Journal of Circuits, Systems, and Computers, Vol. 2, No. 2 (1992) 159-185
© World Scientific Publishing Company

SIMULATED ANNEALING AND TABU SEARCH ALGORITHMS FOR
MULTIWAY GRAPH PARTITION*'

L. TAQ, Y. C. ZHAQ, K. THULASIRAMAN, and M. N. S. SWAMY
Faculty of Engineering and Computer Science, Concordia University, Montreal, Canada H3G 1M8

Received 21 January 1992
Accepted 31 March 1992

For a given graph G with vertex and edge weights, we partition the vertices into subsets to
minimize the total weights for edges crossing the subsets (weighted cut size) under the constraint
that the vertex weights are evenly distributed among the subsets. We propose two new effective
graph partition algorithms based on simulated annealing and tabu search, and compare their
performance with that of the LPK algorithm reported in Ref. 12. Extensive experimental study
shows that both of our new algorithms produce significantly better solutions than the LPK
algorithm (maximal and minimal improvements on average weighted cut size are roughly 51.8%;
and 10.5% respectively) with longer running time, and this advantage in solution quality would
not change even if we run the LPK algorithm repeatedly with random initial solutions in the same
time frame as required by our algorithms.

1. Introduction

Given an undirected graph G = (V, E), an integer m (1 <m < |V|), and two weight
functions w,: V — I and w,: E — I (I is the set of positive integers), an m-way partition
n of G is a function m: V — {1,2,...,m} such that V=P, (1)U P2} U P (m),
where P,(i) = {ve V|n(v) = i} for 1 <i < m. Our objective is to derive m-way parti-
tions 7 that can minimize

Wamy= 3 wle)

e={u,v}eE

n{u) # m(v)

under the constraint that

W1(7I)=1 Y Iwi(Pe®) — wiPe(D

<i<j<m

is minimal (for any subset C = V, w (C) = Y., . w; (v)). We call w, (v) the vertex weight

* This paper was recommended by Regional Editor D. A. Mlynski.
t This work has been partially supported by the Canadian NSERC research grant OGP0041648 and FCAR
research grant 92NC0026.

159

160 L. Taoetal

of vertex v, w,(e) the edge weight of edge e, W, (n) the balance measure, and W,(xn) the

weighted cut size. Informally, we want to partition the graph vertices into mutually

exclusive subsets so that the total weight of the edges crossing the subsets is minimized
under the condition that the vertex weights are distributed evenly among the subsets.

Our m-way graph partition is a natural generalization of the classical graph bisection
problem,'® in which | V| is even, w, is a constant function, and m = 2. Like the graph
bisection problem, m-way graph partition has important applications in VLSI design’*
and parallel processing.!'3 If we use the vertices to model processes with w, specifying
their computation time, and edges the logical interprocess communication channels
with w, specifying their message traffic load, then an optimal solution to the m-way
graph partition problem will allow us to distribute the computations evenly among a
set of m identical (or comparable in computation power) processors interconnected by
a bus to minimize the interprocessor message traffic on the bus, which can be the
bottleneck of the system performance. On the other hand, if we use the vertices to
represent the electrical components with w, specifying their size, and the edges the
interconnections between the components with w, specifying the signal traffic load
between the components, then an optimal solution to the m-way graph partition
problem will allow us to distribute evenly the components on m chips and minimize
the interchip signal traffic.

Since the graph partition problem is NP-hard,® efficient and effective heuristic
algorithms have been studied for its solutions. Most of these attempts are based on
one of the following three basic approaches:

+ Kernighan-Lin heuristics. This approach!? is characterized by repeated, exhaustive
searches for sequences of moves to improve the current solution. It is in general
aggressive, fast, but easy to get stuck in local optima. The Kernighan-Lin algorithm
for graph bisection,'® which has been the main competitor for this problem for
almost two decades, is a typical example for this approach. For graphs with small
edge weight range and small average degree, a special bucker data structure can
improve the speed of this algorithm.* Recently the Kernighan-Lin approach was
also applied to the more general m-way graph partition problem,'? which out-per-
forms the simple Kernighan-Lin m-way graph partition algorithm outlined in Ref. 10.

