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Abstract
Let G = (V,E) be a bipartite graph with bipartition X,Y and let |X| ≤ |Y |. A

dominator sequence in G is a sequence of vertices (x1, x2, . . . , xk) in X such that
for each i with 2 ≤ i ≤ k, the vertex xi dominates at least one vertex in Y which is
not dominated by x1, x2, . . . , xi−1. The maximum length of a dominator sequence
in G is called the dominator sequence number of G and is denoted by l(G). In
this paper we present several basic results on this parameter. We prove that the
decision problem for the parameter l(G) is NP-Complete. We obtain bounds for
l(G) and discuss applications in the study of optical networks.

Keywords : Bipartite graph, domination number, dominator sequence number, optical
networks, survivability of IP-over-WDM networks.

1 Introduction

Throughout this paper G = (V,E) stands for a bipartite graph with bipartition X, Y and
we assume that G does not have isolated vertices. For graph theoretic terminology we
refer to Chartrand and Lesniak [4].

Hedetniemi and Laskar [6, 7] proposed a bipartite theory of graphs and suggested
an equivalent formulation of several concepts on graphs as concepts for bipartite graphs.
One among them is the concept of Y -domination, where for a connected bipartite graph
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G = (V,E) with bipartition X, Y, a subset D of X is a Y-dominating set of G if every
y ∈ Y is adjacent to at least one vertex of D. The minimum order γY (G) of a Y -
dominating set of G is called the Y-domination number of G. In this paper we introduce
the concept of dominator sequence number of a bipartite graph, which is motivated by
an application in optical networks. We present several basic results on this concept. We
establish the NP-Completeness of the problem of finding the dominator sequence number
of bipartite graphs and we give a linear time algorithm for constructing a maximum
dominator sequence in a tree. Other possible generalizations of the concept of dominator
sequence are given in Section 6. We need the following definitions.

Definition 1.1. A Cartesian product G = G1�G2 has V (G) = V (G1) × V (G2), and
two vertices (u1, u2) and (v1, v2) of G are adjacent if and only if either u1 = v1 and
u2v2 ∈ E(G2) or u2 = v2 and u1v1 ∈ E(G1).

Definition 1.2. Let G be a connected graph. The subdivision graph S(G) of a graph G is
the graph obtained from G by replacing each edge uv of G by a new vertex w along with
edges uw and vw.

Definition 1.3. For a graph G = (V,E), the shadow graph of G is the graph Gs with
vertex set V ∪ V ′ where V ′ = {x′ : x ∈ V } and is disjoint from V, and edge set E ′ =
E ∪ {xy′ : xy ∈ E}.

Definition 1.4. Let G be a bipartite graph with bipartition X, Y. The bipartite comple-
ment Gbc of G has the same bipartition X, Y and xiyj ∈ E(Gbc) if and only if xiyj /∈ E(G).

2 Motivation: Survivable Logical Topology Mapping

in an IP-over-WDM Optical Network

The concept of layering plays an important role in the design of communication networks
and protocols. An IP(Internet Protocol) over WDM(Wavelength Division Multiplexing)
network is an example of a layered network. Here the WDM optical network is the
physical layer represented by a graph Gp. The IP layer is the logical layer represented by
a graph Gl. Without loss of generality we assume that Gl has the same vertex set as Gp.
Also we assume that Gl and Gp are both 2-edge connected.

Each edge in Gl between vertices v nd w corresponds to a path(called lightpath)
between v and w in Gp[5]. To transmit information from vertex u to vertex v, first a
u-v path P in Gl is identified. Then the information is transmitted using lightpaths
corresponding to the logical links in P. If an edge in Gp fails, then several edges in Gl

could fail causing Gl to become disconnected and thereby disrupting transmission of
information. Survivable logical topology mapping (SLTM) is to map each edge in Gl into
a lightpath in Gp such that a single edge failure in Gp does not disconnect Gl.

The SLTM problem has been studied using two approaches. The approach using
mathematical programming formulation was pioneered in [12]. The other approach, called
the structural approach, uses graph-theoretic concepts and was pioneered in [9].

The structural approach (though described differently in [9]) can be explained using
the concept of ear decomposition of Gl. This approach may be viewed as constructing an
ear decomposition of Gl and mapping the edges in each ear into edge-disjoint lightpaths
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in Gp. If no ear decomposition that admits such a mapping is available then the given
SLTM problem is infeasible. For details of this approach see [9], [13] and [14].

For purposes of the application under discussion, our definition of a ear given next is
slightly more general than the traditional definition of an ear given in [17]. The first ear
is a circuit in the given graph. Each subsequent ear is a circuit obtained by contracting
the other ears already selected. If an ear has exactly one edge , the corresponding
lightpath in the physical graph Gp can be selected arbitrarily and so such ears are not
of interest in the cross layer survivability mapping problem. Since circuits/cutsets, and
edge contraction/deletion are dual concepts[11], the question arises whether there exists
a dual cutset-based approach for the SLTM problem. This question has been discussed
in [13] and [14]. A brief outline of the cutset-based approach is as follows.

Consider a connected, undirected and simple graph G = (V,E) with vertex set V and
edge set E. Let |V | = n and |E| = m. Consider a partition (S, S) of V, where S = V −S.
Then the set of edges with one end in S and the other in S is called a cut of G.
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Figure 1: (a)A graph with a spanning tree (bold lines) (b) A cut.

