
Theoretical Computer Science 674 (2017) 43–52
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Conditional diagnosability of a class of matching composition 

networks under the comparison model ✩,✩✩

Min Xu a,∗, Krishnaiyan Thulasiraman b, Qiang Zhu c

a School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, 
Beijing, 100875, China
b School of Computer Science, University of Oklahoma, Norman, OK, 73019, USA
c Department of Mathematics, XiDian University, Xi’an, ShaanXi, 710071, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 July 2016
Received in revised form 19 December 2016
Accepted 9 February 2017
Available online 22 February 2017
Communicated by S.-Y. Hsieh

Keywords:
Comparison model
Diagnosability
Conditional faulty set
Conditional diagnosability

Fault diagnosis of interconnection networks is an important consideration in the design 
and maintenance of multiprocessor systems. Herein, we study fault diagnosis, which is the 
identification of faulty processors in high speed parallel processing systems. Conditional 
diagnosability, proposed by Lai et al. [22], assumes that no fault set can contain all the 
neighbors of any processor in a system; this is a well-accepted and general measure 
of the diagnosis ability of an interconnection network of multiprocessor systems. The 
diagnosability and conditional diagnosability of many interconnection networks have 
been studied using various diagnosis models. In this paper we study the conditional 
diagnosability of matching composition networks under the comparison model (MM* 
model). In [31] Yang determined a set of sufficient conditions for a network G to be 
conditionally (3n − 3 − C(G))-diagnosable. Our main contribution in this paper is to 
extend Yang’s result by determining a larger class of networks that are conditionally 
(3n − 3 − C(G))-diagnosable. Yang’s result [31] and earlier results for the hypercube, the 
crossed cube, the twisted cube and the Möbius cube [18,32,33] all become corollaries of 
our main result. Thus this paper extends the state of the art in the area of conditional 
diagnosability of multiprocessor systems.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Continuous advances in semiconductor technology have made it possible to develop very large digital systems compris-
ing of hundreds of thousands of components or units. Yet, it is impossible to build such systems without defects. As the size 
of a system increases, it is more likely to develop faults both in the manufacturing process as well as during the operation 
period. Testing of such systems becomes extremely difficult owing to their large sizes. First, the complexity of test gener-
ation for such large systems is overwhelming. Second, the application of test data, as well as the observation and analysis 
of test responses is extremely difficult and costly, even if test data for the same can be generated. This problem may be 
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further aggravated by the likely geographical distribution of units. Testing of such systems based on the traditional stimuli-
supplying and responses-observing philosophy has become virtually impossible. In 1967, Preparata, Metze, and Chien [26]
proposed a model and a framework, called System-Level Diagnosis, for addressing this problem. In the more than four 
decades following this pioneering work, several issues arising from the application of this framework have been investi-
gated and resolved. Many of these results have profound theoretical and practical implications. Most of the recent research 
efforts in system-level diagnosis have focused on enhancing the applicability of system-level diagnosis based approaches to 
practical scenarios. In particular, the focus has been on:

1. Probabilistic diagnosis and application to VLSI testing.
2. On-line distributed diagnosis and application to the diagnosis of a networked cluster of workstations.
Examples of important advances in system-level diagnosis and applications may be found in [4–11,14,16,17,19,20,26,29].
The focus of this paper is on system diagnosis, which involves locating faulty processors. One of the most popular models 

in dealing with this problem is the PMC model, which was proposed by Preparata, Metze, and Chien [26] in 1967. In the 
PMC model, a test involves a pair of adjacent processors: the testing and the tested processor. It is also assumed that a 
test result is reliable if and only if the testing processor is not faulty. Since the introduction of the PMC model, many of its 
variants have been proposed. Among them, two are particularly relevant in our context: the symmetric comparison model 
of Chwa and Hakimi [5] and the asymmetric comparison model of Malek [25]. The two models assume the existence of a 
central observer that collects information about comparisons and then performs a diagnosis of the system. The difference 
between the two models lies in the different assumptions about the comparison results for two faulty processors. In the 
symmetric model, it is assumed that the outputs of two compared processors may be the same if they are both faulty while 
in the asymmetric model it is assumed that the outputs of two such processors are always different. Since for a complex 
computation task, identical errors for two faulty processors are rare, the asymmetric comparison model is more realistic.