+ Simulated annealing. This is a stochastic optimization approach based on the analogy
to physical annealing.? ! It tries to avoid being trapped in local optima by accepting
both “good” and “bad” moves at the beginning of the iterations, and gradually
lowering the probability of accepting “bad” moves. Even though in theory simulated
annealing can find global optima if we lower the above probability slowly in
exponential time,? its performance in a practical time frame depends heavily on the
parameters comprising its “cooling schedule.” Recently Johnson et al.® made a
critical evaluation for the performance of the simulated annealing approach to the
graph bisection problem and compared its performance with that of the Kernighan-
Lin approach. In general, simulated annealing is time-consuming, but it has been
successfully applied to many optimization problems.

Simulated Annealing and Tabu Search Algorithms for ... 161

+ Tabu search. This is a new approach to combinatorial optimization characterized
by aggressive local search during each iteration, and avoiding cycling in the solution
space by keeping a short history of the attributes of the recent solutions.®"” A tabu
search algorithm for m-way graph partition has been reported with limited success.!®
In general, tabu search algorithms are slower than other problem-specific heuristics,
but they have been successfully applied to many problem domains. The relative
performance of simulated annealing and tabu search is problem-dependent and
inconclusive at this stage.

Based on our experience reported in Ref. 13, we find that the design of solution
neighborhood is a critical issue in any iterative approximation solutions to the m-way
graph partition problem. Vertex moves or vertex exchanges alone cannot produce
satisfactory solution quality. In this paper we design two new graph partition
algorithms based on simulated annealing and tabu search using a new definition of
solution neighborhood. This new neighborhood structure represents a good trade-off
between the aggressiveness and the efficiency of the search process. To demonstrate
the power of our new neighborhood design and algorithms, we conduct excessive
experimental studies to compare the performance of the new algorithms with the one
based on the Kernighan-Lin approach reported in Ref. 12. We use both random graphs
and geometric graphs as our benchmark graphs. While most studies of graph partition
in the literature use constant functions for w, and w,, we conduct performance
comparisons both for graphs with constant vertex and edge weights and for graphs
with varying vertex and edge weights. We believe that the latter are more in line with
some practical applications. Experiments show that both of our new algorithms
produce significantly better solutions than the LPK algorithm with longer running
time, and the one based on simulated annealing is more stable and superior to the
one based on tabu search. Compared with the average W,(n) for LPK, the average
improvements of W,(n) over all of our benchmark geometric graphs are 51.8% for
simulated annealing and 42.9% for tabu search respectively; the average improvements
of W,(r) over all of our benchmark random graphs are 11.6%; for simulated annealing
and 10.5% for tabu search respectively. For each of the problem instances, all the
algorithms reach the same minimal W(n). The advantage in solution quality of our
algorithms would not change even if we run the LPK algorithm repeatedly with
random initial solutions in the same time frame as required by our algorithms.

The paper is organized into six sections. Section 2 addresses design problems
specific to the graph partition problem. These problems are independent of particular
approaches or algorithms. Qur neighborhood design (S;) in this section is mainly
responsible for the good performance of our new algorithms. Section 3 abstracts the
Kernighan-Lin heuristics into a general approach and puts the LPK algorithm,!2 our
main competitor, into spectrum. In Sec. 4 we adapt the simulated annealing and tabu
search approaches to the m-way graph partition problem after we summarize the
basic mechanisms underlying them. Intensive and extensive experimental studies are
reported in Sec. 5. Section 6 concludes the paper with a few observations.

162 L. Taoetal.

2. Problem-Specific Design Issues

From an abstract point of view, all the algorithms in this paper perform a series of
iterations. During each iteration, a subset of the neighborhood of the current solution
in the solution space is investigated and the current solution is updated accordingly
(making a move). To make these algorithms efficient and effective, following are some
common necessary conditions:

1. Efficient evaluation of the objective function W,(r) and the constraint condition for
W, (n). Since the problem to partition a graph with uneven vertex weights to
minimize W, (n) alone is NP-hard in general, we cannot expect heuristic algorithms
to generate feasible solutions all the time. In practice we have to treat W,(rn) and
W,(n) as two objective functions, and try to minimize both of them while giving
W, (x) much higher priority. It will be very helpful if we can combine these two
conflicting objectives into a single one based on some trade-offs between them.