For example consider the graph G in Fig.1(a). Here the vertices are numbered
1, 2, . . . , 6. The bold edges in this figure denote the branches of a spanning tree T of G
and the dotted edges are the chords of this tree. The partition (S, S) with S = {1, 4, 6}
and S = {2, 3, 5} defines the cut shown in Fig.1(b). If we remove a branch b from a
spanning tree T, then the tree T gets disconnected resulting in two trees (not spanning)
T1 and T2. The sets of nodes in T1 and T2 define a partition of V. The corresponding cut
is called the fundamental cutset of T with respect to the branch b. For example, if we
remove the branch b3 from the tree T of Fig.1(a) then we get trees T1 and T2 given by the
branches {b1, b2, b5} and {b4}, respectively. The corresponding fundamental cutset Q(b3)
consists of the edges {b3, c1, c3, c4, c5, c6}. Note that the subgraphs induced by the vertex
sets of T1 and T2 are both connected.

The fundamental cutset matrix with respect to the tree T is defined asQf = [qij](n−1)×(m).
The matrix Qf has (n − 1) rows, one for each fundamental cutset and one column for
each edge. The entry qij is defined as

qij =

{
1, if Q(bi) contains edge j
0, otherwise.
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Arranging the rows of Qf such that the jth row corresponds to f -cutset Q(bj) and
the columns correspond to the edges in the order {b1, b2, . . . , bn−1, c1, c2, . . . , cm−n+1} the
matrix Qf can be written as Qf = [U |Qfc]. For example, the Qf matrix with respect to
the tree T of Fig.1(a) is given below.


b1 b2 b3 b4 b5 c1 c2 c3 c4 c5 c6

b1 1 0 0 0 0 1 1 0 0 0 0
b2 0 1 0 0 0 1 1 0 1 1 1
b3 0 0 1 0 0 1 0 1 1 1 1
b4 0 0 0 1 0 0 0 1 1 0 0
b5 0 0 0 0 1 0 0 0 1 1 0

 −→ (1)

An ordered sequence Q(b1), Q(b2), . . . , Q(bk) is a cutset cover sequence or simply a
Q-sequence of length k if

a) [Q(bj)− bj −
⋃j−1

p=1Q(bp)] 6= ∅, 2 ≤ j ≤ k.

b)
⋃k

p=1Q(bp) = E− {branches not in the Q-sequence}.

Note that for a given spanning tree and its f -cutsets, there may be more than one
Q-sequence. For example, for the fundamental cutsets given in (1), following are the
three Q-sequences.

1. Q(b4), Q(b5), Q(b3), Q(b2).

2. Q(b4), Q(b5), Q(b1), Q(b2).

3. Q(b1), Q(b2), Q(b4).

Without loss of generality assume that Q(b1), Q(b2), . . . , Q(bk) is a Q-sequence of length

k. Let us define Ŝ(bj) as follows:

a) Ŝ(b1) = Q(b1)− b1.

b) Ŝ(bj) = Q(bj)− bj −
⋃j−1

p=1Q(bp), 2 ≤ j ≤ k.

The sets bi ∪ Ŝ(bi) are called cutset-ears. The ears corresponding to the branches in a
cutset cover sequence D form a cutset-ear decomposition of the graph obtained from Gl

by contracting the branches that are not in the cutset cover sequence.
The cutset-based([13],[14]) method has the following steps:

1. Map the edges in each cutset-ear bi ∪ Ŝ(bi) into mutually edge-disjoint paths in Gp.

2. For each branch bi not in the cutset-cover sequence, add a parallel edge in Gl and
map these edges into mutually edge-disjoint paths in Gp. The newly added edges
are called protection edges.
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Each protection edge entails the provision of additional resources in Gp and so is expen-
sive. So, to minimize this cost, we need to start with a cutset-cover sequence which has
the largest number of branches possible.

We now construct a bipartite graph G(X, Y ) where each vertex in X corresponds to
a branch bi of a spanning tree T, each vertex in Y corresponds to a chord ci and bi is
joined to cj if and only if the fundamental cutset with respect to bi contains the chord
cj. Then a cutset-cover sequence in G corresponds to a dominator sequence, which we
formally define in the next section. The SLTM problem requires the construction of a
longest dominator sequence.

3 Basic Results

In this section we introduce the concept of a dominator sequence in a bipartite graph and
present several basic results.

Definition 3.1. Let G be a bipartite graph with bipartition X, Y. A Y-dominator sequence
is a sequence of vertices (x1, x2, . . . , xk) in X such that for each i, 1 ≤ i ≤ k, there
exists yi ∈ Y such that yi is dominated by xi and yi is not dominated by any of the
vertices x1, x2, . . . , xi−1, or equivalently, yi ∈ N(xi) − (N(x1) ∪ N(x2) ∪ · · · ∪ N(xi−1)).
The maximum length of a Y-dominator sequence of G is called the Y-dominator sequence
number of G and is denoted by lY (G).

Similarly one can define an X -dominator sequence number, lX(G). The following
theorem shows that the two numbers are equal.

Proposition 3.2. For any bipartite graph G we have lX(G) = lY (G).

