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Given two vertices u and v in a connected undirected graph G , a w∗-container C(u, v)

is a set of w internally vertex disjoint paths between u and v spanning all the vertices 
in G . A bipartite graph G is w∗-laceable if there exists a w∗-container between any two 
vertices belonging to different partitions of G . In [8], [33] a class B ′

n of bipartite graphs 
called hypercube-like bipartite networks was defined. In [22], Lin et al. showed that every 
graph in B ′

n is w∗-laceable for every 1 ≤ w ≤ n. We define a graph is f -edge fault tolerant 
w∗-laceable if G − F is w∗-laceable for any arbitrary subset F of edges of G with |F | ≤ f . 
In this paper we show that every graph in B ′

n is f -edge-fault tolerant w∗-laceable for every 
0 ≤ f ≤ n − 2 and 1 ≤ w ≤ n − f which generalize Lin’s result. We also give generalization 
of two other results in [22,27].

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In the last three or four decades, we have witnessed enormous advances in semiconductor technology. These advances 
have resulted in the production of large systems composed of interconnections of small components with high probability 
of failure. Such failures lead to increasing probability of failure of the overall system, causing disruption of service. Thus fault 
tolerance has come to play a central role in the design and analysis of large scale systems encountered in the modern era. 
In general, there are two approaches to achieve fault tolerance: hardware and software (protocols). Both these approaches 
require the systems/networks under consideration to possess certain topological properties. For example, designing a sur-
vivable logical topology routing in an IP-over-WDM optical network requires the existence of disjoint paths between certain 
specified pairs of vertices in the optical networks [17], [31], [39]. For an approach for fault identification in sensor networks 
existence of certain codes called identifying codes is required [15], [35], [37]. As example, in [33] a new class of networks 
called hypercube-like networks was introduced as a choice of interconnection topology for multiprocessor systems. These 
networks were also subsequently introduced in an independent work [8].

✩ The work was partly supported by NNSF of China No. 10571044.
✩✩ The work was partly supported by the Fundamental Research Funds for the Central Universities.
✩✩✩ This work was partly supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

* Corresponding author.
E-mail address: xum@bnu.edu.cn (M. Xu).
https://doi.org/10.1016/j.tcs.2020.05.049
0304-3975/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2020.05.049
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2020.05.049&domain=pdf
mailto:xum@bnu.edu.cn
https://doi.org/10.1016/j.tcs.2020.05.049


M. Xu et al. / Theoretical Computer Science 835 (2020) 44–57 45
These research trends have motivated our work in this paper where we study fault tolerance properties of hypercube-like 
networks measured in terms of the existence of certain disjoint paths after occurrence of edge faults. Our results generalize 
those properties established earlier for hypercube-like networks without faults [22], [27]. In this section we present basic 
definitions that will be needed for our development in the rest of this paper, along with a brief review of related works.

Usually, interconnection networks can be represented as graphs in which vertices represent processors and edges repre-
sent communication links.

For graph theoretic notations not defined here we follow [2]. Consider a graph G = (V (G), E(G)) with V (G) and E(G)

denoting the vertex set and edge set of G , respectively. N(u) will denote the set of all neighbors of vertex u in G and 
dG(u) = |NG(u)| will denote the degree of u. G is called k-regular if the degree of every vertex in G is equal to k. For a set 
F ⊆ E(G), G − F will denote the graph that results after deleting the set of edges in F . The connectivity (respectivity, edge 
connectivity) of a graph is the minimum number of vertices (respectively, edges) whose removal disconnects G or makes G
trivial.

A set of paths between vertices u and v are called internally disjoint paths if they have no common vertices except u
and v . A path is hamiltonian if it contains all the vertices of G . A graph is hamiltonian connected if it contains a hamiltonian 
path between every pair of vertices in G . A cycle in a graph G is a hamiltonian cycle if it contains all the vertices of G . A 
graph is hamiltonian if it contains a hamiltonian cycle. A bipartite graph is hamiltonian laceable if it contains a hamiltonian 
path between any two vertices from different partitions of the graph.

In [12], motivated by an application in communication networks, Hsu proposed the concept of container to evaluate the 
communication reliability of an interconnection network. For {u, v} ⊆ V (G), the w-container C(u, v) of G is a set of w
internally disjoint paths between u and v .

In this paper, we are concerned with a specific type of container, w∗-container. See [22] for an application of this concept 
in bioinformatics and neuroinformatics. A w∗-container C(u, v) is a set of w internally disjoint (u, v)-paths which contains 
all the vertices of G . A graph G is w∗-connected if there exists a w∗-container between any two distinct vertices u and v .

Let G be a bipartite graph with bipartition V 1 and V 2 with |V 1| ≥ |V 2|. The graph G is w∗-laceable if for each u ∈ V 1, 
v ∈ V 2 there exists a w∗-container between u and v for some w , 1 ≤ w ≤ κ(G). Obviously, the partite sets of any bipartite 
w∗-laceable graph with w ≥ 2 have equal size partitions.

The concept of spanning fan and spanning connectivity play an important role in the routing of large-scale net-
works [13,14,21–24]. Let u ∈ V (G) and S = {v1, v2, · · · , vk} ⊆ V (G) \ {u}. An (u, S)-fan is a set of internally disjoint paths 
of G such that for each vi , there is a path from u to vi [6]. A spanning fan is a fan that contains all the vertices. The 
spanning connectivity of a graph G , κ∗(G), is the largest integer k such that G is i∗-connected for every i, 1 ≤ i ≤ k. The 
concept of spanning connectivity has been widely investigated. The spanning connectivity of many networks, such as gener-
alized Petersen graphs P (n, 3) [34], WK-recursive networks [38], arrangement graphs [19], tori network [18] and augmented 
cubes [20] have been studied. Also, Huang and Hsu studied the spanning connectivity of line graph [14]. Lin et al. discussed 
the relationship between connectivity, spanning connectivity and spanning fan connectivity [23]. Hsu et al. gave the lower 
bound of the spanning connectivity for networks [21].

