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Abstract— The emerging area of network science and engineer-
ing is concerned with the study of structural characteristics of
networks, their impact on the dynamical behavior of systems as
revealed through their topological properties, random evolution
of networks, information spreading along a network, and so
on. This area spans a wide range of applications in different
disciplines. A topic of great interest in this area is the notion
of network criticality. Most measures of network criticality are
defined by the paths that flow through the nodes or edges.
Since computing all the paths is computationally intractable,
only the shortest paths are usually used for computing criticality
metrics. Thus, measures that implicitly capture the impact of
all the paths will be useful. The recently introduced concepts of
the resistance distance and the Kirchhoff Index are two such
measures. In this paper, we study these metrics and present
several results that extend, generalize, and unify earlier works
reported in the literature. In developing these results, the role
of circuit theoretic concepts is emphasized. We also relate our
works to Foster’s theorems and present a generalization that
captures and retains the circuit theoretic elegance of Foster’s
original theorems.

Index Terms— Foster’s theorems, Kirchhoff Index, network
centrality measures, resistance distance.

I. INTRODUCTION

THE emerging area of network science and engineering is
concerned with the study of structural characteristics of

networks, their impact on the dynamical behavior of systems
as revealed by their topological properties, random evolution
of networks, and information spreading along a network
(called epidemic process) etc. This area spans a wide range
of applications in different disciplines, including electrical,
computer and communication networks, road networks, bio-
logical networks, information networks (such as world wide
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web), financial networks etc. For examples see [1]–[5]. It is
therefore not surprising that researchers in different disciplines
have contributed to the developments in network science
and engineering. In particular, graph theory which includes
structural graph theory, random graphs, spectral graph theory,
and algebraic graph theory, plays a central role in network
science and engineering.

Our focus in this paper is on certain issues that arise in
the study of structural characteristics of network such as edge
and node betweenness, similarity, node ranking, communities
in social networks etc. In this area, several criticality metrics
that capture the importance and impact of nodes and links
have been introduced [1]. In defining these measures, paths
between nodes are often used. Since the number of paths
between any two nodes is exponentially large, only shortest
paths are considered. But the shortest paths do not adequately
capture the impact of all the paths. So, measures that implicitly
use all the paths will be useful. Resistance distance between
a pair of nodes and Kirchhoff Index which is the aggregate of
all resistance distances across all pairs of nodes are two such
measures.

The concept of resistance distance, though well known in
circuit theory literature since the early years of electrical
engineering, was first introduced in [6] in the context of
chemical graph theory. See also [7] and [8] for some related
works and references. The concept of Kirchhoff Index was
introduced in [6] as a descriptor of molecular structures.
See [8] and [9] for a discussion of this concept and several
other graph invariants of interest in chemical graph theory.
See [10]–[12] for an application of resistance distance in
network meta data analysis.

Given a weighted undirected graph G, treating G as a
resistance network with edge conductances equal to corre-
sponding weights, [13] discusses relationship between random
walks and flow of currents in G. It has been shown that the
average number of edges traversed by a random walk, that
starts at a node u and ends at a node v, is proportional to
the resistance distance between u and v. See [14] for a proof
of this result. See [15] for an application of the concept of
Kirchhoff Index in congestion control in a communication
network. An optimization problem in the context of shortest
path routing is studied in [16].

In [17] Foster presented a theorem which gives an invari-
ant involving resistance distances. This invariant does not
depend on the edge weights (conductances). A generalization
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of this theorem called Foster’s second theorem, was given
by Foster in [18]. An application of Foster’s theorem in
the analysis of on-line algorithms is given in [19]. A new
proof of Foster’s second theorem is given in [20] using a
probabilistic approach. Extensions of Foster’s theorems were
given in [21]–[24]. Foster’s theorem and its extension was
also encountered in [10] and [12] in the context of network
meta data analysis and combinatorics of optimal designs. The
extension given in [12] is similar to the one given in [23]
and [24], but deals with special situations. However, these
extensions do not capture the circuit theoretic elegance of
Foster’s theorems in the sense that the relevant summation in
these generalizations is a function of the edge weights in the
network unlike in Foster’s theorems where it is an invariant
independent of the edge weights.

In this paper, our focus is on resistance distance and
Kirchhoff Index. We provide results that generalize and unify
current results in the literature.

The rest of the paper is organized as follows. To make
the paper self-contained, we present in sections II - IV the
basic graph and circuit theoretic concepts and results (with
appropriate references) needed for the development in the
remainder of the paper. In particular, in section IV we define
the concept of resistance distance and present a topological
formula to compute this measure. The rest of the paper con-
tains our contributions: new concepts and results. In section V
the concept of Kirchhoff Index is defined and a formula to
compute Kirchhoff Index starting from the inverse of a reduced
Laplacian matrix of a graph is given. In section VI the concept
of cutset Laplacian matrix is defined and two approaches to
compute Kirchhoff Index starting from the inverse of a cutset
Laplacian matrix are given. In this context we also introduce
the concept of Kirchhoff polynomial of a graph. In section VII
we introduce the concept of weighted Kirchhoff Index and
using the results in section VI we present a formula to
compute the weighted Kirchhoff Index. Section VIII presents
a new generalization of Foster’s theorems capturing the circuit
theoretic elegance of Foster’s original results. Section IX
summarizes our contributions advancing the state of the art
in this area and point out the generalizations and unification
achieved. We also provide some topics for further research.

II. BASIC CONCEPTS AND RESULTS

In this section, we introduce the incidence, adjacency,
circuit/cutset and Laplacian matrices of a graph and high-
light certain properties of these matrices that help to reveal
the structure of a graph. The Laplacian matrix is derived
from the incidence and the adjacency matrices and gives a
representation of a graph as viewed from its external ports.1

In electrical circuit theory literature, the Laplacian matrix is
known as the indefinite conductance matrix and its reduced
version known as the node-to-datum conductance matrix.

For proofs of all the results stated in this section and for
graph theoretic concepts relevant to circuit theory that are not
covered here [25] may be consulted. Throughout the paper,
the terms links and edges, and the terms nodes and vertices
will be used interchangeably.

1In circuit theory a port refers to a pair of vertices (called terminals)
in a given circuit N. An electrical circuit is connected to the rest of a
larger system through the port terminals. Ports are additional edges added
to N. By connecting a current or voltage source at the terminals of ports
measurements at the terminals are made. A matrix description based on these
measurements characterizes the network as viewed from the ports.

Fig. 1. Incidence matrix. (a) An undirected graph G and it’s all-vertex
incidence matrix. (b) A directed graph G and it’s all-vertex incidence matrix.

A. Incidence Matrix

Consider a graph G with n vertices and m edges and having
no self-loops. The all-vertex incidence matrix Ac = [ai j ] of
G has n rows, one for each vertex, a, one or each edge. The
element ai j of Ac is defined as follows:

G is undirected:

ai j =
⎧
⎨

⎩

1, If the j th edge is incident on the
i th vertex;

0, otherwise.
(1)

G is directed:

ai j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, if the j th edge is incident on the i th
vertex and oriented away from it;

−1, if the j th edge is incident on the i th
vertex and oriented toward it;

0, otherwise.

(2)

A row of Ac will be referred to as an incidence vector of G.
Two graphs and their all-vertex incidence matrices are shown
in Figures 1(a) and 1(b).