Proof. Let (x1, x2, . . . , xk) be a X -dominator sequence of G where k = lX(G). For each
i, 1 ≤ i ≤ k, choose yi ∈ N(xi)−(N(x1)∪N(x2)∪· · ·∪N(xi−1)). Clearly (yk, yk−1, . . . , y1)
is a Y -dominator sequence of G. Hence lX(G) ≤ lY (G). By a similar argument lX(G) ≥
lY (G), and hence lX(G) = lY (G).

In view of Proposition 3.2, we write l(G) = lX(G) = lY (G) and l(G) is called the
dominator sequence number of G.

The study of dominator sequence had its origin in domination game as given in Brešar
et al. [3]. Further the concept of dominating sequence and Grundy domination number of
a graph was introduced in Brešar et al. [2]. In this definition the dominating sequence is
not necessarily an independent set but forms a dominating set, whereas in our definition
the dominator sequence is always independent and is not necessarily a dominating set.
Thus the Grundy domination number γgr(G) and the dominator sequence number l(G)
are different. For example for the complete bipartite graph G = Kr,s with r, s ≥ 2, l(G) =
1 and γgr(G) = 2. Further motivated by the SLTM-problem described in Section 2, we
confine ourselves to bipartite graphs. Basic results on independent dominator sequence
number in arbitrary graphs are given in Jayaram et al. [1].

We observe that l(G) = 1 if and only if G is isomorphic to Kr,s, withr, s ≥ 1.
For the path Pn we have, l(Pn) = bn

2
c. For the bipartite complement P bc

n of the path
Pn = (v1, v2, . . . , vn), with n ≥ 6, for any vertex vi at most two vertices in the other
partite set are not dominated by vi. Thus l(P bc

n ) = 3.
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Proposition 3.3. For any even cycle Cn we have l(Cn) = n
2
− 1.

Proof. Let Cn = (x1, x2, . . . , xn, x1). Obviously (x1, x3, . . . , xn−3) is a dominator sequence
and hence l(Cn) ≥ n

2
− 1. Further, any dominator sequence of length k in X dominates

at least k + 1 vertices in Y so that k + 1 ≤ n
2
. Hence k ≤ n

2
− 1. Thus l(Cn) = n

2
− 1.

Proposition 3.4. For any even cycle Cn, we have l(Cn2K2) = n− 2.

Proof. Let C0
n = (x1, x2, . . . , xn, x1) and C1

n = (y1, y2, . . . , yn, y1) be the two copies of Cn

in G with xiyi ∈ E(G). Then X = {xi : 1 ≤ i ≤ n and i is odd} ∪ {yi : 1 ≤ i ≤ n and i
is even} and Y = V (G)−X is the bipartition of G. Now (x1, y2, x3, y4, . . . , xn−3, yn−2) is
a dominator sequence of G and hence l(G) ≥ n− 2. Further any dominator sequence of
length k in X dominates at least k+2 vertices in Y, so that k+2 ≤ n. Thus l(G) ≤ n−2
and hence l(G) = n− 2.

Proposition 3.5. For any path Pn, we have l(Pn2K2) = n− 1.

Proof. The proof is similar to that of Proposition 3.4.

Proposition 3.6. Let n and k be two positive integers with n > 2k. Then there exists a
bipartite graph G of order n with l(G) = k.

Proof. Let A = {x1, x2, . . . , xk}, B = {y1, y2, . . . , yk} and C = {z1, z2, . . . , zn−2k}. Let
G be the bipartite graph with bipartition X = A and Y = B ∪ C, where N(xi) =
{yi} ∪ C, 1 ≤ i ≤ k. Clearly (x1, x2, . . . , xk) is a dominator sequence of G and since
|X| = k, it follows that l(G) = k.

Lemma 3.7. For any bipartite graph G we have l(G) ≤ β1(G), where β1(G) is the
cardinality of a maximum matching in G.

Proof. Let (x1, x2, . . . , xk) be a dominator sequence of G, where k = l(G). For each xi
choose yi ∈ N(xi) − (N(x1) ∪ N(x2) ∪ · · · ∪ N(xi−1)). Clearly, x1y1, x2y2, . . . , xkyk is a
matching in G and hence l(G) ≤ β1(G).

Lemma 3.8. Let G be an r-regular bipartite graph of order n. Then l(G) ≤ n
2
− r + 1.

Proof. Let (x1, x2, . . . , xk) be any dominator sequence of G with k = l(G). Since x1
dominates exactly r vertices in Y and each xi dominates at least one vertex in Y not
dominated by x1, x2, . . . , xi−1, it follows that r + (k − 1) ≤ |Y | = n

2
. Hence l(G) ≤

n
2
− r + 1.

Remark 3.9. The inequality given in the above theorem can be sharp and also strict.
For example, consider the graph in Fig.2(a) with n = 14 and r = 3. Then (1, 5, 6, 3, 7)
is a dominator sequence of length, l(G) = n

2
− r + 1 = 5. For the graph in Fig.2(b) with

n = 12 and r = 3, (1, 2, 4) is a sequence of length, l(G) = 3 < n
2
− r + 1.