Motivated by the high likelihood of link failures in communication networks, we consider edge fault-tolerance ability of 
networks in this paper. A graph G is f -edge fault-tolerant Hamiltonian if G − F is Hamiltonian for any edge subset F of 
G with |F | ≤ f . A graph G is f -edge fault-tolerant Hamiltonian connected if G − F is Hamiltonian connected for any edge 
subset F of G with |F | ≤ f . A graph G is f -edge fault-tolerant w∗-connected if G − F is w∗-connected for any arbitrary 
edge set F with |F | ≤ f . A bipartite graph G is f -edge fault tolerant hamiltonian laceable if G − F is hamiltonian laceable 
for any edge subset F of G with |F | ≤ f . A bipartite graph G is f -edge fault-tolerant w∗-laceable if G − F is w∗-laceable 
for any arbitrary edge set F with |F | ≤ f .

The hypercube is the most popular interconnection network used in parallel processing systems. It possesses several 
attractive properties, see [30] for a detailed introduction to hypercubes and their properties. To overcome some limitations 
of the hypercube, certain variants such as the crossed cube [7], twisted cube [1], and Mobius cube [5] have been studied. 
To produce a unified theory of hypercube and their variants, Vaidya, Rao and Shankar [33] introduced the hypercube-like 
network which are also called bijective connection network (In short, BC networks), by Fan and He [8]. Several fault-
tolerance properties of hypercubes and their invariants may be found in [10], [11], [13], [18], [20], [23], [24], [36]. In [26], 
[28] Park et al. studied the existence of disjoint paths in restricted hypercube-like networks.

The rest of this paper is organized as follows. In section 2, we introduce the definition of hypercube-like networks and 
present some of their properties. In section 3, we prove three results, generalizing the results in [22], [27] taking edge faults 
into consideration.

2. Motivation: survivable logical topology mapping in an IP-over-WDM optical network

As we pointed out in section 1, existence of disjoint path plays an important role in achieving fault tolerant commu-
nication in networks. In this section we briefly highlight one such application in the context of survivable logical topology 
mapping in an IP-over-WDM optical network.

The concept of layering plays an important role in the design of communication networks and protocols. An IP (Internet 
Protocol) over WDM (Wavelength Division Multiplexing) network is an example of a layered network. Here the WDM optical 
network is the physical layer represented by a graph G P . The IP layer is the logical layer represented by a graph G I . Without 
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Fig. 1. Definition of B ′
n .

Fig. 2. An example in B ′
4.

loss of generality we assume that G I has the same vertex set as G P . Also we assume that G I and G P are both 2-edge 
connected.

Each edge in G I between vertices v and w corresponds to a path (called lightpath) between v and w in G P [3]. To 
transmit information from vertex u to vertex v , first a u-v path P in G I is identified. Then the information is transmitted 
using lightpaths corresponding to the logical links in P . If an edge in G P fails, then several edges in G I could fail causing 
G I to become disconnected and thereby disrupting transmission of information. Survivable logical topology mapping (SLTM) 
is to map each edge in G I into a lightpath in G P such that a single edge failure in G P does not disconnect G I .

The SLTM problem has been studied using two approaches. The approach using mathematical programming formulation 
was pioneered in [25]. The other approach, called the structural approach, uses graph-theoretic concepts and was pioneered 
in [16].

The structural approach (though described differently in [16]) can be explained using the concept of ear decomposition 
of G I . This approach may be viewed as constructing an ear decomposition of G I and mapping the edges in each ear into 
edge-disjoint lightpaths in G P . If no ear decomposition that admits such a mapping is available then the given SLTM problem 
is infeasible. Note that ears with a single edge are ignored. For details of this approach see [16,31] and [32].

There are several applications that require the existence of disjoint paths in networks.

3. Hypercube-like networks

Let G0 = (V 0, E0), G1 = (V 1, E1) be two disjoint graphs with |V 0| = |V 1|. In addition, let φ be a bijection between V 0
and V 1 and M = {(v, φ(v)) | v ∈ V 0}. We use G0 ⊕M G1 to denote the graph G = (V 0 ∪ V 1, E0 ∪ E1 ∪ M).

The set of n-dimensional hypercube-like networks, denoted by H Ln , is a set of n-regular n-connected graphs with 2n

vertices and n2n−1 edges that are defined recursively as follows.

1. H L1 = {K2}.
2. For G0, G1 ∈ H Ln , G = G0 ⊕M G1 is a graph in H Ln+1.

We use ū to denote the vertex in V (G1−i) matched under φ. So u = v̄ if ū = v . We next define the set of bipartite 
n-dimension hypercube-like networks, B ′

n as follows:

(1) B ′
1 is a complete graph with two vertices.

(2) For i = 0, 1, let Gi be a graph in B ′
n with bipartition V i

0 and V i
1. Let φ be a bijection between V 0

0 ∪ V 0
1 and V 1

0 ∪ V 1
1

such that φ(v) ∈ V 1
1−i if v ∈ V 0

i . Then G = G0 ⊕ G1 is a graph in B ′
n+1.

See Fig. 1 a pictorial description of B ′
n . Also as an example B ′

4 is shown in Fig. 2.
In Fig. 1, V 0 = V 0

0 ∪ V 0
1 and V 1 = V 1

0 ∪ V 1
1 .

We next define the hypercube Q n of dimension n. Q n is a bipartite network whose vertex set is the set of 2n binary 
strings of length n. Two vertices in Q n are adjacent if and only if their labels differ in exactly one position. As an example, 
Q 4 is shown in Fig. 3. In this figure the binary strings representing i and i′ differ in exactly one position.
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Fig. 3. Definition of Q 4.