Another model, proposed by Maeng and Malek [24], the MM model, assumes that comparisons are executed by the 
processors themselves (processors adjacent to both of the two compared ones) and only comparison results are sent to the 
central observer, which then completes the diagnosis of the system. Maeng and Malek [24] also presented a special case of 
the MM model, called the MM* model, in which a processor executes comparisons for any pair of its neighboring processors. 
MM* model is the diagnosis model studied in this paper. Let us describe this model in detail. A graph G = (V (G), E(G)) is 
used to represent a system where each vertex represents a processor and each edge represents a link. Assign a task to each 
vertex. The vertex w is a comparator of a pair of processors {u, v} if (u, w) ∈ E(G) and (v, w) ∈ E(G). The outcome of this 
comparison is denoted by σ((u, v)w ) where

σ((u, v)w) =
⎧⎨
⎩

0, if {u, v, w} ∩ F = ∅
1, if w /∈ F and {u, v} ∩ F �= ∅
0 or 1, if w ∈ F

where F is the set of faulty processors.
The set of all comparison outcomes is called a syndrome σ of the system. For a given syndrome σ , a subset of vertices 

F ⊆ V (G) is said to be consistent with σ if syndrome σ can be produced when the faulty set of G is F . The comparison 
result is 0 or 1 when the comparison is performed by a faulty comparator. Therefore, on one hand, a faulty set F may 
produce a number of different syndromes. On the other hand, different faulty sets may produce the same syndrome. Define 
σF = {σ | F is consistent with σ }. Two distinct sets F1, F2 belonging to V (G) are said to be indistinguishable if σF1 ∩σF2 �= ∅; 
otherwise, F1, F2 are said to be distinguishable. A system is said to be t-diagnosable if, given a syndrome σ , there is a unique 
set of faulty vertices that is consistent with σ while the number of faulty vertices does not exceed t . The t-diagnosability 
problem is to determine the largest value of t for which a system G is t-diagnosable. Considering classical measures of 
diagnosability for multiprocessor systems under the comparison model, if all neighbors of a processor v are simultaneously 
faulty, it is impossible to determine whether the processor v is fault-free or faulty. Therefore, the diagnosability of a system 
is limited by its minimum vertex degree. For practical systems, the probability that all neighbors of a vertex are simulta-
neously faulty is very low. Owing to this reason, Lai et al. [22] proposed a new measure of diagnosability as described in 
the following. A fault set F ⊂ V (G) is called a conditional faulty set if NG(v) � F for any vertex v ∈ V (G), where NG(v)

is the set of neighbors of v in G . Two distinct conditional faulty sets F1, F2 belonging to V (G) are said to be an indis-
tinguishable conditional pair if σF1 ∩ σF2 �= ∅; otherwise, F1, F2 are said to be a distinguishable conditional pair. A system 
G = (V (G), E(G)) is conditionally t-diagnosable if any pair of conditional faulty sets F1, F2 with F1 �= F2, |F1| < t and |F2| < t
are distinguishable. The conditional diagnosability of a system G , denoted as tc(G), is defined to be the maximum value of t
such that G is conditionally t-diagnosable.

A multiprocessor system can be modeled by an undirected simple graph with nodes and links modeled as vertices and 
edges, respectively. The graph used to model the multiprocessor system is called the interconnection network of the mul-
tiprocessor system. Choosing an appropriate interconnection network is important for a system’s design and maintenance. 
Therefore, the analysis of the properties of interconnection networks is an important research topic in high-performance 
computing.

The hypercube [27] is one of the most popular interconnection networks, and many of its properties have been studied 
in the literature. Crossed cubes [12], Möbius cube [23], and twisted cubes [15] are several variations of hypercubes. These 
variants of hypercubes preserve many of the good properties of hypercubes such as high symmetry. At the same time, 
their diameter is about a half of a hypercube of the same size. Thus, these interconnection networks are regarded as good 
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Fig. 1. Illustration for Theorem 1.

Fig. 2. Illustration for Theorem 2.

alternatives to hypercubes and many of their properties have been explored [1–3,13,21]. The matching composition network 
(MCN) defined next is a class of interconnection networks that includes a hypercube and its above mentioned variants. Let 
G1 and G2 be two graphs with the same number of vertices. Let M be an arbitrary perfect matching between the vertices of 
G1 and G2; i.e., M is a set of edges with one endpoint in G1 and the other endpoint in G2 and |M| = |V (G1)| = |V (G2)|. An 
MCN is denoted by G(G1, G2; M) with the vertex set V (G(G1, G2; M)) = V (G1) ∪ V (G2) and the edge set E(G(G1, G2; M)) =
E(G1) ∪ E(G2) ∪ M . Exploring the properties of MCN will be of help in discovering many of the properties of the hypercube 
and its variants.

In [31], Yang studied the conditional diagnosability of a class of MCN under the MM* model. In this paper, we extend 
the result to a larger class of networks.

The rest of this paper is organized as follows. Section 2 introduces the definitions and known results about the com-
parison model and matching composition networks. Section 3 focuses on the conditional diagnosability of some matching 
composition networks. Finally, the conclusion of the paper is presented in Section 4.

2. Preliminaries

Sengupta and Dahbura [28] give a necessary and sufficient condition for a pair of sets being distinguishable under the 
comparison model.