Proposition 3.10. Let G be any bipartite graph. Then for the shadow graph Gs of G,
we have l(Gs) = 2l(G).
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Figure 2: (a)A graph with l(G) = n
2
− r + 1 (b) A graph with l(G) < n

2
− r + 1

Proof. Let X, Y be a bipartition of G. Let X ′ and Y ′ be the sets of vertices in Gs corre-
sponding toX and Y respectively. ThenX∪X ′, Y ∪Y ′ is a bipartition ofGs.Now if l(G) =
k and (x1, x2, . . . , xk) is a dominator sequence of G, then (x′1, x

′
2, . . . , x

′
k, x1, x2, . . . , xk) is

a dominator sequence of Gs. Hence l(Gs) ≥ 2k = 2l(G). Now, let S be any dominator
sequence of Gs. Since the induced subgraphs 〈X ∪ Y ′〉 and 〈X ′ ∪ Y 〉 are both isomorphic
to G and the vertices in Y ′ are dominated only by the vertices in X, it follows that
|S ∩X ′| ≤ k and |S ∩X| ≤ k. Hence l(Gs) ≤ 2k.

Proposition 3.11. Let G be a connected graph of order n. Then for the subdivision graph
S(G) of G, we have l(S(G)) = n− 1.

Proof. The bipartition of S(G) is given by X = V (G) and Y = V (S(G)) − V (G). We
consider the dominator sequence to contain vertices from Y. Since any vertex of Y has
degree 2 in S(G), any dominator sequence of length k = l(S(G)) dominates at least
k + 1 vertices of V (G) and hence k + 1 ≤ n. Hence l(S(G)) ≤ n − 1. Now, let T be
any spanning tree of G with E(T ) = {e1, e2, . . . , en−1}. Let yi be the vertex in Y that
subdivides the edge ei. Clearly (y1, y2, . . . , yn−1) is a dominator sequence of S(G) and
hence l(G) ≥ n− 1.

We now proceed to obtain a characterization of all bipartite graphs with l(G) = |X|.
We first define recursively a family F of bipartite graphs.

(i) All stars are in F.

(ii) If G ∈ F and if (X, Y ) is a bipartition of G with |X| ≤ |Y | and S is any star and
G′ is the graph obtained from G and S by joining the centre of S to a nonempty
subset of Y, then G′ ∈ F.

Theorem 3.12. Let G be a connected bipartite graph with bipartition (X, Y ) with |X| ≤
|Y |. Then l(G) = |X| if and only if G ∈ F.

Proof. Suppose G ∈ F. Let X = {x1, x2, . . . , xk} be the set of all centres of the stars,
in the order in which they appear, in the construction of G. Clearly X, V (G) − X is a
bipartition of G and X is a dominator sequence of G. Hence l(G) = |X|. Conversely, let G
be a bipartite graph with bipartition X, Y such that X = (x1, x2, . . . , xk) is a dominator

sequence of G. Let S1 = N [x1] and Si = N [xi]−
i−1⋃
j=1

N(xj). Then 〈Si〉 is a star with centre

xi and G can be obtained from these stars by using the above construction. Hence G ∈ F.
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Definition 3.13. A bipartite graph G is said to be dominator sequence critical if l(G) = k
and l(G− v) < k for all v ∈ V (G).

Proposition 3.14. A bipartite graph G is dominator sequence critical if and only if G
has a perfect matching and l(G) = |X|.

Proof. Let X, Y be a bipartition of G and let l(G) = k. Let (x1, x2, . . . , xk) be a dominator
sequence of G. If G has a perfect matching and l(G) = |X|, then |X| = |Y | = k and
trivially l(G − v) < k for all v ∈ V. Conversely, suppose l(G − v) < k for all v ∈ V. If
|X| > k, then l(G − x) = l(G) for any x ∈ X − S, where S is a dominator sequence
of G, a contradiction. Thus |X| = k. By a similar argument we have |Y | = k. Further

{xiyi : yi ∈ N(xi)−
i−1⋃
j=1

N(xj) and 1 ≤ i ≤ k} is a perfect matching in G.

Definition 3.15. Let S = (x1, x2, . . . , xr) be a dominator sequence in a bipartite graph
G. Let yi be a vertex which is dominated by xi but not dominated by x1, x2, . . . , xi−1. The
matching M = {x1y1, x2y2, . . . xr, yr} is called a matching determined by S.

Definition 3.16. Let G = (V,E) be a graph and M a matching. An M-alternating path
in G is a path whose edges are alternatively in E\M and in M. An M-alternating path
whose two end vertices are adjacent is called an M-alternating cycle.

The following result gives us a good characterization to identify a maximum dominator
sequence based on the size of an M-alternating cycle in a graph. The following theorem
is used later in the paper to identify dominator sequences.

Theorem 3.17. A maximum matching M in a bipartite graph G is determined by a
dominator sequence S in G if and only if there does not exist an M-alternating cycle in
G.

Proof. Suppose there exists a dominator sequence S = {x1, x2, . . . , xr} which determines
the matching M = {x1y1, x2y2, . . . xryr}. Let H be the subgraph of G induced by V (M) =
{x1, x2, . . . , xr, y1, y2, . . . , yr}. Since x1 dominates y1, but does not dominate y2, y3, . . . , yr
it follows that x1 has degree 1 in H. Hence the edge x1y1 does not lie on an M -alternating
cycle in G. Now x2 is a vertex of degree 1 in H − {x1, y1} and hence the edge x2y2 does
not lie in an M -alternating cycle. By repeating this process, we see that no edge of M
lies on an M -alternating cycle and hence there does not exist an M -alternating cycle in
G.