Clearly Q n ∈ B ′
n . However Q n 
= B ′

n . For example, B ′
4 in Fig. 2 and Q 4 in Fig. 3 are not isomorphic because only two 

cycles with length four containing edge (8, 6′) are in Fig. 2 but there exists three cycles of length four containing each edge 
in Q 4.

For a discussion of several properties of hypercubes and their variants see [4], [9] and [30].
We next present certain known results of B ′

n that will be used in the next of the paper.

Theorem 1 ([27]). Every graph in B ′
n is hamiltonian laceable and hamiltonian if n ≥ 2.

Theorem 2 ([27]). Let n ≥ 2. Suppose that G is a graph in B ′
n with bipartition V 0 and V 1 . Let u1 and u2 be two distinct vertices in V i

and v1 and v2 are two distinct vertices in V 1−i with i ∈ {0, 1}. Then there exists a path P1 joining u1 to v1 and a path P2 joining u2
to v2 such that V (P1) ∪ V (P2) = V (G).

Theorem 3 ([22]). Let G be a graph in B ′
n with bipartition V 0 and V 1 for n ≥ 2. Let z be vertex in V i and u and v be two distinct 

vertices in V 1−i with i ∈ {0, 1}. Then there is a hamiltonian path of G − {z} connecting u and v.

Theorem 4 ([22]). Let n and k be any two positive integer with k ≤ n. Let G be a graph in B ′
n with bipartition V 0 and V 1 . There exists 

a spanning (u, S)-fan in G for any vertex u in V i and any vertex subset S with |S| ≤ n such that |S ∩ V 1−i | = 1 with i ∈ {0, 1}.

4. Spanning laceability of hypercube-like networks

In this section, we first prove two theorems which lead to our main result in Theorem 7. Theorem 1 in [27] is generalized 
in the following theorem.

Theorem 5. Let G be a graph in B ′
n with bipartition V 0 and V 1 for n ≥ 2. Then G is (n − 2)-edge fault tolerant hamiltonian laceable.

Proof. Let G = G0 ⊕ G1 in B ′
n with V i

0 and V i
1 as the bipartition of Gi for every i = 0, 1. Let u and v be two arbitrary 

vertices where u ∈ V 0
0 ∪ V 1

0 and v ∈ V 0
1 ∪ V 1

1 . Let F be an edge set of G with |F | ≤ n − 2.
For n = 2, the result holds trivially.
Suppose the result hold for 2 ≤ k < n.
For n ≥ 3, we will prove the theorem by constructing a hamiltonian path of G − F joining u to v . Let Fi = F ∩ E(Gi) and 

f i = |Fi | for i = 0, 1. We have the following cases.

Case 1. {u, v} is in V (G0) or {u, v} is in V (G1).
Assume that u ∈ V 0

0 and v ∈ V 0
1 . This involves no loss of generality.

If f0 ≤ n − 3 and f1 ≤ n − 3, then by induction hypothesis, there exists a hamiltonian path P0 joining u and v in G0 − F0
exists. We choose an edge e = (x, y) ∈ V (P0) such that (x, ̄x) /∈ F and (y, ȳ) /∈ F ; this is possible since 2n−2 > n − 2 ≥ |F |
for n ≥ 3. Let us rewrite P0 as P0 = 〈u, P01, x, y, P02, v〉. Induction implies that there exists a hamiltonian path P1 joining x̄
and ȳ in G1 − F1. Then the path P = 〈u, P01, x, ̄x, P1, ȳ, y, P02, v〉 is a required path in G − F . See Fig. 4.

If f0 = n − 2, then choose an edge e = (x, y) ∈ F0(= F ). Let F ′ = F\(x, y). Induction implied existence of a hamiltonian 
path P0 joining u and v in G0 − F ′ . Let e′ = e if e ∈ P0. Otherwise, arbitrarily select an edge e′ in P0. Without loss 
of generality, we assume that e′ = (x, y). Let us rewrite P0 as P0 = 〈u, P01, x, y, P02, v〉. Induction implies existence of a 
hamiltonian path P1 joining x̄ and ȳ in G1. Then the path P = 〈u, P01, x, ̄x, P1, ȳ, y, P02, v〉 is a path in G − F . See Fig. 4.

If f1 = n − 2, then select an edge e = (x, y) ∈ F1(= F ) with |{x̄, ȳ} ∩ {u, v}| ≤ 1. Let F ′ = F\{(x, y)}. Induction im-
plies existence of a hamiltonian path P1 joining x and y in G1 − F ′ . If {x̄, ȳ} ∩ {u, v} = ∅, then, by Theorem 2, there 
exists a path P01 joining u and x̄ and a path P02 joining v to ȳ where V (P01) ∪ V (P02) = V (G0). Then the path 
P = 〈u, P01, ̄x, x, P1, y, ȳ, P02, v〉 is the desired path in G − F . See Fig. 5. If {x̄, ȳ} ∩ {u, v} 
= ∅, then assume that u = ȳ. 
By Theorem 3, there exists a path P0 joining x̄ and v in G0 − {u}. Then the path P = 〈u, y, P1, x, ̄x, P0, v〉 is the desired 
path in G − F . See Fig. 6 for illustration.

Case 2. u is in V (G0) and v is in V (G1) or u is in V (G1) and v is in V (G0).
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Fig. 4. Scenario for Case 1 in Theorem 5.

Fig. 5. Scenario for Case 1 in Theorem 5.

Fig. 6. Scenario for Case 1 in Theorem 5.

Fig. 7. Scenario for Case 2 in Theorem 5.

Without loss of generality let u ∈ V 0
0 and v ∈ V 1

1 .
If f0 ≤ n − 3 and f1 ≤ n − 3, then select a vertex x ∈ V 0

1 with (x, ̄x) /∈ F ; this is possible since 2n−2 > n − 2 ≥ |F | for n ≥ 3. 
Induction implies existence of a hamiltonian path P0 joining u and x in G0 − F0 and a hamiltonian path P1 joining v and 
x̄ in G1 − F1. Then the path P = 〈u, P0, x, ̄x, P1, u〉 is a required path in G − F . See Fig. 7 for illustration.

