) ≤
∑

e∈p

σ2
θ(e) ≤ H(p) + θ ·

∑

e∈p

σ2(e). (4.1)

Therefore we have

σ(p) ·
√

θ ≤ σθ(p) ≤ σ(p) ·
√

θ +
H(p)

σ2(p)
. (4.2)
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During lines 5-15 of the algorithm, we have computed
the entries µ[t; c] for c = 0, 1, 2, . . . , U such that for each
of the values of c with µ[t; c] 6= ∞, there is an s–t path
pc = argmin{µ(p)|σ2

θ(p) = c} with µ(pc) = µ[t; c]. Note
that pc = argmin{µ(p)|σ2

θ(p) = c} implies that for each
c = 0, 1, 2, . . . , U with µ[t; c] 6= ∞, we have

pc = argmax

{

D − µ(p)

σθ(p)
|σ2

θ(p) = c

}

. (4.3)

Assume that popt is an optimal solution to MPDCP1
such that δ ≤ σ2(popt) ≤ ∆ ≤ 2δ. We claim that

L ≤ σ2
θ(popt) ≤ U. (4.4)

To prove the right hand side of (4.4), we note that

σ2
θ(popt) =

∑

e∈popt

σ2
θ(e)

=
∑

e∈popt

(bθ · σ2(e)c + 1) (4.5)

= H(popt) +
∑

e∈popt

bθ · σ2(e)c

≤ n − 1 +
∑

e∈popt

bθ · σ2(e)c

≤ n − 1 + b
∑

e∈popt

θ · σ2(e)c

= n − 1 + bθ · σ2(popt)c
≤ n − 1 + bθ · ∆c
≤ U, (4.6)

where equation (4.5) follows from the definition of σ2
θ(e),

and inequality (4.6) follows from the definitions of θ and
U , and the assumption that σ2(popt) ≤ ∆ ≤ 2δ.

To prove the left hand side of (4.4), we note that

σ2
θ(popt) =

∑

e∈popt

(bθ · σ2(e)c + 1)

≥
∑

e∈popt

θ · σ2(e)

= θ · σ2(popt)

≥ θ · δ (4.7)
≥ L, (4.8)

where inequality (4.7) follows from the assumption that
δ ≤ σ2(popt), and inequality (4.8) follows from the
definitions of θ and L.

Let pθ = argmax{D−µ(p)
σθ(p) |L ≤ σ2

θ(p) ≤ U}. We have

D − µ(p∗)

σ(p∗)
≥D − µ(pθ)

σ(pθ)
,

D − µ(pθ)

σθ(pθ)
≥D − µ(popt)

σθ(popt)
, (4.9)

where the first inequality in (4.9) holds because p∗ must
have been compared with pθ in lines 20-22 of Algo-
rithm 1; and the second inequality in (4.9) holds due
to the definition of pθ and inequality (4.4). Therefore we

have (see explanations below)

χ(D, p∗) =
D − µ(p∗)

σ(p∗)

≥ D − µ(pθ)

σ(pθ)
(4.10)

≥ D − µ(pθ)

σθ(pθ)
·
√

θ (4.11)

≥ D − µ(popt)

σθ(popt)
·
√

θ (4.12)

≥ D − µ(popt)

σ(popt)
·

√
θ

√

θ + H(popt)
σ2(popt)

(4.13)

=
D − µ(popt)

σ(popt)
/

√

1 +
ε · δ · H(popt)

n · σ2(popt)

≥ D − µ(popt)

σ(popt)
/
√

1 + ε (4.14)

= χ(D, popt)/
√

1 + ε, (4.15)

where inequality (4.10) follows from the first inequality
in (4.9); inequality (4.11) follows from the first inequal-
ity in (4.2); inequality (4.12) follows from the second
inequality in (4.9); inequality (4.13) follows from the
second inequality in (4.2); equality (4.14) follows from
the definition of θ; and inequality (4.14) follows from the
facts that H(popt) ≤ n and σ2(popt) ≥ δ. This completes
the proof.

Remark 4.1: The condition δ ≤ σ2(popt) ≤ ∆ guaran-
tees that Algorithm 1 returns a non-null path p∗. When
the above condition is not satisfied, the returned path p∗

may be a null path. As long as δ ≤ ∆ ≤ 2δ, Algorithm 1
has a time complexity of O(mn

ε ).