Conversely, suppose that M = {x1y1, x2y2, . . . xryr} is a maximum matching in G
such that there does not exist an M -alternating cycle in G. Let H be the subgraph of G
induced by V (M) = {x1, x2, . . . , xr, y1, y2, . . . , yr} and let P = (u = v1, v2, . . . , vs = v) be
an M -alternating path of maximum length in H. Then the length of P is odd, the first
edge v1v2 and the last edge vs−1vs of P are in M and the vertices v1, vs are not adjacent
to any vertex in V (H)−V (P ). Further since there does not exist an M -alternating cycle
in G, the vertices v1, vs are not adjacent to any vertex in V (P ). Thus both v1 and vs are
pendant vertices in H and since the length of P is odd, one of these vertices, say v1, is in
X. Let v1 = x1, D1 = {x1},M1 = {x1y1} and H1 = H − {x1, y1}. Now by considering an
M -alternating path of maximum length in H1, we obtain a vertex, say x2, of degree 1 in
X ∪ V (H1). Let D2 = {x1, x2},M2 = {x1y1, x2y2} and H2 = H1 − {x2, y2}. By repeating
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this process we obtain a dominator sequence D = {x1, x2, . . . , xr} in G which determines
the matching M.

In the following theorem we give bounds on the number of edges of a bipartite graph
G of order n with l(G) = k.

Theorem 3.18. Let G be a bipartite graph of order n and size m with bipartition X, Y,
where r = |X| ≤ |Y | = s and let l(G) = k. Then n − 1 ≤ m ≤ rs −

(
k
2

)
. Further,

m = n − 1 if and only if G is a tree with β1(G) = k. Also, m = rs −
(
k
2

)
if and only

if G is isomorphic to the graph G1 obtained from the complete bipartite graph Kr,s with
bipartition X = {x1, x2, . . . , xr} and Y = {y1, y2, . . . , ys} by deleting all edges xiyj where
1 ≤ i < j ≤ k.

Proof. Let (x1, x2, . . . , xk) be a dominator sequence inG and let yi ∈ N(xi)−
i−1⋃
j=1

N(xj), 1 ≤

i ≤ k. Then xiyj /∈ E(G) for all pairs i, j with 1 ≤ i < j ≤ k. Hence m ≤ rs−
(
k
2

)
. Since

G is connected, the lower bound is trivial. Now suppose l(G) = k and m = n− 1. Then
it follows from Theorem 5.1 that G is a tree and β1(G) = k. Conversely, if G is a tree
with β1(G) = k then trivially m = n− 1.

Now let l(G) = k and m = rs−
(
k
2

)
. Let (x1, x2, . . . , xk) be a maximum dominator se-

quence and let yi ∈ N(xi)−
⋃i−1

j=1N(xj). Clearly xi is not adjacent to yi+1, yi+2, . . . , yk, 1 ≤
i < k and since m = rs−

(
k
2

)
it follows that G = G1. Conversely, suppose G is isomorphic

to the graph G1 given in the theorem. Clearly, m = rs −
(
k
2

)
. Also, (x1, x2, . . . , xk) is a

dominator sequence of G1 and hence l(G) ≥ k. Further since N(xi) = Y for all i ≥ k, it
follows that l(G1) = k.

4 Complexity Results

In this section we prove that the decision problem corresponding to the dominator se-
quence number is NP-Complete.
DOMINATOR SEQUENCE PROBLEM(DSP)
INSTANCE: A bipartite graph G with bipartition X, Y and a positive integer k.
QUESTION: Is there a sequence xi1 , xi2 , . . . , xik of vertices in X such that N(xij) \
(N(xi1) ∪N(xi2) ∪ · · · ∪N(xij−1

)) 6= ∅ for all 2 ≤ j ≤ k?

For this purpose we use the feedback vertex set problem.
FEEDBACK VERTEX SET
INSTANCE: Graph G = (V,A) and a positive integer k ≤ |V |.
QUESTION: Is there a subset V ′ ⊆ V with |V ′| ≤ k such that V ′ contains at least one
vertex from every cycle in G?

Karp [8] has proved that FEEDBACK VERTEX SET is NP-complete. We now define
another problem called closure problem.

Definition 4.1. Let X be a set and let C be a collection of subsets of X. For a subset
A ⊆ X the closure of A, denoted by σ(A) is the minimal subset B of X satisfying the
following properties:
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1 A ⊆ B.

2 There is no set P ∈ C such that |P \B| = 1.

Observation 4.2. Let F = {B ⊆ X : B ⊇ A and there does not exist P ∈ C such that
|P\B| = 1}. Clearly X ∈ F and if B1, B2 ∈ F , then B1 ∩ B2 ∈ F . Hence the closure of
A is given by σ(A) =

⋂
B∈F

B, so that σ(A) is well defined.

CLOSURE PROBLEM(CP)
INSTANCE: A set X, a collection C of subsets of X and a positive integer k.
QUESTION: Is there a subset A ⊆ X with |A| ≤ k and σ(A) = X.

We first prove that the CLOSURE PROBLEM is NP-complete by reduction from
feedback vertex set. We finally prove that dominator sequence problem is NP-complete
by reduction from closure problem.

Theorem 4.3. CLOSURE PROBLEM is NP-Complete.