It should be clear that we can obtain any row of Ac from
the remaining n − 1 rows. Thus, the rows of Ac are lineraly
dependent.

Any (n − 1)× m submatrix A of Ac will be referred to as
an incidence matrix of G. The vertex which corresponds to
the row of Ac which is not in A will be called the reference
vertex or datum vertex of A.

Theorem 1 [25]: The determinant of any incidence matrix
of a tree is equal to ±1. �

Since a connected graph has at least one spanning tree,
we have the following.

Theorem 2 [25]: The rank of the all-vertex incidence matrix
of an n-vertex connected graph G is equal to n − 1, the rank
ρ(G) of G. �

B. Adjacency Matrix

Let G = (V , E) be a directed graph with no parallel edges
or self-loops. Let V = {v1, v2, · · · , vn}. The adjacency matrix
M = [mij ] of G is an n×n matrix with mij define as follows:

mij =
{

1, if
(
vi , v j

) ∈ E .

0, otherwise.
(3)
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In the case of an undirected graph, mij = 1 only if there
is an edge connecting vi and v j . The undirected graph of
Figure 1(a) has the following adjacency matrix:

v1 v2 v3 v4 v5 v6

M =

v1
v2
v3
v4
v5
v6

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 1 0 0
1 0 1 0 0 0
0 1 0 1 1 0
1 0 1 0 1 0
0 0 1 1 0 1
0 0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

C. Laplacian Matrix

Let G = (V , E) be a weighted undirected graph with vertex
set V (G) = {v1, v2, ...., vn and edge set E (G). Let wi j denote
the weight of edge (i, j). The adjacency matrix M (G) is as
defined in (3). The degree matrix D (G) is defined as

Di, j =
⎧
⎨

⎩

sum of the weights of the i f i = j
edges incident on i,
0, otherwi se.

(4)

Note that if each wi j = 1, then Di,i is equal to the degree of i .
The Laplacian matrix of a connected weighted undirected

graph G is a square matrix of order n, defined by

L (G) = D (G)− M (G) . (5)

Note that, the (i, j)- entry of the Laplacian matrix L can be
written as:

Li, j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−wi j , i f i �= j and vi and v j

are ad jacent.
0, i f i �= j and vi and v j

are not ad jacent.
Sum of the weights of i f i = j.
the edges incident on i,

(6)

So, L can also be written as

L = AcW At
c, (7)

where W is the diagonal matrix with the diagonal entries
representing the weights on the edges. Note that the matrix
Ac in (7) is obtained after assigning arbitrary orientations to
the given undirected graph G.

Let L(ī) be the submatrix of the Laplacian matrix which is
obtained by removing the i th row and the i th column from L.
This matrix L(ī) is called a reduced Laplacian matrix of G
and is given by

L(ī) = AW At (8)

where A is the reduced incidence matrix with node i as
reference.

The Laplacian matrix and a reduced Laplacian matrix of the
weighted graph G (Figure 1) are calculated as follows.

W =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 0 0 0 0 0 0
0 3 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 3 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

5 −2 0 −3 0 0
−2 5 −3 0 0 0
0 −3 6 −2 −1 0
−3 0 −2 6 −1 0
0 0 −1 −1 5 −3
0 0 0 0 −3 3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

L
(
6̄
) =

⎡

⎢
⎢
⎢
⎣

5 −2 0 −3 0
−2 5 −3 0 0
0 −3 6 −2 −1
−3 0 −2 6 −1
0 0 −1 −1 5

⎤

⎥
⎥
⎥
⎦

.

Note that the Laplacian matrix is defined for an undirected
graph. It can be obtained using equation (5) or (7).

D. Co-Factors of the Reduced Laplacian Matrix

Given a spanning tree of a connected graph G, the product
of all the weights of edges in the spanning tree is called the
tree weight product. We denote by ς (G) the sum of the weight
products of all spanning trees of G.

Theorem 3 [25]: Let G be a connected and weighted
undirected graph and A be an incidence matrix of the directed
graph that is obtained by assigning arbitrary orientations to
the edges of G.Then

ς (G) = det(AW At ) = det L(ī), for any vertex i.

�
From the above theorem, one can see that every (i, i) cofactor
of the Laplacian matrix is equal to ς (G).2 In fact, we have
the following result originally due to Kirchhoff [26].

Theorem 4 [25]: All the cofactors of the Laplacian matrix
of a connected undirected graph G has the same value equal
to ς (G). �

Ak-tree is an acyclic graph consisting of k components.
If a k-tree is a spanning subgraph of a graph G, then it is
called a spanning k-tree of G. The spanning 2-tree Ti jk...,rst ...
denotes a 2-tree, in which the vertices vi , v j , vk , . . . are in
one component and the vertices vr , vs,vt , . . . are in the other
component of the 2-tree and Ti jk,...,rst denotes the sum of the
weight products of all such 2-trees.

Theorem 5 [22]: For a connected graph G, let �i j denote
the (i , j) cofactor of L(k̄) for any k. Then

�ii = ςi,k and

�i j = ςi j,k .

�
E. Pseudo-Inverse of Laplacian Matrix

It can be seen that the sum of the elements in each row and
the sum of the elements in each column of a Laplacian matrix
is zero, that is,

∑n

i=1
Li j =

n∑

j=1

Li j = 0. (9)

So, the determinant of L(G) is zero and L(G) has no
inverse. This has led to the definition of the Moore-Penrose
pseudoinverse of L (G). We wish to note that whereas the
pseudo inverse has been extensively studied by the mathemat-
ics community, the inverse of the reduced Laplacian matrix

2The (i , j) cofactor of an n × n matrix, denoted as �i j , is equal to the
product of-(1)i+ j and determinant of Ai j, , where Ai j is the matrix that results
after removing row i and column j from A.
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(same as the node-to-datum conductance matrix) has been
extensively studied and used in the electrical circuit theory
literature. See [25].

The Moore-Penrose pseudoinverse of the Laplacian matrix
L (G) denoted by L+ (G) can be computed as follows [8].

L+ (G) =
(

L (G)+ J

n

)−1

− J

n
(10)

where J ∈ Rnxn is a matrix of all 1’s and n is the number of
vertices of graph G.

F. Cuts, Cutsets and Fundamental Matrices

A cutset S of a connected graph G is a minimal set of
edges of G such that its removal from G disconnects G, that
is, the graph G– S is disconnected. Note that the minimality
requirement in the definition of a cutset requires that G − S
has exactly two components.

Consider a connected graph G with vertex set V . Let V1
and V2 be two mutually disjoint subsets of V such that V =
V1 ∪ V2; that is, V1 and V2 have no common vertices and
together contain all the vertices of V . Then the set S of all
those edges of graph G having one end vertex in V1 and the
other in V2is called a cut of G. This is usually denoted by
〈V1, V2〉.

Suppose that for a cutset S of G, V1 and V2 are, respectively,
the vertex sets of the two components G1 and G2 of G – S.
Then S is the cut 〈V1, V2〉.

Theorem 6 [25]: A cut in a connected graph G is a cutset
or union of edge-disjoint cutsets of G. �

In general, a graph has a large number of cuts as well as
a large number of circuits. But there exists a set of n − 1
cutsets called fundamental cutsets that can be used to generate
all the cutsets in the graph. Similarly, there exists a set of
m − n + 1 circuits, called fundamental circuits, that can be
used to generate all the circuits in the graph.