4.2 A Polynomial Sized Set containing a Pair of Tight
Lower and Upper Bounds

Theorem 4.1 requires the knowledge of a pair of lower
and upper bounds δ and ∆ on σ2(popt). Instead of at-
tempting to compute such a pair of lower and upper bounds,
we will compute a set of ordered pairs that contains the desired
pair (δ,∆) which satisfies the condition of Theorem 4.1. More
importantly, the cardinality of this set is at most m log n,

Lemma 4.1: Let p be any s–t path in G. Then

max
e∈p

σ2(e) ≤ σ2(p) ≤ (n − 1) × max
e∈p

σ2(e). (4.16)

PROOF. Note that p must contain at least one edge emax

such that σ2(emax) = maxe∈p σ2(e) and that the number
of edges in p is at least 1 and at most n − 1. Therefore
we have inequality (4.16).

Lemma 4.2: Let p be any s–t path in G. Then

σ2(p) ∈ ∪e∈E [σ2(e), (n − 1) × σ2(e)]. (4.17)

PROOF. This follows from Lemma 4.1.
We know σ2(popt) ∈ ∪e∈E [σ2(e), (n − 1) × σ2(e)] from

Lemma 4.2. However, some of these m closed intervals
may overlap with each other. For the efficiency of our
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FPTAS (to be presented in Section 4.3), we want to write
the union of these m closed intervals as the union of a
set of J ≤ m disjoint closed intervals. Intuitively, this can
be done by a left to right scanning of the m intervals.

Theorem 4.2: For any given instance of MPDCP1,
there exist J ≤ m disjoint closed intervals [αj , βj ],
j = 1, 2, . . . , J such that

1) For any optimal solution popt of the instance of
MPDCP1, we have σ2(popt) ∈ ∪1≤j≤J [αj , βj ].

2) 0 < α1 ≤ β1 < α2 ≤ β2 < · · · < αJ ≤ βJ .
3) These disjoint intervals can be computed in

O(m log n) time.
4)
∑

1≤j≤J log
βj

αj
≤ m log(n − 1). 2

PROOF. We first sort (by the left end point) the m
intervals on the right hand side of (4.17), then scan them
from left to right. If two neighboring intervals are not
disjoint, we can replace them by their union (which
is another closed interval). Therefore we can compute
the set of J disjoint intervals in O(m log n) time. This
proves the first three claims of the theorem (the first
claim follows from Lemma 4.2).

For non-disjoint intervals [a, b] and [c, d] with 0 < a <
c ≤ b < d, we have log d

a ≤ log b
a + log d

c . For each j =
1, 2, . . . , J , let [αj , βj ] be the union of Ij closed intervals
on the right hand side of (4.17), i.e.,

[αj , βj ] = ∪Ij

i=1[σ
2(ej

i ), (n− 1) · σ2(ej
i )], 1 ≤ j ≤ J. (4.18)

Then we have

log
βj

αj
≤

Ij
∑

i=1

log
(n − 1) · σ2(ej

i )

σ2(ej
i )

= Ij · log(n − 1). (4.19)

Since m =
∑

1≤j≤J Ij , we have
∑

1≤j≤J

log
βj

αj
≤
∑

1≤j≤J

Ij · log(n − 1) = m log(n − 1). (4.20)

This proves the inequality in 4).
Theorem 4.3: For any given instance of MPDCP1,

we can compute a list of ordered pairs (δk,∆k), k =
1, 2, . . . ,K, where K ≤ m log(n − 1) such that

1) ∆k = 2δk, k = 1, 2, . . . ,K.
2) ∆k ≤ δk+1, k = 1, 2, . . . ,K − 1.
3) For any s–t path p in G, we have

σ2(p) ∈ ∪1≤k≤K [δk,∆k]. (4.21)

Furthermore, the list of ordered pairs can be computed
in O(m log n) time. 2

PROOF. As in Theorem 4.2, we compute the list of J ≤ m
disjoint closed intervals [αj , βj ], j = 1, 2, . . . , J . This takes
O(m log n) time.