Theorem 1 ([28]). Let G = (V (G), E(G)) be a graph. For any two vertex subsets F1, F2 where F1 , F2 ⊂ V (G) and F1 �= F2 , F1 and F2
are distinguishable under the comparison model if and only if any one of the following conditions is satisfied (see Fig. 1):

(1) There exists {i, k} ⊆ V (G) − F1 − F2 and j ∈ (F1 − F2) ∪ (F2 − F1) such that (i, k) ∈ E(G) and ( j, k) ∈ E(G);
(2) There exists {i, j} ∈ F1 − F2 and k ∈ V (G) − F1 − F2 such that (i, k) ∈ E(G) and ( j, k) ∈ E(G);
(3) There exists {i, j} ∈ F2 − F1 and k ∈ V (G) − F1 − F2 such that (i, k) ∈ E(G) and ( j, k) ∈ E(G).

For conditional faulty sets, Hsu et al. [18] have given three necessary conditions for two sets to be conditionally dis-
tinguishable. Let (F1, F2) be an indistinguishable conditional pair of G where G = (V (G), E(G)) is a connected graph. Let 
X = V (G) − (F1 ∪ F2) and F1
F2 = (F1 − F2) ∪ (F2 − F1). If u ∈ X and NG (u) ∩ X �= ∅, then NG(u) ∩ (F1
F2) = ∅ by condition 
(1) in Theorem 1. If u ∈ X and NG (u) ∩ X = ∅, then |NG(u) ∩ (F1 − F2)| = 1 and |NG (u) ∩ (F2 − F1)| = 1 by condition (2) in 
Theorem 1. If v ∈ F1
F2 and NG (v) ∩ X = ∅, then |NG(v) ∩ (F1 − F2)| ≥ 1 and |NG (v) ∩ (F2 − F1)| ≥ 1 since F1 and F2 are 
conditional faulty sets. Hsu et al. [18] formalized this fact as below.

Theorem 2 ([18]). Let G = (V (G), E(G)) be a connected graph and let F1 , F2 ⊂ V (G) be an indistinguishable conditional pair. Let 
X = V (G) − (F1 ∪ F2). The following three conditions hold (see Fig. 2):

(1) |NG(u) ∩ (F1�F2)| = 0 for u ∈ X and NG(u) ∩ X �= ∅;
(2) |NG(u) ∩ (F1 − F2)| = 1 and |NG(u) ∩ (F2 − F1)| = 1 for u ∈ X and NG(u) ∩ X = ∅;
(3) |NG(v) ∩ (F1 − F2)| ≥ 1 and |NG(v) ∩ (F2 − F1)| ≥ 1 for v ∈ F1�F2 and NG(v) ∩ X = ∅.
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Fig. 3. Illustration for tc(Q n) ≤ 3n − 3 − C(G).

Next, we shall introduce some notations and known results about matching composition networks that will be used in 
the proof of our main result.

Let G = (V (G), E(G)) be a graph. For a vertex set U ⊆ V (G), let NG(U ) = ⋃
u∈U NG(u) \ U and NG [U ] = ⋃

u∈U NG(u) 
⋃

U . 
For brevity, NG({u, v}) and NG [{u, v}] are represented as NG(u, v) and NG [u, v], respectively. If |NG(u)| = k for every ver-
tex u in G , then G is k-regular. If NG(u) ∩ NG(v) = ∅ for any edge (u, v) in G , then G is triangle-free. For u, v ∈ V (G), 
let C(G; u, v) = |{w : w ∈ NG(u) and w ∈ NG(v)}|, and C(G) = max{C(G; u, v) : u, v ∈ V (G)}. The connectivity, denoted by 
κ(G), is the minimum number of vertices whose removal results in a disconnected or a trivial graph. The conditional con-
nectivity, denoted by κc(G), is the minimum cardinality of a conditional vertex cut which means κc(G) = min{|F | | G −
F is disconnected and NG(u) � F for every vertex u of G}. We use κ1(G) to denote min{κ(G − NG [u]) | u ∈ V (G)}. In addi-
tion, we use κ2(G) to denote min{κ(G − NG [u, v] | u, v ∈ V (G), (u, v) ∈ E(G)}. A graph G is said to be t-good-connected if 
the following properties hold:

1. G is t-connected with t ≥ 1;
2. κc(G) ≥ 2t − 2 ≥ 1;
3. κ1(G) ≥ t − C(G) ≥ 1; and
4. κ2(G) ≥ t − 1 − C(G) ≥ 1.
By the definition of C(G), we obtain the following lemma directly.

Lemma 3. Suppose G = (G1, G2; M) is a matching composition network such that C(G1) ≥ 2 and C(G2) ≥ 2. Then C(G) =
max{C(G1), C(G2)} ≥ 2.