G. Fundamental Cutsets and Fundamental Cutset Matrix

Consider a spanning tree T of a connected graph G. Let b
be a branch of T (Note: The edges of a spanning tree T are
called the branches of T and all other edges are called chords
of T ). Now, the removal of the branch b disconnects T into
exactly two components T1 and T2. Note that T1 and T2 are
trees of G. Let V1 and V2, respectively, denote the vertex sets
of T1 and T2. V1 and V2 together contain all vertices of G.

Let G1 and G2 be, respectively, the induced subgraphs of G
on the vertex sets V1 and V2. It can be seen that T1 and T2are,
respectively, the spanning trees of G1 and G2. Hence, G1 and
G2 are connected. This, in turn, proves that the cut 〈V1, V2〉 is
a cutset of G. This cutset is known as the fundamental cutset
of G with respect to the branch b of the spanning tree T of
G. The set of all the n − 1 fundamental cutsets with respect
to the n − 1 branches of a spanning tree T of a connected
graph G is known as the set of fundamental cutsets of G with
respect to the spanning tree T .

A graph G and the fundamental cutsets with respect to
branches e4 and e3 are shown in Figure 2.

To define the fundamental cutset matrix of a directed graph
we first assign an orientation to each cutset of the graph.

Given a spanning tree T of an n-vertex connected graph G,
let b1, b2, . . . , bn−1 denote the branches of T . The fundamen-
tal matrix Q f is defined as follows:

Fig. 2. Fundamental cutsets of a graph. (a) Graph G. (b) Spanning tree T of G.
(c) Fundamental cutset with respect to branch e4. (d) Fundamental cutset with
respect to branch e3.

1) Q f has n−1 rows, one row for each fundamental cutset,
and m columns, one column for each edge.

2) The i th row corresponds to the fundamental cutset
defined by bi .

3) qi j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1, if the j th edge is in the i th cut and its
orientation agrees with the cut orientation;

−1, if the j th edge is in the i th cut and its
orientation does not agrees with the cut
orientation;

0, otherwise.
If in addition, we assume that the orientation of a funda-

mental cutset is so chosen as to agree with that of the defining
branch, then the matrix Q f can be displayed in a convenient
form as follows:

Q f =
[
U | Q f c

]
(11)

where U is the unit matrix of order n−1 and its columns cor-
respond to the branches of T ; the columns of Q f c correspond
to the chords of T . Clearly the rank of Q f is n−1. It is known
that all the cuts can be generated using the rows of Q f .

For example, the fundamental cutset matrix Q f of the
connected graph of Figure 2(a) with respect to the spanning
tree T = {e2, e3, e4, e5, e7} in Figure 2 (b) is

e2 e3 e4 e5 e6 e1 e6

Q f =
e2
e3
e4
e5
e6

⎡

⎢
⎢
⎢
⎣

1 0 0 0 0 −1 0
0 1 0 0 0 −1 −1
0 0 1 0 0 1 0
0 0 0 1 0 0 1
0 0 0 0 1 0 0

⎤

⎥
⎥
⎥
⎦

H. Fundamental Circuits and Fundamental Circuit Matrix

Consider a spanning tree T of a connected graph G. Let
the branches of T be denoted by b1, b2, · · · , bn−1, and let the
chords of T be denoted by c1, c2, · · · , cm−n+1, where n is the
number of vertices in G and m is the number of edges in G.

While T is acyclic, the graph T ∪ ci contains exactly one
circuit Ci . This circuit consists of the chord ci and those
branches of T which lie in the unique path in T between
the end vertices of ci . The circuit Ci is called the fundamental
circuit of G with respect to the chord ci of the spanning tree T .

The set of all the m − n + 1 fundamental circuits
C1, C2, · · · , Cm−n+1 of G with respect to the chords of the
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Fig. 3. Two fundamental circuits of G (given in Fig. 2(a)) with respect to
the spanning tree T (given in Fig. 2(b)). (a) Circuit C1. (b) Circuit C6.

spanning tree T of G is known as the set of fundamental
circuits of G with respect to T .

For the graph G and its spanning tree T in Figure 2, two
fundamental circuits are shown in Figure 3.

A circuit can be traversed in one of two directions, clock-
wise or anticlockwise. The direction we choose for traversing
a circuit defines its orientation.

Consider an edge e which has vi and v j as its end vertices.
Suppose that this edge is oriented from vi to v j and that it
is present in circuit C . Then we say that the orientation of e
agrees with the orientation of the circuit if vi appears before v j
when we traverse C in the direction specified by its orientation.

To define the fundamental circuit matrix, consider any
spanning tree T of a connected graph G having n vertices and
m edges. Let c1, c2, · · · , cm−n+1 be the chords of T . We know
that these m−n+1 chords define a set of m−n+1 fundamental
circuits. The fundamental circuit matrix B f with respect to the
spanning tree T is defined as follows.

(i) B f has m − n + 1 rows, one row for each fundamental
circuit, and m columns, one column for each edge.

(ii) The i th row corresponds to the fundamental circuit
defined by ci .

(iii) bi j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if the j th edge is in the i th circuit and
its orientation agrees with the circuit
orientation;

−1, if the j th edge is in the i th circuit and
its orientation does not agrees with the
circuit orientation;

0, otherwise.
If in addition, we assume that the orientation of a funda-

mental circuit is so chosen as to agree with that of the defining
chord, then the matrix B f can be displayed in a convenient
form as follows:

B f =
[

B f t
∣
∣ U

]
(12)

where U is the unit matrix of order m−n+1 and its columns
correspond to the chords of T ; B f t is the submatrix with its
columns corresponding to the branches of T .

For example, the fundamental circuit matrix of the graph
of Figure 2 (a) with respect to the spanning tree T =
{e2, e3, e4, e5, e7} is as given below:

e1 e3 e4 e5 e7 e1 e6

B f = e1
e6

[
1 1 −1 0 0 1 0
0 1 0 0 0 0 1

]

It is obvious from (12) that the rank of B f is equal to
m − n + 1, the nullity μ(G) of G. It can be shown that all
the circuits in a graph can be generated using the fundamental
circuits.

It is known [25] that circuit and cutset vectors are orthog-
onal. That is,

Q f Bt
f = 0. (13)

Using this relation, we get

B f t = −Qt
f c. (14)

III. KIRCHHOFF’S LAWS AND FUNDAMENTAL

CIRCUIT AND CUTSET MATRICES

Consider an electrical resistance network G that may have
independent current and voltage sources. Let T be a spanning
tree of G. Then the fundamental cutset matrix Q f of G has
the form

← Branches→← Chords→
Q f =

[
U | Q f c

]

and Kirchhoff’s current law equations can be written as

Q f Ie = 0 (15)

that is,

[
U Q f c

]
[

Ib
Ic

]

= 0. (16)

where Ib is the vector of branch currents and Ic is the vector
of chord currents. So

Ib = −Q f c Ic. (17)

Also,

B f =
[
B f t U

] =
[
−Qt

f c U
]

(18)

and Kirchhoff’s voltage law equations can be written as

B f Ve = 0, (19)

that is,
[
−Qt

f c U
] [

Vb
Vc

]

= 0. (20)

where Vb is the vector of branch voltages and Vc is the vector
of chord voltages. So

Vc = Qt
f cVb. (21)

Note that in (15) we can use the reduced incidence matrix A
defined in section I(A) in place of Q f to write the Kirchhoff
current equations. That is, we can also write

AIe = 0. (22)

IV. RESISTANCE DISTANCE AND A

TOPOLOGICAL FORMULA

Consider an n -port resistance network N with n+1 nodes.
Each port is defined by a pair of nodes. We assume that the n
ports form a star tree structure. The network is available for
connections through the ports to the other parts of a system.
Let the n + 1 nodes be denoted by 0, 1, 2, . . . , n, and let
the nodes i and 0 be, respectively, the positive and negative
reference terminals of the port i .