We compute the list of ordered pairs in the following
way. First, we set δ1 := α1 and set k := 1. For each value
of k, we set ∆k := 2× δk. If ∆k ≥ βJ , we set K := k and
stop. If ∆k < βJ and ∆k ∈ [αj , βj) for some j < J , we
set δk+1 := ∆k and increment k to k + 1; otherwise, we
set δk+1 to the smallest αj which is greater than ∆k, and
increment k to k + 1.

We use Fig. 4.2 to illustrate this process. In this exam-
ple, there are four disjoint closed intervals: [1, 3], [6, 9],
[10, 17], and [19, 22]. We set δ1 := 1 and ∆1 := 2× δ1 = 2.
Since ∆1 ∈ [1, 3), we set δ2 := ∆1 = 2, and set
∆2 := 2 × δ2 = 4. Since ∆2 < 22 and ∆2 6∈ [αj , βj)
for any of the four values of j, we set δ3 := 6 and
set ∆3 := 2 × δ3 = 12. Since ∆3 ∈ [10, 17), we set
δ4 := ∆3 = 12, and set ∆4 := 2 × δ4 = 24. The process
stops here since ∆4 ≥ 22.

Clearly, the list of ordered pairs so computed satisfies
all conditions 1)–3) in the theorem. Furthermore, the
computation takes O(m) time (a left to right scanning)
given the list of disjoint closed intervals. The inequality
K ≤ m log(n − 1) follows from 4) of Theorem 4.2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Fig. 1. Illustration of the proof of Theorem 4.3: Black
(thick) horizontal line segments denote the disjoint closed
intervals; Each red (dashed-dot) vertical line segment de-
notes a δk which is different from ∆k−1; Each blue (solid)
vertical line segment denotes a ∆k which is different from
δk+1; Each green (thick) vertical line segment denotes a
∆k which is equal to δk+1.

Note that Theorem 4.3 implies that

δk ≤ σ2(popt) ≤ ∆k ≤ 2δk (4.22)

is true for some k ≤ K (which is a condition in Theo-
rem 4.1). We do not know (and do not need to know) for
which value of k inequality (4.22) holds.

4.3 A Fully Polynomial Time Approximation Scheme

Combining the results obtained in Sections 4.1 and 4.2,
we present an FPTAS for MPDCP1, in Algorithm 2.

Algorithm 2 FPTAS-MPDCP1(G,µ, σ2, s, t, D, ε)

Input: Graph G with link weights µ and σ2, source
node s, destination node t, delay bound D, and
precision ε with 0 < ε < 1.

Output: An s–t path papx.
1: Compute the 2K positive numbers (as in Theo-

rem 4.3)

δ1 < ∆1 ≤ δ2 < ∆2 ≤ · · · ≤ δK < ∆K

such that σ2(popt) ∈ ∪1≤k≤K [δk,∆k].
2: Set χapx := −∞; papx := null.
3: for k := 1 to K do
4: pk := AlgMPDCP1(G,µ, σ2, s, t, D, ε, δk,∆k);
5: if χapx < (D − µ(pk))/σ(pk) then
6: χapx := (D − µ(pk))/σ(pk); papx := pk;
7: end if
8: end for
9: return the path papx.
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Algorithm 2 is very simple. First (in Line 1), it com-
putes K disjoint closed intervals [δk,∆k], k = 1, 2, . . . ,K
such that δk ≤ ∆k ≤ 2δk, ∀ 1 ≤ k ≤ K and δk′ ≤
σ2(popt) ≤ ∆k′ ≤ 2δk′ for some k′ ∈ {1, 2, . . . ,K}. It then
(in Lines 2-9) applies Algorithm 1 (with ε = 2ε) to each
of the K intervals and return the best path.

Theorem 4.4: The time complexity of Algorithm 2 is
O(m2n log n

ε ). It finds a path papx such that χ(D, papx) ≥
χ(D, popt)/(1+ ε/2) ≥ χ(D, popt)× (1− ε/2), where popt is
an optimal solution for the MPDCP1 problem. 2

PROOF. Line 1 takes O(m log n) time. The for-loop
in lines 3-8 takes O(mn

ε m log n) time, since there are
O(m log n) calls to AlgMPDCP1. This proves the time
complexity of the algorithm.