The following lemma is given in [30], which shows the relationship between two graphs and their matching composition 
network.

Lemma 4 ([30]). Suppose G = (G1, G2; M) is a matching composition network where G1 and G2 are (n − 1)-regular, (n − 1)-con-
nected, and triangle-free, then G is an n-regular, n-connected, and triangle-free network.

Yang obtains the following result for the matching composition network.

Theorem 5 ([31]). Suppose that G = G(G1, G2; M) is a matching composition network, where G1 and G2 are (n − 1)-regular, 
(n − 1)-good-connected, and triangle-free graphs with n ≥ 5, |V (G1)| = |V (G2)| = N ≥ 3n, and C(G1) = C(G2) ≥ 2. Then, G is 
conditionally (3n − 3 − C(G))-diagnosable.

Obviously, a graph that is t-good connected must be t-connected. In this paper, we extend the result to more networks 
by weakening the conditions from (n − 1)-good-connected to (n − 1)-connected.

Theorem 6. Suppose G = (G1, G2; M) is a matching composition network where G1 and G2 are (n − 1)-regular, (n − 1)-connected, 
and triangle-free networks with order no less than 3n + 2 − C(G) for C(G) ≥ 2. Then, G is conditionally (3n − 3 − C(G))-diagnosable.

3. Conditional diagnosability of a class of matching composition networks under the comparison model

In the following, we show our main result. Let G = G(G1, G2; M) be a matching composition network, where G1 and 
G2 are (n − 1)-regular, (n − 1)-connected, and triangle-free graphs with n ≥ 5 and C(G1) ≥ 2, C(G2) ≥ 2. Then C(G) =
max{C(G1), C(G2)} ≥ 2. First, we provide an example to show that the conditional diagnosability of a graph G is less than 
3n − 3 − C(G) under the comparison model. Since G is triangle free and C(G) ≥ 2, we can find the shortest cycle, C =
〈v1, v2, v3, v4, v1〉 of length 4 in G such that C(G; v1, v3) = C(G), which is shown in Fig. 3. Let F1 = NG({v1, v3, v4}) ∪ {v1}
and F2 = NG({v1, v3, v4}) ∪ {v3}. It is easy to prove that |F1| = |F2| = 3n − 2 − C(G) and |F1 ∩ F2| = 3n − 3 − C(G). For any 
vertex in V (G), there are at most n −1 neighbors in F1 or in F2 for C(G) ≥ 2 and n ≥ 5. Then, F1 and F2 are two conditional 
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faulty sets. By Theorem 1, F1 and F2 are indistinguishable. Therefore, G is not conditionally (3n − 2 − C(G))-diagnosable 
and tc(Q n) ≤ 3n − 3 − C(G).

Owning to the above discussion, we obtain Lemma 7 as follows.

Lemma 7. Suppose G1 and G2 are (n −1)-regular, (n −1)-connected, and triangle-free networks with order no less than 3n +2 −C(G)

for n ≥ 5 and C(G1) ≥ 2, C(G2) ≥ 2. Let G = (G1, G2; M) be a matching composition network. Then, tc(G) ≤ 3n − 3 − C(G).

Next, we prove that |F1| ≥ 3n − 2 − C(G) or |F2| ≥ 3n − 2 − C(G) if (F1, F2) is an indistinguishable conditional pair in a 
special class of MCN.

Lemma 8. Suppose G1 and G2 are (n −1)-regular, (n −1)-connected, and triangle-free networks with order no less than 3n +2 −C(G)

for n ≥ 5 and C(G1) ≥ 2, C(G2) ≥ 2. Let G = (G1, G2; M) be a matching composition network. If F1 , F2 ⊂ V (G), F1 �= F2 , is an 
indistinguishable conditional pair of G under the comparison model, then either |F1| ≥ 3n − 2 − C(G) or |F2| ≥ 3n − 2 − C(G).

Proof. By Lemma 3 and Lemma 4, we know that G is an n-regular, n-connected, and triangle-free network with C(G) =
max{C(G1), C(G2)} ≥ 2.

Let S = F1 ∩ F2. Further, let C be a component in G − S such that V (C) ∩ (F1
F2) �= ∅. Let D be the induced graph by 
the vertex set V (C) \ (F1
F2). Then E(D) = ∅ by condition (1) of Theorem 2. To prove the result, we only need to show 

that |S| + �|V (C)| − |V (D)|
2

� ≥ 3n − 2 − C(G). Let S1 = V (G1) ∩ S and S2 = V (G2) ∩ S .