2. The moves applied in the algorithms should allow any current solution to reach
any other solution, and an appropriate neighborhood of each solution in the
solution space should be defined to compromise the neighborhood search time and
the aggressiveness of each iteration.

3. A gain function should be defined for all the allowed moves to measure the
effectiveness of each potential move, and this gain function should allow incremental
update following each move to minimize the computational overhead introduced
by re-evaluating the gain function.

These issues are treated separately in the following subsections.

2.1. Graph transformation

The time complexity of an iterative algorithm is largely determined by the efficiency
by which the objective functions and the constraint conditions are evaluated. While
W,(n) allows simple incremental update after each vertex move or vertex exchange
operation, W,(n) needs at least O(m) update steps after each of such operations.
Therefore we adopt the following graph transformation in Ref. 12 to combine W,(rn)
and W,(=n) into a single objective function easy for incremental evaluation.

Transformation algorithm:

Given a graph G = (V, E) described in the last section, we transform G into another
graph G* = (V, E*) where E* = {{u, v}|u,v € V}, and define a new edge weight function
w;: E* » R (R is the set of all positive real numbers) such that

(0 = wy(W)w,(0)R — w,(e) if e={uv}ekE;
"= A @w, ()R if e={uv}ecE*—E

where R is a positive real number called the augmenting factor.

Simulated Annealing and Tabu Search Algorithms for ... 163

Wl(ﬂ‘) = 0, Wz(ﬂ') =2 W3(7(’) =173

m Va2 (%] V2
1: :

(@) (b)

Fig. 1. Example for graph transformation.

As pointed out in Ref. 12,if R > Y, .y w,(e), any partition n that maximizes

= Z} W@ =R T wi(Bl)wa(Pl)) — Walm)
e={u,v} e E* <i<j<m
w(u) # n(v)

will minimize W,(n) under the constraint that 3 ; . ;< W (P(i))w; (P.(j)) is max-
imized, which in turn is equivalent to minimizing W,(rn). The latter part of this
argument is not covered in Ref. 12, and we prove it in Appendix A to this paper. Figure
1 gives an example for the graph transformation (the vertex weights are marked inside
the vertices, the edge weights are marked along the edges, and the two partitions are
separated by a dotted line). We use R = 7.

Based on the above transformation, from now on, we will focus on graph partitions
n that maximize Wj(n).

2.2. Move and neighborhood design

Let X be the set of all mappings V — {1,2,...,m}. We call X the solution space. Our
transformed problem can be presented as

Maximize Win):. neX

where Wj(r) is the objective function.

A wide range of heuristic algorithms for solving problems capable of being written
in this form can be characterized conveniently by reference to sequences of moves that
lead from one trial solution (selected n € X) to another. Let S be the set of all defined
moves. We use S() (n € X) to denote the subset of moves in S applicable to z. For any
s € S(n), s(m), the new solution obtained by applying move s to , is called a neighbor
of 7. If s(n) # s’(x) for any pair of different moves s, s’ € S(n), we can use | S()| to denote
the neighborhood size of solution 7.

164 L.Taoet al

To optimize the algorithm performance, S should be defined with the following
properties:

» Reachability: Given any two solutions n and 7’ in X, it should be possible to apply

a sequence of moves in S to reach n’ from #. This property will greatly increase the

probability for an algorithm to converge to the global optimum.

Efficiency: Given any solution € X and se S, the cost of s(n) can be easily

evaluated by incrementally updating the cost of n. This will allow us to avoid

evaluating the cost function W;(n) during each iteration, an operation having time

complexity O(n?).

« Injectiveness: Given two different moves s, s’ € S, for any n € X, s(n) # s'(n). This will
make sure that each neighbor of the current solution will be checked only once for
the current neighborhood search.

Vertex move and vertex exchange are two popular classes of moves for graph
partition. Let S, be the set of all moves for moving one vertex away from its current
partition, and S, the set of all moves for exchanging two vertices belonging to two
different partitions. Both S, and S, enjoy the injectiveness property. The cost of the
current solution can be incrementally updated for moves from both S, and S,, as will
be explained in the next subsection. Many graph partition algorithms in the literature
(Refs. 12,9, 4, for example) favor S, because it has a smaller neighborhood size n(m — 1),
while the average neighborhood size for S, is O(n?). We can make the following two
further observations about the reachability of S, and S,.