Let us now excite the network by connecting a current
source of value I j across each port j as shown in Figure 4.
Let V1, V1, V 2, . . . , Vn denote the voltages of the nodes 1,
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Fig. 4. An n-port network.

2, . . . , n with respect to node 0. This means V0 = 0 and Vi is
the voltage between the nodes i and 0 (that is Vi = Vi − V0)
for i �= 0. Also, the A matrix does not contain the row
corresponding to the node 0.

Note that in the graph representation of each port j , the cor-
responding edge will be oriented from the positive terminal to
the negative terminal. So, the current flowing through this edge
in the direction of the orientation is −I j where the voltage
from positive terminal to the negative terminal of the port
is Vj .

Then we have

AIe − I = 0,

that is,

AIe = I (23)

where

I =

⎡

⎢
⎢
⎣

I1
I2
...
In

⎤

⎥
⎥
⎦ .

Let the network elements be labeled as e1, e2, . . . , em with
ri denoting the resistance value of element ei . Then the
conductance of ei is given by wi = 1

ri
. Let W be the diagonal

matrix with its (i, i) entry equal to wi . Then we can write

Ie = W Ve. (24)

Suppose the end vertices of ei are k and l. Then the voltage
across this element (voltage drop from node k to node l) is
given by Vk − Vl , assuming that the element is oriented from
vertex k to vertex l. So, we can write

Ve = At V (25)

where V is the vector of voltages V1, V2, . . . , Vn . Combin-
ing (23), (24) and (25) we get the node equations

AW At V = I (26)

where

V =

⎡

⎢
⎢
⎢
⎣

V1
V2
V3
...
Vn

⎤

⎥
⎥
⎥
⎦

.

Let

Y = AW At

so that

Y V = I. (27)

Note that the matrix Y is the same as the reduced Laplacian
matrix L(0̄) defined in section I.C . We denote Z = Y−1.

In circuit theory literature, the matrix Y is called the
node-conductance matrix of the network with vertex 0 as

the reference. Viewed as an n-port network, Y and Zare
also known as the short-circuit conductance and open-circuit
resistance matrices of the n-port network. Solving (27) for Vi
and assigning I j = 0, for all j �= i , we get

Vi = �ii

�
Ii ,

where

� = det Y

and

�ii = (i, i) cofactor of Y.

So, the driving-point resistance across vertices i and 0 is
given by

z = �ii

�
, (28)

and the driving-point conductance across i and 0 is given by

y = 1

z
= �

�ii
. (29)

The resistance z defined in (28) is called the resistance
distance between nodes i and 0. In general. the resistance
distance between nodes i and j is denoted by ri j .

The (i, j) element zi j of the matrix Z is called the transfer
resistance between ports i and j and is given by

zi j = Vi

I j
, when Ik = 0 for all k �= j.

= �i j

�

From Theorem 4 and 5, we have
� = ς (G)

�ii = ςi,0

and
�i j = ςi j,0

Thus, we get the following.
Theorem 7:

ri j = ςi, j

ς (G)

zi j = ςi j,0

ς (G)
(30)

�
Note that in the expression for ri j , the reference node does
not appear. But in the expression of zi j , the reference node 0
appears because the matrix Z is defined with respect to a
reference.

V. KIRCHHOFF INDEX OF A GRAPH

Consider a weighted connected undirected graph G. This
graph can be viewed as a resistance network N with con-
ductances of resistance elements equal to the weights of the
corresponding edges of G. The Kirchhoff Index K I (G) of G
is defined as

K I (G) =
∑

i> j

ri j .

In this section, we develop a formula for K I (G).
In circuit theory literature, the graph representation of a

network N is also referred to as N . So, in the rest of the
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paper the terms graph G and the corresponding network N
will be used interchangeably.

Let Y = [yi j ] denote the node conductance matrix ofG
with node n as the reference or datum node. Note that Y is a
square matrix of order n − 1 and it is the matrix obtained by
removing the nth row and the nth column from the Laplacian
matrix of G. Let Z = Y−1.

Theorem 8: K I (G) = nT r (Z)−∑
k,l zkl .

where Z is the inverse of the Laplacian matrix obtained by
deleting any i th row and i th column, TR(Z) is the matrix Z
and

∑
k,l zkl is the sum of all the elements of matrix Z (note

that Z = Y−1).
Proof: As we have seen before in Theorem 7,

ri j = ςi, j

ς (G)

However,

ςi j = ςi,nj + ςin, j

= {ς i,n − ςi j,n} + {ς j,n − ςi j,n}
= ςi,n + ς j,n − 2ς i j,n

Dividing both sides of the above equation by ς (G) we get

ςi j

ς (G)
= ςi,n

ς (G)
+ ς j,n

ς (G)
− 2ς i j,n

ς (G)
ri j = ri,n + r j,n − 2zi j (31)

Since each r j,n appears n − 1 times on the right-hand side
of the sum

∑
i,k>i ri,k , we get

∑

i,k
ri,k = (n − 1)

∑n−1

j=1
r j,n − 2

∑

i,k
zik

= (n − 1)
∑n−1

j=1
r j,n+

∑n−1

j=1
r j,n

−
(

∑n−1

j=1
r j,n + 2

∑

i,k
zik

)

K I (G) = n
∑n−1

j=1
r j,n −

(
∑n−1

j=1
r j,n + 2

∑

i,k
zik

)

The above is the same as

K I (G) = n
∑n−1

i=1
zii −

(∑

i,k
zii

)
(32)

�
See [28] for another other proofs of Theorem 8 starting from
the pseudo-inverse L+(G).

VI. CUTSET LAPLACIAN MATRIX OF A GRAPH

AND KIRCHHOFF INDEX

Recall that the node-conductance matrix Y , also called the
reduced Laplacian matrix, is given by

Y = AW At (33)

where A is the reduced incidence matrix of G with respect to
a specified reference vertex and W is the diagonal matrix of
conductances of the elements of G.

Since each row of A represents a cut vector (set of edges
incident on a node), we can generalize the notion of Laplacian
matrix using fundamental cutset Q f in place of A.

A. Cutset Laplacian Matrix

Let T be a spanning tree of a connected graph G and Q f be
the fundamental cutset matrix of G with respect to T . If W
is the diagonal matrix of edge conductances of G, then the
cutset Laplacian matrix Yt of G is defined by

Yt = Q f W Qt
f (34)

The matrix Yt is also called the short-circuit conductance
matrix of a multiport resistance network, as viewed from the
branches of T (called ports). The matrix Zt = Y−1

t is called
the open-circuit resistance matrix of the multiport network.

Each diagonal entry of Zt is the resistance ri j across the
nodes i and j of the corresponding defining branch of T .