Otherwise, f0 = n − 2 or f1 = n − 2. Assume then that f0 = n − 2. If there is an edge e = (x, y) ∈ F0(= F ) to which v̄ is 
not adjacent, then choose a vertex z ∈ V 0 such that z is not adjacent with the edge (x, y) in F ; this is possible since 2n−2 >
1
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Fig. 8. Scenario for Case 2 in Theorem 5.

Fig. 9. Scenario for Case 2 in Theorem 5.

Fig. 10. Scenario for Case 2 in Theorem 5.

n − 2 ≥ |F | for n ≥ 3. Obviously, (z, ̄z) /∈ F for f0 = n − 2. Let F ′ = F\(x, y). Induction implies existence of a hamiltonian path 
P0 joining u and z in G0 − F ′ . Let e′ = e if e ∈ E(P0). Otherwise, select an edge e′ ∈ E(P0) to which v̄ is not adjacent. We 
also denote e′ = (x, y). Let us rewrite P = 〈u, P01, x, y, P02, z〉. By Theorem 2, there exists in G1 a path Q 1 joining v to z̄
and a path Q 2 joining x̄ and ȳ such that V (Q 1) ∪ V (Q 2) = V (G1). Then the path P ′ = 〈u, P01, x, ̄x, Q 2, ȳ, y, P02, z, ̄z, Q 1, v〉
is a required path in G − F . See Fig. 8.

If v̄ adjacent to all the edge in F , then let us select an edge e = (v̄, x) ∈ F and let F ′ = F\{e}. If v̄ = u, then induction 
implies existence of a hamiltonian path P0 in G0 − F ′ joining u and x and a hamiltonian path joining x̄ and v in G1. Then 
the path 〈u, P0, x, ̄x, P1, v〉 is the desired path in G − F . See Fig. 9. If v̄ 
= u, then we can choose a vertex y ∈ NG0 (v̄)\{x}; this 
is possible since |NG0 (x)| = n − 1 > |F |. Induction implies existence of a hamiltonian path P0 joining u and y in G0 − F ′ . If 
e /∈ E(P ), then the path 〈u, P0, y, ȳ, P1, v〉 is the desired path in G − F where P1 is a hamiltonian path joining ȳ and v in G1. 
Otherwise, let us rewrite P0 = 〈u, P01, ̄v, x, P02, y〉 (Fig. 10) or 〈u, P01, x, ̄v, z, P02, y〉 (Fig. 11). If P0 = 〈u, P01, ̄v, x, P02, y〉, 
then the path 〈u, P01, ̄v, y, P02, x, ̄x, P1, v〉 is the desired path in G − F where P1 is the hamiltonian path joining x̄ and v
in G1. See Fig. 10. If 〈u, P01, x, ̄v, z, P02, y〉, then 〈u, P01, x, ̄x, Q , ̄z, z, P02, y, ̄v, v〉 is a required path in G − F where Q is 
the hamiltonian path joining x̄ and z̄ in G1 − {v} by Theorem 3. See Fig. 11.

This completes the proof of the theorem in all cases. �
As an example, Fig. 12 shows a Hamiltonian path indicated by dark edges between u and v with two faulty edges in B ′

4.

We next present a generalization of Theorem 5 in [22].
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Fig. 11. Scenario for Case 2 in Theorem 5.

Fig. 12. Example for Theorem 5.

Fig. 13. Scenario for Case 1 in Theorem 6.

Theorem 6. Let G be a graph in B ′
n with bipartition V 0 and V 1 and F be an arbitrary edge set of G with |F | ≤ n − 2. Then, in G − F , 

there exists a spanning (u, S)-fan in G − F for any u ∈ V i and S ⊆ V (G) \ {u} with |S| ≤ n − |F | and |S ∩ V 1−i | = 1 with i ∈ {0, 1}.

Proof. Let G = G0 ⊕ G1 in B ′
n with V i

0 and V i
1 be the bipartition of Gi for i = 0, 1. Note that V (Gi) = V i

0 ∪ V i
1. See Fig. 4. 

We know that G is a n-regular, n-connected non-complete graph. Let F ⊆ E(G) with |F | ≤ n − 2. Then pick any vertex u in 
V 0

0 and let S = {v1, v2, · · · , vk} be any vertex subset in V (G) \ {u} with v1 being the unique vertex in (V 0
1 ∪ V 1

1 ) ∩ S where 
k ≤ n − |F |. Let Si = S ∩ V (Gi), Fi = F ∩ E(Gi) for i = 0, 1 and F2 = F \ (F0 ∪ F1). To prove the result, we need to show a 
spanning (u, S)-fan in G − F .

We prove the statement by induction. By Theorem 4 and Theorem 5, the result holds for n = 3. We assume that n ≥ 4. 
If |F | = 0, then the result holds by Theorem 4. If |F | = n − 2, then k = |S| ≤ 2. By Theorem 5, we get the result. So, we only 
consider the case 1 ≤ |F | ≤ n − 3 and prove the theorem according to the following cases.

Case 1. |S1| = 0. In this case S0 = S and v ∈ V 0
1 .