1. S, also enjoys the reachability property. But if we only allow vertex moves that will
not worsen the cost of the current partition by R-max(w,) — (max(w,) — min(w,))
or more (this is the case when the simulated annealing is in its low-temperature
phases, or when the tabu search always has moves with gains of smaller absolute
value), then this reachability cannot always be realized. For example, for the graph
bisection of G, in Fig. 2(a), no sequence of vertex moves can transform it to the
optimal bisection of G, in Fig. 2(c) unless we accept moves that will reduce W;(n)
by 6. Figure 2 (b) shows an example vertex move for the bisection in Fig. 2(a).

2. In general S, does not have the reachability property. For example, given the graph
bisection of G, in Fig, 3(a), vertex exchanges will never lead us to the optimal

Ws(r) =24 Wi(r) = 18
(1 V2 V1 V2
2 2 .

{b)

Fig. 2. Example partitions of G, R = 7.

Simulated Annealing and Tabu Search Algorithms for ... 165

W3(7(') =123

0 (%]

(a) (b)

Fig. 3. Example partitions of G,, R = 5.

bisection of G, in Fig. 3(b) (while vertex moves do) because they cannot change the

cardinality of each partition. However, we can easily transform the bisection in

Fig. 2(a) to that in Fig. 2(c) by exchanging vertices v, and v,.

Our experiments show that vertex moves in S; are very effective in balancing the
vertex weights among the partitions to minimize W;(rn), while vertex exchanges in S,
are very effective in refining the partition to minimize W, (r). The best order and mixture
of vertex moves and vertex exchanges are problem instance dependent. To compromise
the neighborhood size and the effectiveness of the moves, our algorithms use a special
set S, of moves, where for any n € X, S;(n) = S,(n) U S5(n), and

S, = {exchange u and v|v € V, moving v to P,(j) maximizes gain
which is <0; u € P,(j)}.

Informally, we give vertex moves higher priority than vertex exchanges. For a given
partition = and a given vertex v € P,(i), we first try moving v to all the other partitions;
if moving v to P,(j) has the best gain which is less than zero, then we also try exchanges
of v with each of the vertices in P,(j). Experiments show that S; performs better than
S, or S, alone in terms of both running time and solution quality for all of our new
graph partition algorithms.

2.3. Incremental gain update

Given the current partition 7 and a move s € S(n), we call W;(s(r)) — W,(n) the gain
of move s. Many algorithms need to choose moves with maximum gains during each
iteration. It will be very helpful if we have a gain function that can easily be
incrementally updated after each move.

Given a partition 7 of G, for any s € S,, the gain for moving any vertex v € P,(i) to
partition P,(j) (1 < i, j < m) can be defined to be

gl(v’j) = Z) w3({u, U}) - ;(j) WS({u’ U});

ueP,(i ue P,

166 L. Tao et al.

and for any s € S,, the gain for exchanging any pair of vertices u € P,(i) and v € P,(j)
(i # j) can be defined to be

g2(u,0) = g, (u,j) + g, (v,1) + 2w;({u, v})

because we can view the vertex exchange as consisting of two consecutive vertex moves.
Since g, can be defined in terms of g,, in the following we only need to consider the
incremental update of g, after each vertex move.

Based on the definition of g,, it can be verified that after moving vertex v € P,(i) to
partition P,(j) (i # j), the gain function g, can be incrementally updated as follows:

91(,i) = —g(©.j)

g1(v,k) = g(v, k) — g(v,)), k¢ {ij}

91(.j) = gw.j) — 2wy({u,v}), Vue P ()

g1(u, k) = g(u, k) — wy({u, v}), Vu € P,(i), k ¢ {i.j}
91w, i) = gw1) + 2wy({u,v}), Vue Pel))

g1(u, k) = g(u, k) + wy({u, v}), Vu e P(j), k ¢ {i.j}
91(w,i) = g(u,i) + w3({u, v}), Vu ¢ P,(i) v Pr(j)
91(w.j) = g(u,j) — wy({u,v}), Vu ¢ P.(i) v Po(j)

where g7 marks the new value of g,.