For example, assuming that all the edge weights are one,
the cutset Laplacian matrix Yt of the connected graph of
Figure 2(a) with respect to the tree T in Figure 2(b) is given by

Yt =

⎡

⎢
⎢
⎢
⎣

1 0 0 0 0 −1 0
0 1 0 0 0 −1 −1
0 0 1 0 0 1 0
0 0 0 1 0 0 1
0 0 0 0 1 0 0

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
−1 −1 1 0 0
0 −1 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

2 1 −1 0 0
1 3 −1 −1 0
−1 −1 2 0 0
0 −1 0 2 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎦

So, we get,

Zt = Y−1
t =

⎡

⎢
⎢
⎢
⎣

8/11 −2/11 3/11 −1/11 0
−2/11 6/11 2/11 3/11 0
3/11 2/11 8/11 1/11 0
−1/11 3/11 1/11 7/11 0

0 0 0 0 1

⎤

⎥
⎥
⎥
⎦

Note that, the (1, 1) entry of above matrix Zt is the
resistance r14 because it corresponds to edge (1, 4). Also,
element zi j = Vi , where Vi is the voltage across the i th branch
of T when a current source of unit value is connected across
the nodes of the j th branch of T , as shown in Figure 5.

B. Computing Kirchhoff Index: A Matrix
Transformation Approach

In section V we presented a formula to compute the
Kirchhoff index using the elements of Z = Y−1, where Y
is a reduced Laplacian matrix. Since Y is obtained using a
star-tree we shall henceforth denote Y by Yn . In this section,
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Fig. 5. Voltage Vi across the i th branch when a current source of 1A is
connected across the nodes of the j th branch.

Fig. 6. Star tree Tn .

Fig. 7. Voltage across a branch of T and current injected through the branch.

we present a method to compute the Kirchhoff index from Zt
using a matrix transformation approach.

Note that in view of our definition of the cutset Laplacian,
Yn may be viewed as the cutset Laplacian matrix with respect
to the star tree Tn (see Figure 6).

The matrix (Yt )
−1 = (Q f W Qt

f )
−1 specifies the relation-

ship between the voltages across the branches of T and the
currents injected through these branches (see Figure 7).

That is,

Vt = Zt It (35)

If Yn is the Laplacian matrix when the star tree is used, then

Vn = Zn In (36)

where Zn = Y−1
n .

If Zn is known, we can find the Kirchhoff index using
the formula in Theorem 8. So, given Zt , our interest is to
determine Zn using a matrix transformation approach. We can
then apply (32) on Zn to compute the Kirchhoff index.

Now we show how to relate Zn with Zt .
Theorem 9: Let T be any spanning tree of a graph and Tn

be a star tree. Let B f be the fundamental circuit matrix of the
graph T ∪ Tn with respect to T and B f t the submatrix of B f
corresponding to the branches of Tn . Then

Zn = B f t Zt Bt
f t

Proof: Let Q f t and B f be the fundamental cutset and
fundamental circuit matrices of the graph T ∪ Tn with respect
to the tree T , and A be the reduced incidence matrix of T ∪Tn
with node n as reference.

Then

Q f = [U Q f c]
B f = [B f t U ]

and

A = [A11 U ]
where the columns of the first submatrix correspond to the
branches of T and the columns of the second submatrix
correspond to the branches of Tn .

Note that each row of the reduced incidence matrix A
represents a cut. So, the rows of A represent n − 1 linearly
independent cutsets. This means that each row of Q f can be
written as a linear combination of the rows of A. That is,

Q f =
[

U | Q f c
] = A−1

11 [A11U ]
So

Q f c = A−1
11

and by equation (14)

B f t = −Qt
f c = −(A−1

11 )
t

Now

Yt = Q f W Qt
f

= A−1
11 AW (A−1

11 A)
t

= A−1
11 (AW At )(A−1

11 )
t

= A−1
11 Yn(A−1

11 )
t

So

Zt = Y−1
t

= At
11Y−1

n A11

= At
11 Zn A11

and

Zn =
(

A−1
11

)t
Zt

(
A−1

11

)
.

= B f t Zt Bt
f t (37)

�
As an example, for the graph in Figure 2(a), let the datum
node is v2. We get the following reduced Laplacian matrix
by removing the 2nd row and 2nd column from the Laplacian
matrix of the graph. Again, we have assumed that all the edge
weights are unity. Then

Yn = L (z̄) =

⎡

⎢
⎢
⎢
⎣

2 0 −1 0 0
0 3 −1 −1 0
−1 −1 3 −1 0
0 −1 −1 3 −1
0 0 0 −1 1

⎤

⎥
⎥
⎥
⎦

,

Zn = Y−1
n =

⎡

⎢
⎢
⎢
⎣

0.73 0.27 0.45 0.36 0.36
0.27 0.72 0.55 0.64 0.64
0.45 0.55 0.91 0.73 0.73
0.36 0.64 0.73 1.18 1.18
0.36 0.64 0.73 1.18 2.18

⎤

⎥
⎥
⎥
⎦

,

and using Theorem 9

Zn = B f t Zt Bt
f t =

⎡

⎢
⎢
⎢
⎣

0.73 0.27 0.45
0.27 0.72 0.55
0.45 0.55 0.91

0.36 0.36
0.64 0.64
0.73 0.73

0.36 0.64 0.73
0.36 0.64 0.73

1.18 1.18
1.18 2.18

⎤

⎥
⎥
⎥
⎦

.

Using (32), Kirchhoff Index of G is calculated as

K I (G) = 16.8.
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Fig. 8. Definition of Tkl and Tlk.

Fig. 9. Path from vertex i to vertex j .

C. Kirchhoff Polynomial of a Graph and a Formula
for Kirchhoff Index

In this section, we determine a formula for the Kirchhoff
index in terms of the elements of Zt . We define a new
concept called the Kirchhoff polynomial of a graph. This is
a generalization of the formula in (32) for K I (G) given in
terms of the elements of Zn = (Y n)

−1, where Yn is the reduced
Laplacian matrix of the graph.

Let Yt be the cutset Laplacian matrix of a resistance network
G with respect to a spanning tree T . Let Zt = (Y t )

−1 = [zi j ].
Kirchhoff polynomial of G is a polynomial

∑
i, j ci j zi j that

expresses Kirchhoff index of G in terms of the elements of Zt .
That is,

K I (G) =
∑

ci j zi j . (38)

To present our next result we need to introduce some new
notation

Consider a complete graph Kn . Let T be a spanning tree
of Kn . Consider any two ports k and l from T .

Suppose we remove k from T , then T will be disconnected
into two trees. One of them will not contain l. We shall call
this tree as Tkl . Similarly, if we remove port l from T , then
the tree that does not contain k will be denoted by Tlk . |Tkl |
and |Tlk | will denote the number of vertices in Tkl and Tlk
respectively. See Figure 8.

Theorem 10: Given a graph G with weight matrixW. Let
T be a spanning tree ofG.Let Zt = [zi j ] be the open-circuit
resistance matrix with respect to T.Then the Kirchhoff Index
KI(G) is given by

K I (G) =
∑

k
ckk zkk +

∑

k,l>k
ckl zkl

=
∑

k
|T (1)

k |·|T (2)
k |+2

∑

kl
k > l

± |Tkl | · |Tlk |. (39)

Proof : We first determine a formula for each ri j . Consider
the path from vertex i to vertex j in the spanning tree T .
To illustrate the ideas in our development, let this path be as
given in Figure 9.