According to Theorem 4.3, there exists an index k′ such
that δk′ ≤ σ2(popt) ≤ ∆k′ ≤ 2δk′ . Therefore, according to
Theorem 4.1, we have

D − µ(pk′)

σ(pk′)
≥ D − µ(popt)

σ(popt)
/
√

1 + ε. (4.23)

According to lines 6-8, we know that

D − µ(papx)

σ(papx)
≥ D − µ(pk′)

σ(pk′)
. (4.24)

One can easily verify that
1√

1 + ε
>

1

1 + ε/2
> 1 − ε/2 (4.25)

Inequalities (4.24), (4.23) and (4.25) imply

χ(D, papx) ≥ χ(D, popt)

1 + ε/2
≥ χ(D, popt) × (1 − ε/2). (4.26)

This completes the proof of the theorem.
Remark 4.2: Algorithm 2 computes an s–t path papx

whose probability of satisfying the delay bound is at
least (1 − ε) times the probability that popt satisfies
the delay bound, i.e., π(D, papx) ≥ (1 − ε) × π(D, popt).
This follows from Theorem 4.4 and Lemma 4.3 with
x̄ = χ(D, popt) and x̃ = χ(D, papx). 2

Lemma 4.3: Let ε > 0, x̄ ≥ 0, and x̃ be given constants
such that x̄ ≥ x̃ ≥ x̄/(1+ε/2). Then Φ(x̃) ≥ (1−ε)Φ(x̄).2
PROOF. One can verify that Φ(x̄) ∈ [0.5, 1] and that the
maximum value of xe−x2/2 for 0 ≤ x < ∞ is 1/

√
e. Hence

Φ(x̄) − Φ(x̃) =

∫ x̄

x̃

e−y2/2dy ≤ (x̄ − x̃)e−x̃2/2

≤ ε

2
x̃e−x̃2/2 ≤ ε

2
√

e
≤ ε√

e
Φ(x̄) ≤ εΦ(x̄).

Therefore Φ(x̃) ≥ (1 − ε)Φ(x̄).

5 CASE-2: AN EFFICIENT APPROXIMATION

In this section, we concentrate on the design of an
efficient approximation algorithm for MPDCP2. Our ap-
proximation algorithm is based on the σ-length and
the σ∞-length of a path, defined in the following, and
characterized in Lemma 5.1.

Let p be any path in G. For each edge e ∈ E, recall (at
the end of Section 2) that σ(e) =

√

σ2(e). We define the
σ∞-length of path p as

σ∞(p) , max
e∈p

σ(e). (5.1)

Recall that the σ-length of path p is

σ(p) ,

√

∑

e∈p

σ2(e). (5.2)

Lemma 5.1: For any s–t path p with µ(p) > D, we
have

D − µ(p)
√

H(p) · σ∞(p)
≥ D − µ(p)

σ(p)
≥ D − µ(p)

σ∞(p)
. (5.3)

PROOF. Since

σ∞(p) = max
e∈p

σ(e) (5.4)

≤
(

∑

e∈p

σ2(e)

)1/2

(5.5)

= σ(p) (5.6)
≤

√

H(p) · σ∞(p), (5.7)

we have
1

√

H(p) · σ∞(p)
≤ 1

σ(p)
≤ 1

σ∞(p)
. (5.8)

This leads to (5.3), noting that µ(p) − D > 0.
The basic idea of our approximation algorithm is to

use the σ∞-length of a path to approximate the σ-length
of a path. The algorithm is listed in Algorithm 3.

Algorithm 3 AproxMPDCP2(G,µ, σ2, s, t, D)

Input: Graph G with link weights µ and σ2, source
node s, destination node t, and delay bound D.

Output: An s–t path papx.
1: Sort the different values in {σ(e)|e ∈ E} into

0 < τ1 < τ2 < · · · < τK .

2: Set papx
0 := null, χapx

0 := −∞.
3: for k := 1 to K do
4: pk := argmin{µ(p)| s-t path p, σ(e) ≤ τk,∀e ∈ p};
5: if pk 6= null and D−µ(pk)

σ∞(pk) > χapx
k−1 then

6: papx
k := pk; χapx

k := D−µ(pk)
σ∞(pk) ;

7: else
8: papx

k := papx
k−1; χapx

k := χapx
k−1;

9: end if
10: end for
11: return the path papx , papx

K .