3. LPK Algorithm Based on Kernighan-Lin Approach

In this section we introduce the LPK graph partition algorithm proposed by Lee, Park,
and Kim.!2 We present it as a special adaptation of the more general Kernighan-Lin
approach, which in turn is an improvement of the basic local search algorithm outlined
in Fig. 4. ,

While simple and only able to find local optima, the local search is the backbone of
all the other algorithms studied in this paper. These algorithms all try to improve the
local search by accepting conditionally the worse moves, a necessary condition to find
global optima. But they differ at when and how to introduce these “downhill” moves.
In this section we first introduce the main principles of the Kernighan-Lin approach,
from which the LPK algorithm is derived.

Simulated Annealing and Tabu Search Algorithms for ... 167

1. Get an initial solution =.

2. While there is an untested neighbor of = do:
2.1. Let o’ be an untested neighbor of 7.
22. f Wi(n') > Wy(n), set = = '

3. Return 7.

Fig. 4. Local search.

1. Get a random initial solution 7.
2. Lletk=1,§,=0.
3. Repeat
31. Let#g=n, T=0,i=1.
3.2. While S(7;_,,V — T) # 9 do:
3.2.1. Let s; be the move in S(%;,_,,V — T)
maximizing A in 3.2.2.
3.22. Let &, = s5i(%;—1), A = W,(R,) — Wi(&,_y)
323. Letg, =gy + A, T=TuUV(s).
3.3. Let g, = max{§,,d,,..-»Gi-1 }-
34, Letn = 7,.
Until §, < 0.
4. Return 7.

Fig. 5. Kernighan-Lin heuristic.

3.1. Kernighan-Lin approach

The Kernighan-Lin approach differs from the local search at two key aspects: (1) It is
more aggressive during each iteration: it always uses the move among the current
candidates that can maximize the gain; (2) It gives each vertex a chance to move, and
the “downhill” moves will be accepted as long as the compound gain of the sequence
of moves including these “downhill” ones is positive.

Let V(s) be the subset of vertices in V involved in the move s, and S(zn,C) (% € X,
C < V) the subset of moves in S(x) that only redefines z(v) for v € C. We can present
the generic Kernighan-Lin algorithm in Fig. 5. Given a random initial solution (=),
the algorithm executes a main loop (Step 3) which will stop only if no positive
compound gain can be found in its last iteration. During each iteration of this main
loop, an inner loop (Step 3.2) is used to move each vertex exactly once, and T is used
to maintain the vertices already involved in some previous moves in this main iteration.
The ith iteration of the inner loop makes one move (s;), updates the current solution
(%;), and calculates the compound gain up to that stage (§;). The chosen move (s;) must
maximize the gain (A) and involve no vertices already moved in the current main

168 L. Tao et al.

iteration (s; € S(;_,, V — T)). After this inner loop the solution corresponding to the
maximum compound gain (§,) is used as the initial solution for the next iteration of
the main loop.

3.2. LPK algorithm

While the framework in Fig. 5 has been applied to different problems before,? it is
Lee, Park and Kim!? who first applied it to the m-way graph partition problem in
conjunction with their graph transformation technique. They used S, to define moves
and neighborhood structure, leading to a time complexity of each main iteration to
be O(mn?). Even though the LPK algorithm is designed for multiway graph partition,
their experiments focused on graph bisections for graphs with constant vertex and edge
weights.

4. Simulated Annealing and Tabu Search Algorithms

Simulated annealing and tabu search are two of the most important techniques for
general combinatorial optimization. Even though they are new (having a history less
than 10 years) and still under development, they have claimed success in many
application domains. In this section we summarize the main ideas of these two
approaches, and present our adaptations of them to the m-way graph partition
problem. Our experiments show that the graph partition algorithms based on these
two approaches are very competitive in terms of solution quality (see Sec. 5). Our
unique solution neighborhood structure defined by S, is partially responsible for their
success.