Proof. The proof is by reduction from FEEDBACK VERTEX SET PROBLEM. Let
(G, k) be an instance of the feedback vertex set problem. We may assume that the
minimum degree of G is at least two. With each vertex v of G we associate an element xv
and with each neighbor u of v we associate two elements x1vu, x

2
vu. Note that the element

x1vu is different from the element x1uv.
Let X = {xv : v ∈ V } ∪ {x1vu : v ∈ V, u ∈ N(v)} ∪ {x2vu : v ∈ V, u ∈ N(v)}. Clearly

|X| = n + 4m where n = |V (G)| and m = |E(G)|. The sets in C are constructed as
follows. For every neighbor u of v, there are three sets in C, {xw|w ∈ N(v) \ {u}} ∪
{x1vu}, {xw|w ∈ N(v) \ {u}} ∪ {x2vu}, and {xv, x1vu, x2vu}. Thus the total number of sets is
6m. Let XV = {xv|v ∈ V (G)}.

We claim that G has a feedback vertex set of size at most k if and only if there exists
a subset A ⊆ X with |A| ≤ k and σ(A) = X. First suppose F is a feedback vertex set
of size at most k. Let A = {xv|v ∈ F}. We claim that σ(A) = X. We first claim that
XV ⊆ σ(A). Suppose V ′ = {v|xv /∈ σ(A)} is not empty. Since V ′ induces a forest in G,
there exists a vertex v ∈ V ′ which has at most one neighbor in V ′. Let u be a neighbor of
v such that all the neighbors of v are not in V ′. Then {xw|w ∈ N(v)\{u}} ⊆ σ(A). Then
this implies x1vu, x

2
vu ∈ σ(A) and the set {xv, x1vu, x2vu} ⊆ A, which implies that xv ∈ σ(A),

a contradiction. If XV ⊆ σ(A), then it follows that all the elements x1vu, x
2
vu must also be

in σ(A), and hence σ(A) = X.
Now let A ⊆ X be a subset such that σ(A) = X and |A| ≤ k. Choose such a set A

such that |A \XV | is minimum. Suppose x1vu ∈ A for some vertex v and neighbor u of v.
By the choice of A,A′ = σ(A \ {x1vu}) ⊂ X. Note that A′ cannot contain XV otherwise
A′ = X. Since σ(A′∪{x1vu}) = X, there must be a set B such that |B \ (A′∪{x1vu})| = 1.
Thus the set B must contain x1vu, some element x /∈ A′ ∪ {x1vu}, and all other elements
in B are in A′. If x = xw for some w ∈ V (G), let A1 = (A ∪ {xw}) \ {x1vu}. Then
σ(A1) = X and A1 contains fewer elements not in XV , contradicting the choice of A.
Therefore x = xipq for some vertex p and neighbor q of p, and i ∈ {1, 2}. But there is a set
that contains x1vu and xipq iff v = p, u = q and i = 2. The only such set is {xv, x1vu, x2vu}.
This implies that xv ∈ A′. Again since σ(A ∪ {x1vu} ∪ {x2vu}) = X, there is a set B1 such
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that |B1 \ (A′ ∪ {x1vu} ∪ {x2vu})| = 1, B1 contains exactly one of x1vu or x2vu and other
elements in B1 are in A′. Then the element in B1 \ (A′ ∪ {x1vu} ∪ {x2vu}) must be xw for
some vertex w. Now replace x1vu in A by xw, to get a set containing fewer elements not
in XV , but whose closure is X, contradicting the choice of A.

So, we may assume A ⊆ XV . We claim that F = {v|xv ∈ A} is a feedback vertex set
in G. Let V ′ = V (G) \ F and suppose there is a cycle C in the subgraph induced by V ′.
We show that the closure of A is a proper subset of X, a contradiction.

Consider the set B′ = {xv|v ∈ V (C)}∪{x1vu, x2vu|(N(v)\{u})∩V (C) 6= ∅, uv ∈ E(G)}
and let B = X \ B′. Then B contains A and is a proper subset of X. We show that
σ(B) = B, giving a contradiction. To do that, it is sufficient to show that any set that
contains an element of B′ contains at least two such elements.

Suppose some set contains an element xv ∈ B′. The sets containing xv are of the form
{xv, x1vu, x2vu} for some neighbor u of v, or {xp|p ∈ N(u)\{w}}∪{xiuw} for some neighbor
u of v, a neighbor w of u 6= v, and i ∈ {1, 2}. In the first case, both x1vu, x

2
vu ∈ B′ as v has

a neighbor other than u in the cycle. Similarly, xiuw ∈ B′ since u has a neighbor v other
than w in the cycle. Suppose B′ contains an element xivu. Then v has a neighbor w other
than u in C. The sets containing xivu are {xv, x1vu, x2vu} and {xp|p ∈ N(v) \ {u}} ∪ {xivu}.
In the first case, both x1vu, x

2
vu must be in B′ and in the second case xw is in B′ since

w ∈ V (C) and w 6= u.
Therefore B satisfies the required properties and σ(B) = B. This contradicts σ(A) =

X. Thus F must be a feedback vertex set of size at most k.

Theorem 4.4. DOMINATOR SEQUENCE PROBLEM(DSP) is NP-Complete.