For convenience, in Figure 9 the ports are oriented similarly.
But in general, the ports can be oriented arbitrarily.

Consider now the 3-node equivalent representation of the
graph shown in Figure 10. This network can be obtained by
repeated star-delta transformation at the remaining nodes.

Then by equation (31)

rbj = rbc + r jc − 2Vjc = rbc + r jc + rbc + 2z34

Fig. 10. 3-node equivalent representation of the graph given in Figure 9.

Fig. 11. Computing raj .

Fig. 12. Computing Ckl .

Note that, if port 4 is oriented from j to c, then

rbj = rbc + rcj − 2z34

as in equation (31).
Next consider ra j , as shown in Figure 11,

ra j = rab + rbj − 2Vjb

= rab + rbj + 2(z23 + z24)

In the above we have replaced Vjb by −z23 − z24.

ra j = rab + rbc + rcj + 2 (z23 + z24)+ 2z34.

Continuing

ri j = (ria + rab + rbc + rcj )+ 2 (z12 + z13 + z14)

+ 2 (z23 + z24)+ 2z34.

Note that resistances ria , rab, rbc and rcj are diagonal
elements of Zt . For instance, rab is the diagonal element z22.

From the above we can see that the transfer resistance, say
z24 appears exactly once as 2z24 in the expressions of each of
the resistance distances ri j , ra j and rbj . Generalizing this we
can state that each zkl appears exactly once as 2zkl in each
rxy when the unique path in T containing ports x and y spans
ports k and l as shown in Figure 12. Similarly, each element
zii appears exactly once in each rxy when the unique path
from x-to-y in T spans port i.

Summarizing, if Kn is the complete graph on the vertices
of T then

ckl = 2 (#number of edges in Kn that span ports k and l) ,

if k and l are similarly oriented

= −2 (#number of edges in Kn that span ports k and l) ,

otherwise.

= 2 |Tkl | · |Tlk | .
and

ckk = # number of edges of Kn in the fundamental cutset
defined by port k.

=
∣
∣
∣T (1)

k

∣
∣
∣ ·

∣
∣
∣T (2)

k

∣
∣
∣
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where T (1)
k and T (2)

k are the two trees that result when port k
is removed from the tree.

This proves the result. �
In the case when T is a star tree

T (1)
k = 1 for all k

T (2)
k = n − 1 for all k

|Tkl | = 1

|Tlk | = 1

So, in this case

ckk = n − 1

ckl = −2, k �= l, because all ports

are dissimilarly oriented.

and

K I (G) = (n − 1) T r (Zt )− 2
∑

k>l

zkl

= nT r (Zt )−
∑

k,l

zkl (40)

This verifies the formula in Theorem 8 for the Kirchhoff index
when the star tree is used in defining the cutset Laplacian
matrix. Thus Theorem 10 is a generalization of Theorem 8.

As an example, for the graph given in Figure 2(a), Zt
is given in section VI.A and the port numbers for the tree
in Figure 2(b) are

Edge e2 → Port 1, Edge e3 → Port 2, Edge e4 → Port 3,
Edge e5→ Port 4, Edge e7 → Port 5.

ci j ’s are

c11 = 5, c12 = 2, c13 = −1, c14 = 2, c15 = 1,

c21 = 2, c22 = 8, c23 = −4, c24 = −4, c25 = −2,

c31 = −1, c32 = −4, c33 = 5, c34 = 2, c35 = 1,

c41 = 2, c42 = −4, c43 = 2, c44 = 8, c45 = 4,

c51 = 1, c52 = −2, c53 = 1, c54 = 4, c55 = 5,

Using (39), we get Kirchhoff Index K I (G) = 16.8.

VII. WEIGHTED KIRCHHOFF INDEX OF A GRAPH

In this section, we define the concept of the weighted
Kirchhoff Index, generalizing the concept of Kirchhoff
Index.

Consider a weighted undirected graph G with each edge
(i, j) assigned weight wi j . Treating wi j ’s as conductances
of a resistance network, let ri j denote the resistance distance
between nodes i and j . Suppose we associate a weight w∗i j
with each ri j . Then the weighted Kirchhoff Index W K I (G) of
G is defined as [31]

W K I (G) =
∑

i> j

w∗i j ri j .

Now we wish to determine a formula to compute W K I (G).
Let T be a spanning tree of the given graph G and Yt the

cutset Laplacian matrix Q f W Qt
f where Q f is the fundamen-

tal cutset matrix of G with respect to T .
Let Zt =

[
zi j

] = Y−1
t be the open-circuit resistance matrix.

We wish to express W K I (G) as

W K I (G) =
∑

c∗i j zi j .

In the following the direct product ⊕ of two matrices X and Y
will be defined as

X ⊕ Y =
∑

xi j yi j

Theorem 11:

W K I (G) =
∑

c∗i j zi j

= C∗ ⊕ Zt

where Zt is the open-circuit resistance matrix of G with
respect to the spanning tree T and C∗ = Q∗f W∗Q∗tf where
Q∗f is the fundamental cutset matrix of the complete graph
Kn with respect to T. Note that Zt is defined using weights
W on the edges of G and C∗ is defined using weights W∗ on
the edges of Kn .

Proof: To determine c∗i j , consider the elements ci j used
in the formula for K I (G) given in Theorem 10. We can see
that ci j ’s are the elements of the matrix

C = Q∗f Q∗tf
where Q∗f is the fundamental cutset matrix of the complete
graph Kn on the vertices of T . Following the same develop-
ment as in section VI that led to the definition of ckl , we can
see that the c∗i j ’s are the elements of the matrix

C∗ = Q∗f W∗Q∗tf
where W∗ is the diagonal matrix of w∗i j ’s associated with ri j ’s.

Then we can write

W K I (G) =
∑

c∗i j ri j

= C∗ ⊕ Zt

This proves the theorem. �
If w∗i j = 1 for all i and j then W K I (G) becomes the same

as the Kirchhoff Index. See equation (39) .
Let D be a subset of pairs of V × V . Then the sum of the

ri j ’s where (i, j) ∈ D, can be obtained from Theorem 11 by
setting w∗i j = 0 for all entries of W∗ corresponding to the
pairs (i, j) that are not in D. So,

Corollary 12:
∑

D≤V×V w∗i j ri j = C∗ ⊕ Z where C∗ =
Q∗f W∗Q∗tf with the diagonal entry w∗i j = 0 for (i, j) /∈ D. �

One can also see that Theorem 11 and Corollary 12 gener-
alize and unify the results of both theorems Theorem 8 and
Theorem 9.

VIII. WEIGHTED KIRCHHOFF INDEX OF A GRAPH AND

GENERALIZATION OF FOSTER’S THEOREMS

In 1949, Foster [17] proved a theorem called Foster’s first
theorem. This theorem gives an identity involving the sum
of the resistance distances. A graph-theoretic proof of this
theorem was given in [29]. In [18] Foster gave a generalization
of his first theorem. In [20] Tetali proved this theorem using
certain results from the theory of Markov Chains. Building on
Tetali’s probabilistic approach, Palacios gave another proof of
Foster’s second theorem [21]a, [23]. In these papers, Palacios
also gave an extension of Foster’s second theorem. In 2007,
Cinkir [24] gave a generalization of all of Foster’s theorems.
Connections between resistance distances and random walks
on graph have been discussed in several works. See [13]
and [14] for examples. See [19] for the application of random
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Fig. 13. Star-delta transformation.