4.1. Simulated annealing

Our first attempt to design a new graph partition algorithm to outperform the LPK
algorithm is based on the simulated annealing approach. Simulated annealing can be
viewed as an enhanced version of the local search. It attempts to avoid entrapment in
poor local optima by allowing occasional downhill moves. This is done under
the influence of a random number generator and a control parameter called the
temperature. As typically implemented,® the simulated annealing approach involves a
pair of nested loops and two additional parameters, a cooling ratio r, 0 <r < {;
and an integer temperature length L (see the generic simulated annealing algorithm in
Fig. 6).

The heart of this procedure is the loop at Step 3.1. Note that e*'T will be a number
in the interval (0,1) when T > 0 and A < 0, and rightfully can be interpreted as a
probability that depends on A and T. The probability that a downhill move will be
accepted diminishes as the temperature declines, and, for a fixed temperature T,

Simulated Annealing and Tabu Search Algorithms for ... 169

1. Get a random initial solution 7.
2. Get an initial temperature T > 0.
3. While stop criterion not met do:
3.1. Perform the following loop L times:
3.1.1. Let #’ be a random neighbor of ©.
3.1.2. Let A = Wy(n') — Wi(m).
3.1.3. If A > O (uphiil move),
setm =
3.1.4. If A < 0 (downhill move),
set = = 7’ with probability e
3.2. Set T = rT (reduce temperature).
4. Return the best 7 visited.

AT

Fig. 6. Simulated annealing.

small downhill moves have higher probabilities of acceptance than larger ones. This

particular method of operation is motivated by a physical analogy, best described in

terms of the physics of crystal growth.!! It has been proven that the algorithm will
converge to a global optimum if the temperature is lowered exponentially and the
initial temperature chosen is sufficiently high.®

There are two main issues related to the adaptation of this general approach to the
m-way graph partition problem. The first is the design of moves and neighborhood
structure, the other is the design of the cooling schedule. We use S, (see Subsec. 2.2)
as the set of moves. More specifically, during each iteration, we randomly choose two
partitions P, (i) and P,(j) (i # j), then randomly choose a vertex v € P,(i). If moving v
to P.(j) has a non-negative gain, then we use its resulting mapping as ='; otherwise we
randomly choose a vertex u € P,(j) and try to exchange u and v, and use the mapping
resulting from the move with better gain as «'.

As for the cooling schedule design, we made the following decisions.

1. Welet L = n-SIZEFACTOR, where SIZEFACTOR is a parameter.

2. The initial temperature T; is chosen so that the initial acceptance rate is around
INITPROB, another parameter in the range (0, 1).

3. For each temperature we measure the acceptance rate of the proposed moves.
The algorithm stops when for five temperatures the acceptance rate is lower than
MINPERCENT and the best visited solution is not improved in that period of
time. Here MINPERCENT is another parameter in the range (0, 1).

All the parameters for our simulated annealing algorithm are not independent. We
tune the parameters of our annealing algorithm for each of our benchmark graphs
one at a time. We repeat the process until no perturbation of the parameters can
improve the performance. As an example, for our benchmark graph G600 (specified
in Table 3), we find that one set of satisfactory parameter values are r = 0.95,
SIZEFACTOR = 16, INIPROB = 0.4, and MINPERCENT = 0.02.

170 L. Tao et al.

4.2. Tabu search

Tabu search is another newer general approach for combinatorial optimization.®-” It

differs from simulated annealing at two main aspects:

» It is more aggressive. For each iteration the whole neighborhood of the current
solution is usually searched exhaustively to find the best candidate moves.

« It is deterministic. Each iteration repeats the above exhaustive search for best
candidate moves. The best candidate move which does not cause cycling in the
solution space will be used no matter what sign its gain has. A tabu list is usually
used to record the recent move history to avoid solution cycling, hence the name
of the approach.

Figure 7 outlines a generic tabu search algorithm using n to represent a solution,
W, the cost function, and ¢ the length of the tabu list. Given a random solution, the
algorithm repeats the loop at Step 2 until some stop criterion is met. During each
iteration, the algorithm makes an exhaustive search of the solutions in the neighbor-
hood of the current solution which have not been traversed in the last ¢ {(t > 1)
iterations. The neighboring solution with the best cost will be used to replace the
current solution. The main design issues for a tabu search algorithm are as follows:
1. The design of the neighborhood (moves) of the current solutions. A large neighbor-

hood usually makes each iteration more aggressive but also more time-consuming.