If F is a proper subset of E(G0), then arbitrarily choose an edge e ∈ F and let F ′ = F \{e}. Then 0 ≤ |F ′| ≤ n −4 and |F ′| +
|S0| ≤ n − 1. Induction implies existence of a spanning (u, S)-fan {P1, P2, · · · , Pk} in G0 − F ′ . Let e′ = e if e ∈ ⋃k

i=1 E(Pi). 
Otherwise, arbitrarily choose an edge e′ ∈ ⋃k

i=1 E(Pi). Without loss of generality, we assume that e′ = (x, y) ∈ E(Pk) and 
denote Pk = 〈u, Pk1, x, y, Pk2, vk〉. Since |F1| ≤ |F | ≤ n − 3, by induction statement, there exists a Hamiltonian path Q
between x̄ and ȳ in G1. We set Ri = Pi for 1 ≤ i ≤ k − 1, Rk = (u, Pk1, x, ̄x, Q , ȳ, y, Pk2, vk). Then {R1, R2, . . . , Rk} forms a 
required spanning fan in G − F . See Fig. 13.

If F � E(G0), then 0 ≤ |F0| ≤ n − 4 and |F0| + |S0| ≤ n − 1. Induction implies existence of a spanning (u, S)-fan 
{P1, P2, · · · , Pk} in G0 − F0. We can choose an edge e = (x, y) ∈ ⋃k

i=1 E(Pi) such that (x, x̄) /∈ F and (y, ȳ) /∈ F ; this 
is guaranteed since 2n−2 > n − 3 ≥ |F | for n ≥ 4. Then assume that e ∈ E(Pk) and denote Pk = 〈u, Pk1, x, y, Pk2, vk〉. Since 
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Fig. 14. Scenario for Subcase 2.1 in Theorem 6.

Fig. 15. Scenario for Subcase 2.1 in Theorem 6.

|F1| ≤ |F | ≤ n − 3, by induction, there exists a Hamiltonian path Q between x̄ and ȳ in G1 − F1. We set Ri = Pi for 
1 ≤ i ≤ k − 1, Rk = (u, Pk1, x, ̄x, Q , ȳ, y, Pk2, vk). Then {R1, R2, . . . , Rk} forms a required spanning fan in G − F . See Fig. 13.

Case 2. |S1| = 1.
In this case, we have |S0| = k − 1, |F0| + |S0| ≤ n − 1 and |F1| + |S1| ≤ |F | + 1 ≤ n − 2.

Subcase 2.1. v1 is not in S1.
In this subcase, we assume that S1 = {vk}. If (u, ̄u) /∈ F , then induction implies existence of a spanning (u, S0)-fan 

{P1, P2, · · · , Pk−1} in G0 − F0 and a Hamiltonian path Q between ū and vk in G1 − F1. We set Ri = Pi for 1 ≤ i ≤ k − 1, 
Rk = (u, ̄u, Q , vk). Then {R1, R2, . . . , Rk} forms a required spanning fan in G − F . See Fig. 14. If (u, ̄u) ∈ F , then |F0| + |S0| ≤
n − 2. We can choose an edge (x, ̄x) /∈ F with x ∈ V 0

0 for 2n−2 > n − 3 ≥ |F | when n ≥ 4. Induction implies existence of a 
spanning (u, S0 ∪{x})-fan {P1, P2, · · · , Pk−1, P x} in G0 − F0 and a Hamiltonian path Q between x̄ and vk in G1 − F1. We set 
Ri = Pi for 1 ≤ i ≤ k − 1, Rk = (u, P x, x, ̄x, Q , vk) Then {R1, R2, . . . , Rk} forms a required spanning fan in G − F . See Fig. 15.

Subcase 2.2. v1 ∈ S1. So v1 ∈ V 1
1 .

In this subcase, let S0 = {v2, v3, · · · , vk} and S1 = {v1}.
If F0 ⊂ F , then |F0| + |S0| ≤ n − 2. Let us choose an edge (x, ̄x) /∈ F such that x ∈ V 0

1 for 2n−2 > n − 3 ≥ |F | when n ≥ 4. 
Induction implies existence of a spanning (u, {x} ∪ S0)-fan {P x, P2, · · · , Pk−1, Pk} in G0 − F0 and a Hamiltonian path Q
between x̄ and v1 in G1 − F1. We set Ri = Pi for 2 ≤ i ≤ k, R1 = (u, P x, x, ̄x, Q , v1). Then {R1, R2, . . . , Rk} forms a required 
spanning fan in G − F . See Fig. 16.

If F0 = F and v̄1 is not adjacent to all the fault edges in F0, then choose an edge e = (x, y) ∈ F0 and z ∈ V 0
1 with x ∈ V 0

1
and v1 /∈ { ȳ, ̄z}. Let F ′

0 = F0 \ {e}. Then |F ′
0| = |F | − 1 ≤ n − 4 and (|S0| + 1) + |F ′

0| ≤ n − 1. Induction implies existence of a 
spanning (u, {z} ∪ S0)-fan {P z, P2, · · · , Pk−1, Pk} in G0 − F ′

0. Let e′ = e if e ∈ ⋃k
i=2 E(Pi) ∪ E(P z). Otherwise, choose an edge 

e′ ∈ ⋃k
i=2 E(Pi) ∪ E(P z) to which v̄1 is not adjacent and denote e′ = (x, y). By Theorem 2, there exist two disjoint paths 

Q 1 and Q 2 of G1 such that (1) Q 1 joins x̄ and ȳ, (2) Q 2 joins z̄ and v1, and (3) V (Q 1) ∪ V (Q 2) = V (G1). If e′ ∈ E(P z)

and P z = 〈u, P z1, x, y, P z2, z〉, we set Ri = Pi for 2 ≤ i ≤ k, R1 = (u, P z1, x, ̄x, Q 1, ȳ, y, P z2, z, ̄z, Q 2, v1). Then {R1, R2, . . . , Rk}
forms a required spanning fan in G − F . See Fig. 17. Otherwise let e′ ∈ E(Pk) and Pk = 〈u, Pk1, x, y, Pk2, vk〉. We set Ri = Pi
for 2 ≤ i ≤ k − 1, R1 = (u, P z, z, ̄z, Q 2, v1) and Rk = (u, Pk1, x, ̄x, Q 1, ȳ, y, Pk2, vk). Then {R1, R2, . . . , Rk} forms a required 
spanning fan in G − F . See Fig. 18.