Proof. The reduction is from CLOSURE PROBLEM. Consider an instance of the clo-
sure problem X, C = {C1, C2, . . . , Cl} ∪ {X} and |X| − k. Let G be the bipartite graph
with bipartion X, Y, where |Y | = l and {N(yi) : yi ∈ Y } = Ci, 1 ≤ i ≤ l. Let
A′ = (xi1 , xi2 , . . . , xik) be a sequence of vertices in X, and A = X \ A′ such that the
closure σ(A) = X. We claim that N(xij) \ (N(xi1) ∪N(xi2) ∪ · · · ∪N(xij−1

)) 6= ∅ for all
2 ≤ j ≤ k. We note that |Ci \X| = 0, 1 ≤ i ≤ l, since the closure of A is the entire set
X. Suppose on the contrary, let xij ∈ A′ be a vertex that does not satisfy the property.
Then, deleting xij from X, we note that for any Ci, if xij /∈ Ci then |Ci \ X| = 0, con-
tradicting the minimality of X and if xij ∈ Ci, then removing xij from X, also removes
xij from Ci, and hence |Ci \ X| = 0, again contradicting the minimality of X. Hence
{xi1 , xi2 , . . . , xik} is a dominator sequence of G. Conversely, suppose G has a dominator
sequence (xi1 , xi2 , . . . , xik). Then N(xij) \ (N(xi1) ∪ N(xi2) ∪ · · · ∪ N(xij−1

)) 6= ∅ for all
2 ≤ j ≤ k. Let A′ = {xij |1 ≤ j ≤ k} and let A = X \A′. Then we claim that the closure
of A is X. Suppose not and let j be the largest number ≤ k such that xij /∈ σ(A). If
j = 1, then |X \ σ(A)| = 1 and since X ∈ C, this contradicts the definition of σ(A).
Suppose j ≥ 2 and let yij be an element in N(xij)\N(xi1)∪N(xi2)∪· · ·∪N(xij−1

). Then
N(yij) is a set in C such that |N(yij) \ σ(A)| = 1, a contradiction. Thus σ(A) = X.

5 Dominator Sequences in Trees

In this section we present a linear time algorithm to obtain a maximum dominator se-
quence for trees. It follows from Theorem 3.17 that for any tree T, we have l(T ) = β1(T ).
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Theorem 5.1. For any tree T, a dominator sequence D of T with |D| = l(T ) = β1(T )
can be determined in linear time.

Proof. Let X, Y be the bipartition of T. A maximum matching M of T with |M | = β1(T )
can be obtained in linear time(See problem 7.95 in[10]). Let T be a tree and let M be a
maximum matching in T. Let T ′ be a BFS tree of T rooted at a vertex r. For each vertex
v ∈ V (T ), let h(v) denote the level of v in T ′. Let V (M) be the vertex induced subgraph
of M in T ′. Clearly V (M) is a forest and ∀v ∈ V (M), v is a matched vertex. Let T0 =
V (M), D = ∅ and hl be the highest level such that the vertices at level hl belong to the
X partition of T ′. For each pendant vertex v at level hl, let D = D∪{v}, T ′ = T ′−{uv},
where u is a matched vertex with v at level hl − 1. Since the set of all vertices at level
hl are independent and V (M) is a vertex induced matching, each vertex v at level hl
dominates a new vertex at level hl − 1. Again, for each pendant vertex v at level hl − 2,
let D = D∪{v}, T ′ = T ′−{uv}. We repeat this process for all alternate levels until either
level 1 or level 2 is reached and repeat the same process starting from level 1 or level 2
until level hl is reached or until there are no more matching edges remaining. Clearly, D
is a dominator sequence and since we process all edges of the tree atmost once, it is easy
to see that D can be obtained in O(n) time.

The following algorithm gives a maximum dominator sequence for any given tree, T
in linear time.
Algorithm : Tree Dominator Sequence(TDS)
Input: A tree T (X, Y ) with |V (T )| = n.
Output: A maximum dominator sequence L(T ) = (x1, x2, . . . , xk).

1. Initialize L(T ) = φ, X ′ to be an empty stack. Select a vertex r as root vertex.
Assign levels to all the vertices in T with the level of r as zero. Let l be the highest
level.

2. Compute a maximum matching M = {x1y1, x2y2, . . . , xkyk} of T, where k = β1(T ).

3. For level j = l, l − 1, l − 2, . . . , , 0 do

3.1. For each xi at level j

3.1.1. If deg(xi) = 1, then append xi to L(T ). Assign UNIQUE(xi) = yi where
yi ∈ N(xi) and remove xi and yi.

3.1.2. If there exists a pendant vertex v ∈ N(xi), then add xi to X ′, assign
UNIQUE(xi) = v and remove xi and v.

4. For each element xi on top of X ′ append xi to L(T ).

5. Output L(T ).

Complexity: Assigning levels to each vertex can be done through a breadth first search
of the tree. An O(n) linear time algorithm for computing a maximum matching in trees
is known(See problem 7.95 in [10]). In step 3, each vertex of the partite set X in the
matching is processed and hence the complexity is the sum of the degrees, which in the
case of trees is O(n). Hence, the complexity of finding a maximum dominator sequence
in trees is O(n). We need the following properties that arise from the breadth first search
T used to assign levels to the vertices.
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P1: A vertex v 6= r at level j is adjacent to exactly one vertex at level j − 1.

P2: No vertex v at level j is adjacent to any vertex at any level higher than j + 1.