2. The design of the contents of the tabu list. If move s is used to transform the current

solution to =, the corresponding cell of the tabu list should capture some attributes

of 7 or s so that = will not be traversed again in the next t steps. At one extreme,
we can store solution =z directly in the tabu list. But in practice, to save memory
space and checking time, some attributes of s will be stored in the tabu list to prevent
sor s~ ! to be used in the next ¢ iterations. If we use a more detailed set of attributes
of a solution or move in each cell of the tabu list, more memory space and checking
time will be incurred during the solution-space search, and the searches will be less
restrictive since less solutions (in addition to the ones visited in the last ¢ iterations)
will be tabued. On the other hand, if we use a more abstract (simplified) set of
attributes of a solution or move in each cell of the tabu list, the implementation will

1. Get a random initial solution 7.
2. While stop criterion not met do:
2.1. Let o’ be a neighbor of n maximizing
A = Wy(n') — Wi(r) and not visited
in the last ¢ iterations.
22. Setn=7n'.
3. Return the best n visited.

Fig. 7. Tabu search.

Simulated Annealing and Tabu Search Algorithms for ... 171

be more space and time efficient for each iteration, and the searches will be more
restrictive since more extra solutions will be tabued.

The design of the aspiration level function. To make the implementation more space
and time efficient, most designs of the contents of the tabu list will tabu too many
solutions in addition to those visited in the last ¢ iterations, thus risk to lose good
move candidates. As a make-up, we can define an aspiration level A(s, 7) (usually
an integer) for each pair of move s and solution # such that if W;(s(rn)) > A(s,) the
tabu status of s for the current solution 7 can be overriden. In practice some
attributes of 7, instead of x itself, will be used in the definition of A(s,). A(s, #) is
designed to capture the common properties of the earlier applications of s to
solutions sharing the same attribute values as 7.

. The design of the length ¢ of the tabu list. Parameter ¢t determines how long the

move history will be saved in the tabu list. Suppose that = is a local optimum, and
it needs at least ¢’ consecutive “downhill” moves to go to another local optimum
7. Then t > t’ is a necessary condition for 7 to reach =’. In general, the longer the
tabu list, the more time for tabu status checking for each move, and the more
restrictive the search process. On the other hand, a too short tabu list risks to
introduce cycling in the solution space. Parameter ¢ can be a constant or a variable
during the execution of the algorithm. For many applications, a tabu list length
around 7 is found appropriate.®

The following is a description of our tabu search algorithm for m-way graph partition.

1.

We use S; of Subsec. 2.2 to define the moves and the neighborhood of the current
partition.

. For the tabu list design, we use a circular list to maintain the vertices moved

(exchanged) in the last ¢t (¢t > 1) iterations. We find that a more detailed charac-
terization of the past moves usually traps the search process in a small subspace of
the solution space (many vertices may never be moved). A constant tabu list length
of 5 produces the best performance for most of our problem instances.

. We use the cost of the best visited solution as the aspiration level A(s,) for all pairs

of s and 7. Based on the same observation pointed out in the last item, more
“flexible” searches implemented by a more sophisticated aspiration level definition
tend to limit the real search freedom in the solution space.

In Ref. 13 we reported an old version of the tabu search algorithm for m-way graph

partition. Its main difference from the current one is the solution neighborhood design.
In that algorithm we first use S; to define the solution neighborhood until vertex moves
cannot improve the best solution for a limited number of iterations. Then we switch
to use S, to define the solution neighborhood. When vertex exchanges cannot improve
the best solution for a limited number of iterations, the algorithm stops. Such a rigid
separation of vertex moves and vertex exchanges greatly limits the freedom of solution
movement. The large neighborhood size of S, also makes each vertex exchange very
time-consuming. In the following Table 1 we compare our new tabu search algorithm
(TS) with the old one (TS’) using our benchmark graphs R200_4 and R600 (for the

172 L. Taoet al.

Table 1. Performance comparisons for two tabu search

algorithms.
measurements R200_4 R600
TS TS TS TS

total move # 127 12 538 336
total exchange # 32 95 164 363
W, () 0 0 100 100
W, (n) 460 358 38309 38122
CPU time (sec.) 551 6 7187 255

Table 2. Characteristics of the random benchmark graphs.