Fig. 14. Multiple star-delta transformations.

walk and Foster’s theorem in the analysis of on-line algo-
rithms. See [10]–[12] for connection of electrical circuit theory
to topics in medical statistics and combinatorial designs.

In this section, we provide further advances on Foster’s
theorems.

A. Basic Concepts and Definitions

Consider a network N of positive resistances. Let V be
the set of nodes in N . Let n denote the number of nodes
in N . We assume that the nodes are numbered 1, 2, . . . , n.
So V = {1, 2, ..n}. Let gi j be the value of the conductance
of the resistance element connecting nodes i and j . Let ri j
denote the resistance distance of N across the pair of nodes i
and j .

1) Star-Delta Transformation: Consider a node v. Let
g1, . . . , gk be the conductances of the edges incident on v, with
1, 2, . . . , k denoting the other end nodes of these edges. Star-
delta transformation at v is the operation of removing node
v from N and adding a new element (i, j) with conductance
gi g j

/
d(v) for all k ≤ i, j ≤ k, where d(v) is the sum of

the conductances of the edge (see Figure 13). Let N ′ be the
resulting network.

It is well known in circuit theory that resistance distance
across nodes i and j in N

′
is the same as ri j in N as long as

these nodes remain in N
′

after a star-delta transformation.
2) Multiple Star-Delta Transformations: We wish to note

that multiple star-delta transformation discussed below is also
known as Kron-reduction [30].

Let D be a proper subset of nodes of N , that is, D ⊂ V .
Suppose we perform star-delta transformations successively at
the nodes in D, one at a time. Let N(D) denote the resulting
network. Clearly N(D) has n−k nodes when k = |D|. At the
end of the multiple star-delta transformations, a new resistance
element connecting i and j will be created in N(D). Let
the conductance value of the new element be Si j (D). Thus,
the total value of the conductance of the element connecting
i and j in N(D) will be yi j + Si j (D). See Figure 14.

Let

si j (k) =
∑

D ⊂ V
|D| = k

Si j (D). (41)

Fig. 15. A 5-node resistance network N.

That is, si j (k) is the sum of Si j (D)’s for all subsets of nodes
of size k.

As an example, consider a 5-node resistance network N
given in Figure 15. For this, there are ten 2-element subsets
of nodes. These subsets are:

{a, b} , {a, c} , {a, d} , {a, e} , {b, e} , {b, d} , {b, e} ,
{c, d} , {c, e} , {d, e} .

For each subset D of nodes, the corresponding network N (D)
is shown in Figure 16. In this figure, dotted edges indicate
the new resistance elements along with the corresponding
Si j (D)’s.

Then, using (41) we have

sab (2) = 3

7
+ 1

3
+ 1 = 37

21
, sac (2) = 2

3
+ 4

11
+ 4

11
= 46

33
,

sad (2) = 3

7
+ 9

11
+ 1

3
= 365

231
, sae (2) = 2

7
+ 2

3
+ 2

7
= 26

21
,

sbc (2) = 4

11
+ 4

11
= 8

11
, sbd (2) = 5

6
+ 1+ 5

6
= 8

3
,

sbe (2) = 1

3
+ 9

11
+ 3

7
= 365

231
, scd (2) = 4

11
+ 4

11
= 8

11
,

sce(2) = 4

11
+ 4

11
+ 2

3
= 46

33
, sde(2)= 9

11
+ 1

3
+ 3

7
= 365

231

B. Foster’s Theorems

1) Foster’s First Theorem: Consider a resistance network
N . Let N have n nodes and m elements e1, e2, . . . , em . The
conductance of each ei will be denoted by gi1,i2 . Also, the two
nodes of each ei will be denoted by i1 and i2. If ri1,i2 denotes
the resistance distance across the pair of nodes i1 and i2, then
we have the following theorem due to Foster [17]. See [29]
for a proof of this theorem.

Theorem 12 (Foster’s First Theorem):
m∑

i=1

gi1,i2ri1,i2 = n − 1 (42)

2) Foster’s Second Theorem: Foster’s second theorem is
based on the operation of star-delta transformation at a single
node.

Consider a node v. Let g1, . . . , gk be the conductances of
the edges incident on v, with 1, 2, . . . , k denoting the other
end nodes of these edges. Recall that star-delta transformation
at v removes node v from N and adds a new element (i, j)
with conductance gi g j

/
d(v) for all k ≤ i, j ≤ k.

The following theorem is by Foster [18].
Theorem 13 (Foster’s Second Theorem):

∑

v

∑

i< j

ri j
gi g j

d(v)
= n − 2 (43)

where the sum is extended over all pairs of adjacent elements
incident on a common node v. �
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Fig. 16. Network N(D) for each subset D of nodes. (a) Star-Delta
transformation. (b) Star-Delta transformation at nodes {a, b} at nodes
{a, c}. (c) Star-Delta transformation (d) Star-Delta transformation at nodes
{a, d} at nodes {a, e}. (e) Star-Delta transformation ( f ) Star-Delta trans-
formation at nodes {b, c} at nodes {b, d}. (g) Star-Delta transformation
(h) Star-Delta transformation at nodes {b, e} at nodes {c, d}. (i) Star-Delta
transformation ( j) Star-Delta transformation at nodes {c, e} at nodes {d, e}.

Next, we present Foster’s two theorems using the concept
of weighted Kirchhoff index and choosing w∗i j ’s appropriately.

3) Foster’s first theorem using weighted Kirchhoff index:
Theorem 14: If wi j = gi j then

W K I (N) =
∑

i< j

gi j ri j = n − 1.

Proof: Note that gi j = 0 if there is no resistance element
connecting i and j . So, in that case, we get the original
statement of Foster’s theorem, namely,

∑

i∼ j

gi j ri j = n − 1.

Here i ∼ j means there is an element connecting i and j .
So we get the result in the theorem. �

4) Foster’s Second Theorem Using Weighted Kirchhoff
Index: Theorem 15: If wi j = si j (1) then

W K I (N) =
∑

i< j

si j (1) ri j = n − 2.

�

In fact, Foster’s theorems can be represented as in
Theorem 11 by defining W∗ appropriately. That is, we can
get alternate forms of Foster’s theorems in terms of the
elements zi j of the open-circuit resistance matrix Z .

We next state and prove a generalization of Foster’s
theorems.

5) Generalized Foster’s theorem: Theorem 16: If wi j =
si j (k) , k ≥ 1 then

W K I (N) =
∑

i< j

si j (k) ri j = (n − k − 1)

(
n − 1

k − 1

)

Proof: Consider a resistance network N of n nodes with
nodes numbered 1, 2, . . . , n. Let V = {1, 2, . . . , n}. Let D be
a proper subset of V and |D| = k. Then the network N(D)
that results after Star-Delta Transformations at the nodes of
D will have n − k nodes. So, applying Foster’s first theorem
on N(D), we get

∑

i< j

(gi j + Si j (D))ri j = n − k − 1. (44)

Equation (44) can be rewritten as
∑

i< j

Si j (D)ri j +
∑

i< j

gi j ri j = n − k − 1. (45)

Let us now write similar equations for all the
( n

k

)
subsets of

V of size k and sum up both the right-hand side and left-hand
side terms.