Next, we prove the result for the following two cases:
Case 1 Either V (C) ⊆ V (G1 − S1) or V (C) ⊆ V (G2 − S2).
Assume without loss of generality that V (C) ⊆ V (G1 − S1). As V (C) ⊆ V (G1 − S1), we have NG2 (C) ⊆ S2 and |V (C)| =

|NG2 (V (C))|. Thus, |S2| ≥ |V (C)|. If V (D) = ∅, then the degree of every vertex in C is greater than 1 by condition 3 of 
Theorem 2, which implies that there exists a path with length 2 in C . If V (D) �= ∅, then the vertex in D has a neighbor in 
F1 − F2 and a neighbor in F2 − F1, which implies there exists a path with length 2 in C . Let P3 = 〈x1, x2, x3〉 be a path with 
length 2 in C such that {(x1, x2), (x2, x3)} ⊆ E(C). Since G1 is triangle-free, x1 has a neighbor set X1 with order n − 2 in 
V (G1)\V (P3); x2 has a neighbor set X2 with order n − 3 in V (G1)\{V (P3) ∪ X1}; and x3 has a neighbor set X3 with order 
at least n − 1 − C(G) in V (G1)\{V (P3) ∪ X1 ∪ X2}. We have |NG1({x1, x2, x3})| = |X1| + |X2| + |X3| ≥ 3n − 6 − C(G). Since 
V (P3) ⊆ V (C) ⊆ V (G1)\S1 and C is a component of G − S , we have NG1 ({x1, x2, x3}) ⊆ S1 ∪ {V (C)\V (P3)}, which implies 
|S1 ∪ {V (C)\V (P3)}| ≥ |NG1 (P3)|. Thus, we have

|S| + � |V (C)| − |V (D)|
2

� = |S1| + |S2| + � |V (C)| − |V (D)|
2

�

≥ |S1| + |V (C)| + � |V (C)| − |V (D)|
2

�

= |S1| + |V (C)\V (P3)| + |V (P3)| + � |V (C)| − |V (D)|
2

�

≥ |NG1(P3)| + |V (P3)| + � |V (C)| − |V (D)|
2

�
≥ (3n − 6 − C(G)) + 3 + 1

≥ 3n − 2 − C(G).

Case 2 V (C) ∩ V (G1 − S1) �= ∅ and V (C) ∩ V (G2 − S2) �= ∅.
In this case, let C1 be the subgraph induced by the vertex set V (C) ∩ V (G1)\S1 and C2 be the subgraph induced by the 

vertex set V (C) ∩ V (G2)\S2. We have NG2 (V (C1)) ⊆ S2 ∪ V (C2) and NG1 (V (C2)) ⊆ S1 ∪ V (C1). Then, |V (C1)| ≤ |S2| +|V (C2)|
and |V (C2)| ≤ |S1| + |V (C1)|.

If |S| ≥ 3n − 3 − C(G), then |S| + �|V (C)| − |V (D)|
2

� ≥ (3n − 3 − C(G)) + 1 = 3n − 2 − C(G), which proves the result.

We now suppose that |S| ≤ 3n − 4 − C(G) and need to further divide the proof into the following three subcases. We use 
E(D, S) to denote the edge set between D and S . Then, |E(D, S)| = |V (D)| × (n − 2) ≤ n|S| by condition 2 of Theorem 2, 
which implies that

|V (D)| ≤ |S| + �2 × |S|
n − 2

�

≤ |S| + �2 × (3n − 4 − C(G))

n − 2
�

≤ |S| + �6(n − 2) + 4 − 2C(G)

n − 2
�

= |S| + 6.
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Subcase 2.1 Both G1 − S1 and G2 − S2 are connected.
In this subcase, we have

|S| + � |V (C)| − |V (D)|
2

� ≥ |S| + � |V (C)| − |S| − 6

2
�

≥ � |V (C)| + |S| − 6

2
�

≥ �2 × (3n + 2 − C(G)) − 6

2
�

≥ 3n − 2 − C(G).

Subcase 2.2 One and only one of G1 − S1 and G2 − S2 is connected.
Assume without loss of generality that G1 − S1 is connected and G2 − S2 is disconnected. Then, |S1| +|V (C1)| = |V (G1)| ≥

3n + 2 − C(G), |S2| ≥ n − 1 and |S1| ≤ 2n − 5 − C(G) for |S| ≤ 3n − 4 − C(G).
If |V (C2)| + |S2| ≥ 3n − 1 − C(G), then

|S| + � |V (C)| − |V (D)|
2

� = (|S1| + |S2|) + �|V (C1)| + |V (C2)| − |V (D)|
2

�

≥ �2 × (|S1| + |S2|) + (|V (C1)| + |V (C2)|) − |V (D)|
2

�

≥ � (|S1| + |V (C1)|) + (|S2| + |V (C2)|) + (|S| − |V (D)|)
2

�

≥ � (3n + 2 − C(G)) + (3n − 1 − C(G)) + [|S| − (|S| + 6)]
2

�

≥ �6n − 5 − 2C(G)

2
�

= 3n − 2 − C(G).