If F0 = F and v̄1 is adjacent to all fault edges, then arbitrarily choose an edge e = (x, ̄v1) ∈ F0 such that x ∈ V 0
1 . Let 

F ′
0 = F0 \ {e}. Then |F ′

0| = |F | −1 ≤ n −4 and (|S0| +1) +|F ′
0| ≤ n −1. Induction implies existence of a spanning (u, {x} ∪ S0)-

fan {P x, P2, · · · , Pk−1, Pk} in G0 − F ′
0. If e /∈ E(P x), then we set Ri = Pi for 2 ≤ i ≤ k, R1 = (u, P x, x, ̄x, Q , v1) where Q is 

a Hamiltonian path between x̄ and v1 in G1. See Fig. 16. Otherwise, e ∈ E(P x). Since G0 is (n − 1)-regular and |F | ≤
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Fig. 16. Scenario for Subcase 2.2 in Theorem 6.

Fig. 17. Scenario for Subcase 2.2 in Theorem 6.

Fig. 18. Scenario for Subcase 2.2 in Theorem 6.

n − 3, then x has a neighbor y with (x, y) /∈ F . If y ∈ V (P1), then we let P1 = 〈u, P x1, y, z, P x2, ̄v1, x〉. We set Ri = Pi
for 2 ≤ i ≤ k, R1 = (u, P x1, y, x, ̄x, Q , ̄z, z, P x2, ̄v1, v1) where Q is a Hamiltonian path between x̄ and z̄ in G1 − v1 by 
Theorem 2. See Fig. 19. Otherwise, assume y ∈ V (Pk). Let P x = 〈u, P x1, ̄v1, x〉. Let Pk = 〈u, Pk1, z, vk〉 if y = vk (Fig. 20) 
or Pk = 〈u, Pk1, y, z, Pk2, vk〉 (Fig. 21). We set Ri = Pi for 2 ≤ i ≤ k − 1, R1 = (u, P x1, ̄v1, v1), Rk = (u, Pk1, z, ̄z, Q , ̄x, x, vk)

or Rk = (u, Pk1, y, x, ̄x, Q , ̄z, z, Pk2, vk) where Q is a Hamiltonian path between x̄ and z̄ in G1 − {v1} by Theorem 2. Then 
{R1, R2, . . . , Rk} forms a required spanning fan in G − F . See Fig. 20 and Fig. 21 for illustration. The case when v̄1 /∈ Pk can 
be treated similarly.

Case 3. |S1| ≥ 2.

Subcase 3.1. v1 /∈ S1. So v1 ∈ V 0
1 .

In this subcase, we assume that S0 = {v1, v2, · · · , vt} and S1 = {vt+1, · · · , vk}. Then |S0| ≤ n − 2 − |F | and |S1| ≤ n − 1 −
|F |.

If F0 = F or F1 = F , then (u, ̄u) /∈ F . Let A = {(vk, ̄vi) | if (vk, ̄vi) is an edge for vi ∈ S0 \ {v1}}. Then |F1| + |A| ≤ |F1| +
(|S0| − 1) ≤ n − |S1| − 1 ≤ n − 3 and |F1| + |A| + |S1| ≤ n − 1. Induction implies existence of a spanning (vk, {ū} ∪ S1 \ {vk})-
fan {Pt+1, Pt+2, · · · , Pk−1, Pk} in G1 − F1 − A. Moreover, let Pi = 〈vk, xi, Pi1, vi〉 for t + 1 ≤ i ≤ k − 1 and Pk = 〈vk, Pk, ̄u〉. 
Let X = ∪k−1

i=t+1xi . Obviously, X ∩ S0 = ∅, |S0| + |X | ≤ |S| − 1 and |F | + (|S0| + |X |) ≤ n − 1. Induction implies existence of a 
spanning (u, S0 ∪ X)-fan {Q 1, · · · , Q t , Q t+1, · · · , Q k−1} in G0 − F0. We set Ri = Q i for 1 ≤ i ≤ t , R j = (u, Q j, ̄x j, x j, P j, v j)

for t + 1 ≤ j ≤ k − 1 and Rk = (u, ̄u, Pk, vk). Then {R1, R2, . . . , Rk} forms a required spanning fan in G − F . See Fig. 22 for 
illustration.
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Fig. 19. Scenario for Subcase 2.2 in Theorem 6.

Fig. 20. Scenario for Subcase 2.2 in Theorem 6.

Fig. 21. Scenario for Subcase 2.2 in Theorem 6.

Fig. 22. Scenario for Subcase 3.1 in Theorem 6.

If F0 ⊂ F and F1 ⊂ F , then choose x ∈ V 0
0 \ S0 with (x, ̄x) /∈ F . Let A = {(vk, ̄vi) | if (vk, ̄vi) be an edge for vi ∈ S0 \ {v1}}

and B = {(vk, ȳ) | if (vk, ȳ) is an edge for (y, ȳ) ∈ F2}. Then |A| ≤ |S0| −1, |B| ≤ |F2|, and |A| +|B| +|F1| ≤ (|S0| −1) +|F2| +
|F1| ≤ n − 1 − |S1| ≤ n − 3. Induction implies existence of a spanning (vk, {x̄} ∪ S1 \ {vk})-fan {Pt+1, Pt+2, · · · , Pk−1, P x̄} in 
G1 − F1 − A − B . Moreover, let us rewrite Pi = 〈vk, xi, Pi1, vi〉 for t +1 ≤ i ≤ k −1 and Pk = 〈vk, P x̄, ̄x〉. Let X = ∪k−1

i=t+1 x̄i ∪{x}. 
Obviously, X ∩ S0 = ∅, |S0| +|X | = |S| and |F0| +(|S0| +|X |) ≤ n −1. Induction implies existence of a spanning (u, S0 ∪ X)-fan 
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Fig. 23. Scenario for Subcase 3.1 in Theorem 6.