Then we get
∑

D⊂V

∑

i< j

Si j (D)ri j +
∑

D⊂V

∑

i< j

gi j ri j =
(n

k

)
(n−k−1). (46)

If |D| = k, then equation (46) can be rewritten as
∑

i< j

si j (k)ri j +
∑

D⊂V

∑

i< j

gi j ri j =
(n

k

)
(n − k − 1) . (47)

Consider the second term
∑

D⊂V
∑

i< j gi j ri j in (46).
In this summation, gi j ri j will be present only if D does not
contain i or j . There are

( n−2
k

)
subsets of V that satisfy this

requirement. In all other cases, gi j ri j will not be present. Thus,
each term gi j ri j appears exactly

( n−2
k

)
times in the second sum

in (46). So, we can rewrite (46) as
∑

i< j

si j (k)ri j +
(

n − 2

k

)
∑

i< j

gi j ri j =
(n

k

)
(n − k − 1) .

That is,
∑

i< j si j (k)ri j +
( n−2

k

)
(n − 1) = ( n

k

)
(n − k − 1),

by Theorem 14.
So,

∑

i< j

si j (k)ri j = (n − k − 1)
(n

k

)
−

(
n − 2

k

)

(n − 1)

= (n − k − 1)

[(n

k

)
− (n − 1)

(n − k − 1)

(
n − 2

k

)]

= (n − k − 1)

[(n

k

)
− (n − 1)!

k! (n − k − 1)!
]

= (n − k − 1)

[(n

k

)
−

(
n − 1

k

)]

= (n − k − 1)

[(
n − 1

k − 1

)]

,
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where the identity
( n

r

) =
(

n−1
r−1

)
+ ( n−1

r

)
is used. �

The above theorem is from [31].
For example, the W K I (N) of the 5-node resistance net-

work N (Figure 17) for k = 2 is calculated below. Note that
|D| = 2. The resistance distance ri j for each pair of nodes for
this network N is

rab = 0.475, rac = 0.875, rad = 0.475, rae = 0.500,
rbc = 0.600, rbd = 0.400, rbe = 0.475, rcd = 0.600,
rce = 0.875, rde = 0.475.

By using the above calculated ri j ’s and the si j (2)’s calculated
earlier, we can calculate ri j si j (2) for each pair of nodes as
given below:

rabsab (2) = 0.837, racsac (2) = 1.219,
radsad (2) = 0.750, raesae (2) = 0.619,
rbcsbc (2) = 0.436, rbdsbd (2) = 1.066,
rbesbe (2) = 0.750, rcd scd (2) = 0.436,
rcesce (2) = 1.219, rdesde (2) = 0.750,

So, W K I (N) =∑
i< j si j (k) ri j = 8.08 ∼= 8.

For n = 5 and k = 2, we have

∑

i< j

si j (k) ri j = (n − k − 1)

(
n − 1

k − 1

)

= 3

(
4

1

)

= 8,

verifying Theorem 16.

C. Dual Form of Foster’s First Theorem

Circuits and cutsets are dual concepts [25]. Similarly rank
and duality are dual concepts. In this subsection we address
the question whether one could assign weights appropriately
so that the corresponding weighted Kirchhoff index is equal
to m− n+ 1, the nullity. We shall answer this question in the
affirmative.

Note that the largest value that k can take in Theorem 16 is
equal to n − 2, since at least two nodes are needed to define
resistance distance.

Theorem 17 (Dual of Foster’s First Theorem):∑
i < j
i ∼ j

si j (n − 2) ri j = m − n + 1 = nullity of graph G.

Proof: Since
(
si j (n − 2)+ gi j

)
ri j = 1

we have
∑

i∼ j

(si j (n − 2)+ gi j )ri j = m

We can rewrite the above as
∑

i∼ j

(si j (n − 2) ri j +
∑

i∼ j

gi j ri j = m

Then using Theorem 14 we get
∑

i∼ j

(si j (n − 2) ri j = m − n + 1

= nullity of G.

�

IX. SUMMARY

In this paper, we have studied two structural metrics of a
weighted connected graph, namely the resistance distance and
the Kirchhoff Index. We have presented several new results
that extend, generalize, and unify earlier contributions reported
in the literature. Given a connected weighted graph G, our
main contributions are summarized below.
• Given the reduced Laplacian matrix Y of a graph G (same

as the node to conductance matrix of the corresponding
resistance network) and its inverse Z, a formula to com-
pute the Kirchhoff Index in terms of the elements of Z is
given. (Theorem 8).

• The concept of cutset Laplacian matrix Yt of a graph
G with tree T is given. This generalize the concept of
reduced Laplacian matrix Yn .

• Given the cutset Laplacian matrix Yt of a graph G and its
inverse Zt , a method to compute the Kirchhoff Index of
G is given, using a matrix transformation approach. (The-
orem 9). In this approach it is shown how to convert Zt to
Zn and then use Theorem 8 to compute Kirchhoff Index.

• Given the cutset Laplacian matrix Yt of a graph G and its
inverse Zt , a formula to compute the Kirchhoff Index of
G is given. For this purpose, the concept of Kirchhoff
polynomial

∑
ci j zi j where zi j are elements of Zt is

first defined. It is shown that the Kirchhoff Index of G
can be expressed as

∑
c∗i j zi j , where c∗i j are elements

of the matrix Q∗f Q∗tf and Q∗f is the fundamental cutset
matrix of a complete graph with respect to the tree T
(Theorem 10). This generalizes the result in Theorem 8.
This formula is applicable even when the Kirchhoff Index
is restricted to a subset of resistance distances.

• The concept of weighted Kirchhoff Index of G is defined.
A formula to compute the weighted Kirchhoff Index is
given using the result in Theorem 10 (Theorem 11). This
unifies the results in Theorems 8 and 10.

• Foster’s two theorems are shown to be invariants of the
weighted Kirchhoff Index for special cases of weights.
(Theorems 14 and 15).

• A generalization of Foster’s theorem that retains the
circuit theoretic elegance of Foster’s original theorems
is given (Theorem 16). Unlike the other generalization
reported in [23] and [24] our generalization results in an
invariant that is independent of the edge weights of the
given network.

• Alternate forms of Foster’s theorems in terms of the
elements of Zt , (instead of the resistance distances used
in Foster’s original theorems) can be obtained using the
formulas in Theorems 8, 10 and 11.

• The dual form of Foster’s theorem is given (Theorem 17).
This shows how the dual can be obtained using the primal
(Foster’s First Theorem) and certain basic properties of
resistance distances. Also, Theorem 16 on generalized
Foster’s theorem contains both the primal and dual as
extreme special cases.

The research findings in this paper provide the theoretic foun-
dation to study several issues of interest in network science.

We suggest two problems for further investigations. Results
in [13]–[15] suggest that end-to-end or link level congestion in
a communication network can be controlled by selecting the
link weights (conductances) appropriately. This is equivalent
to the problem of designing a resistance network such that the
resistance distance between specified pair of nodes are within
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prescribed levels. Another problem is that of partitioning a
network into clusters so that the Kirchhoff Index of each
cluster and the inter-cluster Kirchhoff Index of each pair of
clusters are within specified limits. Such a clustering will help
in devising protection schemes to contain failure cascades in
power and other networks.

Resistance networks had been studied extensively in the
1960’s and 1970’s. For example, see [32] and [33]. These
results can be of use in developing mathematical programming
formulations for the above two problems.
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