Now, suppose that |V (C2)| +|S2| ≤ 3n −2 −C(G), which means that V (G2) \{V (C2) ∪ S2} �= ∅ for |V (G2)| ≥ 3n +2 −C(G). 
Since G2 is (n − 1)-connected, there exists at least n − 1 edges joining V (G2) \ {V (C2) ∪ S2} and S2. Then, |E(D, S)| =
|V (D)| × (n − 2) ≤ n|S| − (n − 1) by condition 2 of Theorem 2, which implies that

|V (D)| ≤ |S| + �2 × |S| − (n − 1)

n − 2
�

≤ |S| + �2 × (3n − 4 − C(G)) − (n − 1)

n − 2
�

≤ |S| + �5(n − 2) + 3 − 2C(G)

n − 2
�

= |S| + 4.

Since G1 − S1 is connected, NG1 (V (G2) \{V (C2) ∪ S2}) ⊆ S1. We get |V (G2) \{V (C2) ∪ S2}| = |NG1 (V (G2) \{V (C2) ∪ S2})| ≤
|S1|. Thus,

3n − 4 − C(G) ≥ |S|
= |S1| + |S2|
≥ (|V (G2)| − |S2| − |V (C2)|) + |S2|
= |V (G2)| − |V (C2)|
≥ 3n + 2 − C(G) − |V (C2)|,

which implies that |V (C2)| ≥ 6.
If there exists a path P3 with length two in C2, then |S2| + |V (C2)| ≥ |NG2 (P3)| + |V (P3)| ≥ 3n − 3 − C(G) by the same 

discussion as in case 1. Then,

|S| + � |V (C)| − |V (D)|
2

� = (|S1| + |S2|) + �|V (C1)| + |V (C2)| − |V (D)|
2

�

≥ �2 × (|S1| + |S2|) + (|V (C1)| + |V (C2)|) − |V (D)|
2

�

≥ � (|S1| + |V (C1)|) + (|S2| + |V (C2)|) + (|S| − |V (D)|)�

2
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≥ � (3n + 2 − C(G)) + (3n − 3 − C(G)) + [|S| − (|S| + 4)]
2

�

≥ �6n − 5 − 2C(G)

2
�

= 3n − 2 − C(G).

Otherwise, for an arbitrary vertex in V (C2), there is at most one neighbor in C2 and at least n − 2 neighbors in S2. If 
E(C2) = ∅, then choose {u, v} ⊆ V (C2) arbitrarily. The vertex u has a neighbor set Z1 in S2 with order n − 1 and v has a 
neighbor set Z2 in S2 − Z1 with order n − 1 − C(G). Then, |S2| ≥ |Z1| + |Z2| ≥ 2n − 2 − C(G). Otherwise, there exists an 
edge (u, v) ∈ E(G). Then, the vertex u has a neighbor set Z1 in S2 with order n − 2 and v has a neighbor set Z2 in S2 − Z2
with order n − 2. Then, |S2| ≥ |Z1| + |Z2| ≥ 2n − 4 ≥ 2n − 2 − C(G). For arbitrary vertex u ∈ V (C2) ∩ V (D), then NG1 (u) � S1
and NG1 (u) ⊆ V (C1) \ V (D) by condition 2 of Theorem 2. Thus,

|V (C)| − |V (D)| = |V (C1) \ V (D)| + |V (C2) \ V (D)|
≥ |V (C2) ∩ V (D)| + |V (C2) \ V (D)|
= |V (C2)|
≥ 6.

If |S| ≥ 3n − 5 − C(G), then

|S| + � |V (C)| − |V (D)|
2

� ≥ (3n − 5 − C(G)) + 3

= 3n − 2 − C(G).

If |S| ≤ 3n − 6 − C(G), then |S1| = |S| −|S2| ≤ (3n − 6 − C(G)) − (2n − 2 − C(G)) = n − 4. For each vertex in V (C1) ∩ V (D), 
there are at least n − 3 neighbors in S1 by condition 2 of Theorem 2. Therefore, we claim V (C1) ∩ V (D) = ∅.

|S| + � |V (C)| − |V (D)|
2

� = |S2| + � (|S1| + |V (C1)|) + |S1| + (|V (C2)| − |V (D)|)
2

�

≥ 2n − 2 − C(G) + �3n + 2 − C(G)

2
�

≥ 2n − 2 − C(G) + �2n + (n + 2 − C(G))

2
�

≥ 3n − 2 − C(G).