Fig. 24. Scenario for Subcase 3.2 in Theorem 6.

Fig. 25. Scenario for Subcase 3.2 in Theorem 6.

{Q 1, · · · , Q t, Q t+1, · · · , Q k−1, Q x} in G0 − F0. We set Ri = Q i for 1 ≤ i ≤ t , R j = (u, Q j, ̄x j, x j, P j1, v j) for t + 1 ≤ j ≤ k − 1
and Rk = (u, Q x, x, ̄x, P x̄, vk). Then {R1, R2, . . . , Rk} forms a desired spanning fan in G − F . See Fig. 23.

Subcase 3.2. v1 ∈ S1. So v1 ∈ V 1
1

In this subcase, we assume that S0 = {v2, · · · , vt} and S1 = {v1, vt+1, · · · , vk}. Then |S0| ≤ n − 2 − |F | ≤ n − 3 and 
|S1| ≤ n − |F | ≤ n − 1.

If F0 = F , then F1 ∪ F2 = ∅. Let A = {(vk, ̄vi) | if (vk, ̄vi) be an edge for vi ∈ S0}. Then |A| ≤ |S0| ≤ |S| − 2 ≤ n −
|F | − 2 ≤ n − 3 and |A| + |S1| ≤ |S0| + |S1| ≤ n − |F | ≤ n − 1. Induction implies existence of a spanning (vk, {ū} ∪ S1 \
{vk})-fan {Pt+1, Pt+2, · · · , Pk−1, Pū} in G1 − A. If v1 ∈ V (Pk), then let Pi = 〈vk, xi, Pi1, vi〉 for t + 1 ≤ i ≤ k − 1 and Pū =
〈vk, Pū1, y, v1, Pū2, ̄u〉. Let X = ∪k−1

i=t+1 x̄i ∪ { ȳ}. Obviously, X ∩ S0 = ∅, |S0| + |X | = |S| − 1 and |F | + (|S0| + |X |) ≤ n − 1. 
Induction implies existence of a spanning (u, S0 ∪ X)-fan {Q 2, · · · , Q t , Q t+1, · · · , Q k−1, Q ȳ} in G0 − F0. We set Ri = Pi
for 2 ≤ i ≤ t , R j = (u, Q j, ̄x j, x j, P j1, v j) for t + 1 ≤ j ≤ k − 1, R1 = (u, ̄u, Pū2, v1) and Rk = (u, Q ȳ, ȳ, y, Pū1, vk). Then 
{R1, R2, . . . , Rk} forms a desired spanning fan in G − F . See Fig. 24. If v1 ∈ ∪k−1

i=t+1 V (Pi), we assume that v1 ∈ V (Pk−1). Let 
Pk−1 = 〈vk, xk−1, P ′

k−1, v1, y, P ′′
k−1, vk−1〉, Pi = 〈vk, xi, Pi1, vi〉 for t + 1 ≤ i ≤ k − 2 and Pk = 〈vk, Pk, ̄u〉. Let X = ∪k−1

i=t+1 x̄i ∪
{ ȳ}. Obviously, X ∩ S0 = ∅, |S0| +|X | = |S| −1 and |F | +(|S0| +|X |) ≤ n −1. Induction implies existence of a spanning (u, S0 ∪
X)-fan {Q 1, Q 2, · · · , Q t , Q t+1, · · · , Q k−1} in G0 − F0. We set Ri = Pi for 2 ≤ i ≤ t , R j = (u, Q j, ̄x j, x j, P j1, v j) for t + 1 ≤
j ≤ k − 2, R1 = (u, Q k−1, ̄xk−1, xk−1, P ′

k−1, v1), Rk−1 = (u, Q 1, ȳ, y, P ′′
k−1, vk−1) and Rk = (u, ̄u, Pk, vk). Then {R1, R2, . . . , Rk}

forms a required spanning fan in G − F . See Fig. 25.
If F0 ⊂ F , we will discuss this subcase according to |S2| = 2 and |S2| ≥ 3.
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Fig. 26. Scenario for Subcase 3.2 in Theorem 6.

Fig. 27. Scenario for Subcase 3.2 in Theorem 6.

If |S1| = 2, we assume that S1 = {v1, vk}. Induction implies existence of a Hamiltonian path Q between v1 and vk in 
G1 − F1. Then we can select an edge (x, y) ∈ E(P ) with (x, ̄x) /∈ F2, (y, ȳ) /∈ F2 and ȳ /∈ S0 ∪ {u} for 2n−2 > n − 1 ≥ |S0| +
|F | + 1 for n ≥ 4. Let P = (v1, P1, x, y, Pk, vk). Since F0 ⊂ F , induction implies existence of a spanning (u, {x̄, ȳ} ∪ S0})-fan 
{Q x̄, Q 2, · · · , Q k−1, Q ȳ} in G0 − F0. We set Ri = Q i for 2 ≤ i ≤ k − 1, R1 = (u, Q x̄, ̄x, x, P1, v1) and Rk = (u, Q ȳ, ȳ, y, Pk, vk). 
Then {R1, R2, . . . , Rk} forms a desired spanning fan in G − F . See Fig. 26.