For each k ≤ K, Algorithm 3 computes an s–t path
papx

k that maximizes D−µ(p)
σ∞(p) among all s–t paths p that

do not use any link e with σ(e) > τk. We prove that
papx , papx

K is a good approximate solution to MPDCP2.
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Theorem 5.1: The worst-case time complexity of Al-
gorithm 3 is O(m2 + mn log n). The algorithm returns a
path papx such that

χ(D, papx) ≥ χ(D, popt) ·
√

H(popt), (5.9)

where popt is an optimal solution to MPDCP2. 2

PROOF. The time complexity of the algorithm is dom-
inated by the loop in lines 3-10, where we invoke Di-
jkstra’s shortest path algorithm K times. Since K ≤ m,
the time complexity of the algorithm is O(m2+mn log n).
Note that for some values of k, the path pk may not exist.
In such a case, the pk computed in line 4 is set to null.

Let k′ be the smallest positive integer such that there
exists an s–t path p with maxe∈p σ(e) ≤ τk′ . Then pk is a
null path if and only if k < k′. Furthermore, we have

D−µ(papx
i )

σ∞(papx
i )

=χapx
i ≤χapx

j =
D−µ(papx

j )

σ∞(papx
j )

,∀k′≤i<j≤K. (5.10)

Let k′′ be an integer such that τk′′ = σ∞(popt) for some
k′′ ∈ [k′,K]. Lines 3-11 imply that

D − µ(papx)

σ∞(papx)
≥ D − µ(papx

k′′ )

σ∞(papx
k′′ )

≥ D − µ(popt)

σ∞(popt)
. (5.11)

The inequalities in (5.3) and (5.11) imply
D − µ(papx)

σ(papx)

(5.3)

≥ D − µ(papx)

σ∞(papx)
(5.12)

(5.11)

≥ D − µ(popt)

σ∞(popt)
(5.13)

(5.3)

≥
√

H(popt) · D − µ(popt)

σ(popt)
. (5.14)

Therefore χ(D, papx) ≥ χ(D, popt) ·
√

H(popt).

6 Conclusions
We have studied the most probable delay constrained
path problem (MPDCP) in a computer network where
the link delay is a random variable following a normal
distribution with a known delay mean and a known
delay variance. We have proved the problem to be
NP-hard. For the case where there exists a source-to-
destination path with a delay mean no more than the
delay bound, we have presented a fully polynomial time
approximation scheme. For the case where any source-
to-destination path has a delay mean larger than the
delay bound, we have present a simple approximation
algorithm with an approximation ratio bounded by the
square root of the hop-count of the optimal path.

REFERENCES

[1] G. Apostolopoulos, R. Guerin, S. Kamat, and S.K. Tripathi; Quality
of service based routing: a performance perspective; Proceedings
of ACM SIGCOMM’1998, pp. 17–28.

[2] G. Apostolopoulos, R. Guerin, S. Kamat; Implementation and
performance measurements of QoS routing extensions to OSPF;
Proceedings of IEEE INFOCOM’1999, pp. 680–688.

[3] G. Apostolopoulos, D. Williams, S. Kamat, R. Guerin, R. Orda and
T. Przygienda; QoS routing mechanisms and OSPF extensions,
IETF RFC 2676, 1999.

[4] S. Chen and K. Nahrstedt; On finding multi-constrained paths;
Proceedings of IEEE ICC’1998; pp. 874–879.

[5] M.R. Garey and D.S. Johnson; Computers and Intractability: A Guide
to the Theory of NP-Completeness; W.H. Freeman, 1979.

[6] R.A. Guerin and A. Orda; QoS routing in networks with inaccu-
rate information: theory and algorithms; IEEE/ACM Transactions
on Networking; Vol. 7(1999), pp. 350–364.

[7] G. Handler and I. Zang; A dual algorithm for the constrained
shortest path problem; Networks; Vol. 10(1980), pp. 293–309.

[8] R. Hassin; Approximation schemes for the restricted shortest path
problem; Mathematics of Operations Research Vol. 17(1992), pp. 36–
42.

[9] J.M. Jaffe; Algorithms for finding paths with multiple constraints;
Networks Vol. 14(1984), pp. 95–116.

[10] A. Jűttner, B. Szviatovszki, I. Mécs and Z. Rajkó; Lagrange relax-
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