Subcase 2.3 Both G1 − S1 and G2 − S2 are disconnected.
In this subcase, we have n − 1 ≤ |S1| ≤ 2n − 3 − C(G) and n − 1 ≤ |S2| ≤ 2n − 3 − C(G). We discuss this subcase for the 

following cases.
Subcase 2.3.1 |V (D) ∩ V (C1)| ≥ 2 and |V (D) ∩ V (C2)| ≥ 2.
For two arbitrary vertices {u, v} ⊆ V (C1), we have |NG1{u, v}| ≥ 2n − 2 − C(G) > |S1|. Thus, there exists an edge e =

(u, v) in C1. For |NG1 ({u, v})| = 2(n − 2) and |S1| ≤ 2n − 3 − C(G), there exists a path P3 = 〈u, v, w〉 of length 2 in C1
with {(u, v), (v, w)} ⊆ E(G1) and (u, w) /∈ E(G2). By the similar discussion as case 1, |V (C1)| + |S1| ≥ 3n − 3 − C(G) and 
|V (C2)| + |S2| ≥ 3n − 3 − C(G).

Subcase 2.3.1A At most one vertex u in V (C1) ∩ V (D) has two neighbors in V (C1) \ V (D) or at most one vertex u in 
V (C2) ∩ V (D) has two neighbors in V (C2) \ V (D).

Without loss of generality, we assume at most one vertex u in V (C1) ∩ V (D) has two neighbors in V (C1) \ V (D). In 
this subcase, NG2 (v) ⊆ V (C2) \ V (D) for each vertex v in V (C1) ∩ V (D) \ {u}, which means that |V (C1) ∩ V (D)| − 1 ≤
|V (C2) \ V (D)|.

Then,

|S| + � |V (C)| − |V (D)|
2

�

= (|S1| + |S2|) + �|V (C1)\V (D)| + |V (C2)\V (D)|
2

�

≥ |S2| + � [|V (C1)\V (D)| + (|V (C1) ∩ V (D)| − 1) + |S1|] + |S1|
2

�

≥ (n − 1) + � (|V (C1)| + |S1| − 1) + (n − 1)

2
�

≥ (n − 1) + � (3n − 4 − C(G)) + (n − 1)

2
�

≥ 3n − 2 − C(G).



50 M. Xu et al. / Theoretical Computer Science 674 (2017) 43–52
Subcase 2.3.1B There exists at least two vertices in V (C1) ∩ V (D) that have two neighbors in V (C1) \ V (D) and there 
exists at least two vertices in V (C2) ∩ V (D) that have two neighbors in V (C2) \ V (D).

In this subcase, we have |V (C1) \ V (D)| ≥ 2 and |V (C2) \ V (D)| ≥ 2. Choose u and v in V (C1) ∩ V (D) such that |NC1 (u)| =
|NC1 (v)| = 2. Then, the vertex u has a neighbor set Z1 in S1 with order n − 3 and v has a neighbor set Z2 in S1 − Z1 with 
order n − 1 − C(G). Then, |S1| ≥ |Z1| + |Z2| ≥ 2n − 4 − C(G). Along the same lines, |S2| ≥ 2n − 4 − C(G).

If C(G) ≥ n − 2, then

|S| + � |V (C)| − |V (D)|
2

�
≥ (n − 1) + (n − 1) + 2

≥ 3n − 2 − C(G).

If C(G) ≤ n − 4, then,

|S| + � |V (C)| − |V (D)|
2

�

= (|S1| + |S2|) + |V (C1)\V (D)| + |V (C2)\V (D)|
2

�
≥ (2n − 4 − C(G)) + (2n − 4 − C(G)) + 2

≥ (3n − 2 − C(G)) + (n − 4 − C(G))

≥ 3n − 2 − C(G).

If C(G) = n − 3 and |V (C1) \ V (D)| + |V (C2) \ V (D)| ≥ 5,

|S| + � |V (C)| − |V (D)|
2

�
≥ (n − 1) + (n − 1) + 3

= 3n − 2 − C(G).

If C(G) = n − 3 and |S1| + |S2| ≥ 2n − 1, then

|S| + � |V (C)| − |V (D)|
2

�
≥ (2n − 1) + 2

= 3n − 2 − C(G).

Otherwise, C(G) = n − 3, |V (C1) \ V (D)| = |V (C2) \ V (D)| = 2 and |S1| = |S2| = n − 1. Then |V (C1) ∩ V (D)| ≥ n − 1 ≥ 4
for |V (C1)| + |S1| ≥ 3n − 3 − C(G). Each vertex in V (C1) ∩ V (D) has n − 1 neighbors in S1 ∪ V (C1) \ V (D). Then, there 
exists two vertices u and v in V (C1) ∩ V (D) such that C(G, u, v) = |NG1 (u) ∩ NG1 (v)| ≥ n − 2 for |S1 ∪ V (C1) \ V (D)| =
(n − 1) + 2 = n + 1, a contradiction with C(G) = n − 3.