If |S1| ≥ 3, let S1 = {v1, vt+1, · · · , vk}. If (vk, ̄vk) /∈ F , let A = {(vk, ̄vi) | if (vk, ̄vi) be an edge for vi ∈ S0} and 
B = {(vk, ȳ) | if (vk, ȳ) is an edge for (y, ȳ) ∈ F2}. Then |A| ≤ |S0|, |B| ≤ |F2|, and |A| + |B| + |F1| ≤ n − |S1| ≤ n − 3. 
Induction implies existence of a spanning (vk, S1 \ {vk})-fan {P1, Pt+1, Pt+2, · · · , Pk−1} in G1 − F1 − A − B . More-
over, let P1 = 〈vk, x1, P11, v1〉 and Pi = 〈vk, xi, Pi1, vi〉 for t + 1 ≤ i ≤ k − 1. Let X = ∪k−1

i=t+1 x̄i ∪ {x̄1, v̄k}. Obviously, 
X ∩ S0 = ∅, |S0| + |X | = |S| and |F0| + (|S0| + |X |) ≤ n − 1. Induction implies existence of a spanning (u, S0 ∪ X)-fan 
{Q 1, · · · , Q t, Q t+1, · · · , Q k} in G0 − F0. We set Ri = Q i for 2 ≤ i ≤ t , R j = (u, Q j, ̄x j, x j, P j1, v j) for t + 1 ≤ j ≤ k − 1, 
R1 = (u, Q 1, ̄x1, x1, P11, v1) and Rk = (u, Q k, ̄vk, vk). Then {R1, R2, . . . , Rk} forms a required spanning fan in G − F . See 
Fig. 27.

If (vk, ̄vk) ∈ F , then |F1| < |F | ≤ n −3. Choose (x, ̄x) /∈ F with x ∈ V 1
0 . Let A = {(x, ̄vi) | if (x̄, ̄vi) be an edge where vi ∈ S0}

and B = {(vk, ȳ) | if (vk, ȳ) is an edge for (y, ȳ) ∈ F2 \ {(vk, ̄vk)}}. Then |A| ≤ |S0|, |B| ≤ |F2| − 1, and |A| + |B| + |F1| ≤ n −
1 −|S1| ≤ n − 4. Induction implies existence of a spanning (x, S1)-fan {Pt+1, Pt+2, · · · , Pk} in G1 − F1 − A − B . Moreover, we 
write P1 = 〈x, P1, v1〉 and Pi = 〈x, xi, Pi1, vi〉 for t + 1 ≤ i ≤ k. Let X = ∪k

i=t+1 x̄i ∪ {x̄}. Obviously, X ∩ S0 = ∅, |S0| + |X | = |S|
and |F0| + (|S0| + |X |) ≤ n − 1. Induction implies existence a spanning (u, S0 ∪ X)-fan {Q x̄, Q 2, · · · , Q t , Q t+1, · · · , Q k} in 
G0 − F0. We set Ri = Q i for 2 ≤ i ≤ t , R j = (u, Q j, ̄x j, x j, P j1, v j) for t + 1 ≤ j ≤ k and R1 = (u, Q x̄, ̄x, x, P1, v1). Then 
{R1, R2, . . . , Rk} forms a required spanning fan in G − F . See Fig. 28.

We have shown that the result is true in all cases. �
As an example, Fig. 29 shows a spanning fan indicated by dark and dotted edges between u and {v1, v2} with two 

faulty edges in B ′
4.

The following theorem generalizes Theorem 6 in [22].

Theorem 7. Every graph in B ′
n is f -edge fault-tolerant w∗-laceable for every 0 ≤ f ≤ n − 2 and 1 ≤ w ≤ n − f .

Proof. Let G = G0 ⊕ G1 in B ′
n with V i

0 and V i
1 be the bipartition of Gi for every i = 0, 1. Let F be an edge set such that 

f = |F | ≤ n − 2. Let u be any vertex in V 0 and v be any vertex in V 1. We will show that there exists a w∗-container of 
G between u and v in G − F for every w ≤ n − f . For w ≤ n − f , we can choose {x1, x2, · · · , xw−1} ⊆ NG(v) such that 
(v, xi) /∈ F . Let S = {v, x1, · · · , xw−1}. Thus, there exists a spanning (u, S)-fan {Q 1, Q 2, · · · , Q w} in G − F by Theorem 6. We 
set P1 = Q 1, Pi = 〈u, Q i, xi, v〉. Then {P1, P2, · · · , P w} is the w∗-container of G − F between u and v . �
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Fig. 28. Scenario for Subcase 3.2 in Theorem 6.

Fig. 29. Example for Theorem 6.

Fig. 30. Example for Theorem 7.

As an example, Fig. 30 shows a 2∗-container indicated by dark and dotted edges between u and v with two faulty edges 
in B ′

4.

Remark. Let G be an n-regular graph and u be a vertex in G . Choose a vertex v ∈ NG(u). Let F be an edge set of G such 
that all edges in F are adjacent with u and |F | = n − 1. Thus, there is no hamiltonian path between u and v in G − F . It 
shows that our result in Theorem 7 is optimal.

5. Summary

In this paper, we have studied fault tolerance properties of hypercube-like networks and established three spanning 
laceability properties. These results are in Theorem 5, 6 and 7. Our results generalize those properties of hypercube-like 
networks without edge faults presented in [22], [27]. Since hypercube is a special class of hypercube-like networks, these 
fault tolerance properties hold for hypercube as well.

As study in [4] and [9], [26], [28], [29] draws our future research attention the existence of internally disjoint paths 
between specified pairs of vertices. An interesting problem for future research is to study such problems for hypercube-like 
networks.

As to another problem for future research, let us return to the survivable logical topology routing problem as described 
in section 2. In this problem we are given a physical topology (an optical network) G P and a logical topology (IP layer) G I . 
Assume that G P and G I have the same vertex set. Logical topology routing requires each logical link (x, y) to be mapped 
into a path between the vertices x and y in G P . When a physical link fails, several logical links could fail. So the problem 
is to find a mapping of the logical links so that a physical link failure does not cause G I to be disconnected. It is desirable 
to achieve a mapping that protects G I against multiple physical link failures. This problem is NP-complete. An interesting 
question is to design efficient heuristics to achieve such a mapping. We believe that this is possible if a hypercube-like 
network is used as a logical topology because of the fault tolerant laceability properties established in this paper.
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