P3: All vertices on a given level form an independent set.

In the following, we shall refer to vertices identified in step 3.1.1 as type-1 vertices
and vertices identified in step 3.1.2 as type-2 vertices.

Theorem 5.2. The sequence L(T ) given by the algorithm TDS is a maximum dominator
sequence of T.

Proof. We prove by showing that UNIQUE(xi) is the vertex adjacent to xi and not
adjacent to any xj that occurs earlier to xi in the sequence L(T ). It follows from P1 that
if xi and xj are of type-1 and are at the same level, then UNIQUE(xi) is not adjacent to
xj and UNIQUE(xj) is not adjacent to xi. Now, suppose xi and xj that are of type-2. If
xi and xj are at the same level then, UNIQUE(xi) is not adjacent to xj and UNIQUE(xj)
is not adjacent to xi. If xj and xi are at different levels and the level of xj is lower than
the level of xi, then step 4 of the algorithm TDS ensures that xj occurs before xi in L(T ).
In this case xj is at least two levels lower than UNIQUE(xi), and hence by P2, xj is not
adjacent to UNIQUE(xi).

If xi is of type-1 and xj is of type-2, then xi occurs before xj in L(T ) and it follows
from P1, P2 and P3 that UNIQUE(xj) is not adjacent to xi.

Since all xi’s are in L(T ) and |L(T )| = |M | = β1(T ), L(T ) is a maximum dominator
sequence.

6 Conclusion

Motivated by an application in the design of survivable logical topology mapping (SLTM)
in an IP-over-WDM optical network, we defined the concept of dominator sequence in a
bipartite graph and initiated a study of the corresponding parameter.

The concept of dominator sequence can be extended to general graphs. For instance,
we can define a set X = {x1, . . . , xk} to be a dominator sequence of a graph G = (V,E) if
X is an independent set and each xi ∈ X is adjacent to at least one vertex not dominated
by x1, x2, . . . , xi−1.

Another definition of dominator sequence for general graphs is to drop the requirement
that the set X be independent. In fact, such a sequence called, incident cover sequence,
was defined in [13] and [2] and was used in [15] to study the problem of augmenting
the logical graph with additional edges to guarantee that the augmented graph admits a
survivable mapping.

We believe that further study of the dominator sequence concept for general and
bipartite graphs will have significant theoretical as well as practical implications for the
survivable logical topology mapping problem.
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[3] B. Brešar, S. Klavzar and D.F. Rall, Domination game and the imagination strategy,
SIAM J. Discrete Math., 24 (2000), 979–991.

[4] G. Chartrand and L. Lesniak, Graphs and Digraphs, (5th ed.) Belmont, CA, USA:
Wadsworth Publ. Co., 1986.

[5] I. Chlamtac, A. Ganz and G. Karmi, Lightpath Communications: An Approach
to High Bandwidth Optical WDM, IEEE Transactions on Communications, 40(7)
(1992), 1171–1182.

[6] S. Hedetniemi and R. Laskar, A bipartite theory of graphs: I, Congr. Numer., 55
(1986), 5–14.

[7] S. Hedetniemi and R. Laskar, A bipartite theory of graphs: II, Congr. Numer., 64
(1988), 137–146.

[8] R.M. Karp, Reducibility among combinatorial problems, in R.E. Miller and J.W.
Thatcher (eds), Complexity of Computer Computations, Plenum Press, New York,
(1972), 85–103.

[9] M. Kurant and P. Thiran, Survivable mapping algorithm by ring trimming(SMART)
for large IP-over-WDM networks, BroadNets, 2004.

[10] U. Manber, Introduction to algorithms: a creative approach, Addison-Wesley, 1989.

[11] M.N.S.Swamy and K. Thulasiraman, Graphs, Networks and Algorithms, Wiley In-
terscience, 1981.

[12] E. Modiano and A. Narula-Tam, Survivable Lightpath Routing: A New Approach
to the Design of WDM-Based Networks, IEEE Journal on Selected Areas in Com-
munications, 20 (2002), 800–809.

[13] K. Thulasiraman, M. Javed and G. Xue, Circuits/Cutsets Duality and a Unified Algo-
rithmic Framework for Survivable Logical Topology Design in IP-over-WDM Optical
Networks, INFOCOM 2009, (2009), 1026–1034.

[14] K. Thulasiraman, M. Javed and G. Xue, Primal meets Dual: A generalized the-
ory of logical topology survivability in IP-over-WDM optical networks, Proceedings
of the 2nd international conference on COMmunication systems and NETworks,
COMSNETS’10, IEEE Press, Piscataway, NJ, USA, (2010), 128–137.

[15] K. Thulasiraman, T. Lin, M. Javed and G. Xue, Logical topology augmentation for
guaranteed survivability under multiple failures in IP-over-WDM optical networks,
Optical Switching and Networking, (2010), 206–214.

14



[16] K. Thulasiraman, T. Lin and Z. Zhou, Robustness of Logical Topology Mapping
Algorithms for Survivability against Multiple Failures in an IP-Over-WDM Optical
Network, Proceedings of the international conference on COMmunication systems
and NETworks, COMSNETS’12, IEEE Press, Piscataway, NJ, USA, (2012), 1–9.

[17] D.B. West, Introduction to Graph Theory, Prentice Hall, 1996.

15