Subcase 2.3.2 |V (C1) ∩ V (D)| ≤ 1 or |V (C2) ∩ V (D)| ≤ 1. Assume without loss of generality that |V (C1) ∩ V (D)| ≤ 1.
If |V (C1)| = 1, then |V (C2)| ≥ 2 and V (C1) ∩ D = ∅ by Theorem 2. We obtain |C2| + |S2| ≥ 3n − 3 − C(G) by the same 

discussion as in subcase 2.3.1. Then, we have

|S| + � |V (C)| − |V (D)|
2

�

= |S1| + |S2| + � |V (C1)| + |V (C2)| − |V (D)|
2

�
≥ (|V (C2)| − |V (C1)|) + |S2| + 2

= (|S2| + |V (C2)|) + 1

≥ 3n − 2 − C(G).

The second inequality holds for NG1 (C2) ⊆ S1 ∪ V (C1).
If |C1| ≥ 2, then |C1| + |S1| ≥ 3n − 3 − C(G) by the same discussion as above.
Then, we have

|S| + � |V (C)| − |V (D)|
2

� = (|S1| + |S2|) + �|V (C1)| + |V (C2)| − |V (D)|
2

�

≥ |S2| + �2|S1| + |V (C)| − |V (D)| �

2
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≥ |S2| + � (|S1| + |V (C1)| − |V (D1)|) + |S1| + (|V (C2)| − |V (D2)|
2

�

≥ (n − 1) + � (3n − 3 − C(G) − 1) + (n − 1)

2
�

≥ (n − 1) + �4n − 5 − C(G)

2
�

≥ 3n − 2 − C(G).

This completes the proof of Lemma 8. �
Now, by applying the above lemmas, we obtain the main result.

Theorem 6. Suppose G = (G1, G2; M) is a matching composition network where G1 and G2 are (n − 1)-regular, (n − 1)-connected, 
triangle-free networks with order no less than 3n + 2 − C(G) and C(G) ≥ 2. Then, G is conditionally (3n − 3 − C(G))-diagnosable.

Proof. By Lemma 7, we have tc(G) ≤ 3n − 3 − C(G). By Lemma 8, we have tc(G) ≥ 3n − 3 − C(G). Then, it proves tc(G) =
3n − 3 − C(G). �

We next highlight the differences between Yang’s result [31] and our Theorem 6.

Yang Theorem 6
(n − 1)-regular Required Required
(n − 1)-connected
triangle free
(n − 1)-good connected Required Not required
C(G1) = C(G2) Required Not required
C(G1) > 2 Not allowed Allowed
Number of vertices ≥ 3n ≥ 3n if C(G) = 2

≥ 3n + 2 − C(G) if C(G) > 2

In view of the above, we can see that Theorem 6 extends Yang’s result by demonstrating the 3n − 3 − C(G) conditional 
diagnosability of a larger class of networks than those determined by Yang.

For the hypercube Q n , the crossed cube C Q n , the twisted cube T Q n , and the Möbius cube M Q n , all the networks are 
n-regular, n-connected, and triangle-free matching composition networks composed by two (n − 1)-dimensional subcubes. 
Furthermore, all of these networks contain a cycle of length four and every two vertices have at most two common neigh-
bors. Since |V (Q n−1)| = |V (C Q n−1)| = |V (T Q n−1)| = |V (M Q n−1)| = 2n−1 ≥ 3n for n ≥ 5, we obtain the results of [18,32,33]
as corollaries of Theorem 6.

Corollary 10 (Lai et al. [18]). The conditional diagnosability of hypercube Q n is tc(Q n) = 3n − 5 for n ≥ 5.

Corollary 11 (Zhou [32]). The conditional diagnosability of the twisted cube T Q n is 3n − 5 for n ≥ 5.

Corollary 12 (Zhou [33]). The conditional diagnosability of the crossed cube C Q n is 3n − 5 for n ≥ 5.

Corollary 13. The conditional diagnosability of the Möbius cube M Q n is 3n − 5 for n ≥ 5.

4. Conclusion

Malek and Maeng proposed the comparison model, which is an attractive tool for fault diagnosis of a system. In applica-
tions of system fault diagnosis, the probability that all neighbors of a vertex are faulty simultaneously is very low. For this 
reason, Lai et al. [22] proposed conditional diagnosability, which is a new measure of diagnosability. In [31] Yang determined 
a set of sufficient conditions for a network G to be conditionally (3n − 3 − C(G))-diagnosable. In this paper we extend this 
result by determining a larger class of networks that are conditionally (3n − 3 − C(G))-diagnosable. Also, the earlier results 
in [18,32,33] on conditional diagnosability of the hypercube, the cross cube, the twisted cube and the Möbius all become 
corollaries of our main result. Thus the work in this paper extends the state of the art on the conditional diagnosability of
multiprocessor systems.
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