name n d w, w, A |E|
R200_4 200 4 1-5 1-5 0 11 410
R200_20 200 20 1-5 1-5 8 34 2026
R400_8 400 8 -5 1-5 2 18 1625
R400_40 400 40 1-5 1-5 24 57 7927
R600 600 60 1-5 1-5 37 85 17867
R800_16 800 16 1-5 1-5 5 28 6470
R800-80 800 80 1-5 1-5 52 110 31925
R1000-20 1000 20 1-5 1-5 7 34 9979
R1000-100 1000 100 1-5 1-5 72 135 50025

definition of these two graphs, see Table 2). It can be seen that our new tabu search
algorithm outperforms the old one with substantially less running time.

5. Experimental Studies

In this section we conduct a thorough experimental study for our two new graph
partition algorithms in comparison with the LPK algorithm. The performance
comparisons are classified into two categories: (1) intensive study by running each
algorithm 1000 times for two benchmark graphs and reporting the statistical per-
formance data; and (2) extensive study by running each algorithm 10 times for a set of
benchmark graphs with varied size, density, and partition number m and reporting the
statistical performance data. All computations are performed on a SUN Sparc 2
workstation. To simplify presentation, we use LPK, SA, and TS to denote the LPK
algorithm, the Simulated Annealing algorithm, and the Tabu Search algorithm
respectively.

5.1. Benchmark graphs
We use two general classes of graphs for our performance comparisons: random graphs

and geometric graphs. Both of the two classes of graphs are mainly characterized by
two parameters: n, the vertex number; and d, the expected degree for each vertex.

Simulated Annealing and Tabu Search Algorithms for ... 173

Random graph generation:

Given n and d, define p = d/(n — 1). Value p specifies the probability that any
given pair of vertices constitutes an edge. The vertex and edge weights are generated
randomly in some specific integer ranges.

Geometric graph generation:

Given n and d, define k = . /d/(nn). The coordinates of n vertices are first generated
randomly on a unit square plane. Two vertices share a connecting edge iff the Euclidean
distance between them is k or less. The vertex weights are again generated randomly
in a specific integer range. The weight for any edge is the ceiling integer of the product
of a scale-factor & and the ratio of the distance between the vertices incident to the
edge over k. Figure 8 shows a geometric graph (G600) generated with n = 600 and
d=10.

All of our benchmark graphs are specified in Tables 2 and 3. The first letter of a
graph name designates the graph class: R for random graph, and G for geometric
graph. For each graph we specify its vertex number n, expected degree d, range for w,,
range for w, (for random graphs), & (for geometric graphs), minimum degree d_;,,
maximum degree d,,,,, and total edge number | E|. The last three entries are measured

Fig. 8. Geometric graph G600.

Table 3. Characteristics of the geometric benchmark graphs.

name n d w, & diin drnax |E|
G200_4 200 4 1-5 10 0 8 387
G200-20 200 20 1-5 10 6 25 1671
G400-8 400 8 1-5 10 1 16 1471
G400_40 400 40 1-5 10 12 53 7006
G600 600 10 1-5 10 1 18 2692
G800-16 800 16 1-5 10 4 31 5807
G800-80 800 80 1-5 10 19 103 27066
G1000-20 1000 20 1-5 10 5 33 9219
G1000-100 1000 100 1-5 10 23 121 42428

174 L. Tao et al.

from the generated graph. We in general choose small d as most interesting applications
involve graphs with a low average degree, and because such graphs are better for
distinguishing the performance of different heuristics than denser ones.® Although
neither of these two classes is likely to arise in a typical application, they provide the
basis for repeatable experiments, and, it is hoped, constitute a broad enough spectrum
to yield insights into the general performance of the algorithms.

5.2. Intensive studies

The performance comparisons for LPK, SA, and TS are complicated by the fact that
all of them use random initial solutions. SA also calls the random number generator
during its executions. Therefore, for the same graph and the same algorithm, different
runs will usually generate different solutions.

To make a fair comparison, we run each of the three algorithms 1000 times with
random initial solutions for random graph R600 and geometric graph G600. We set
m = 20. Table 4 and Table 5 report the W, (=), the average W, (), the best W,(n), the
worst W,(n), the standard deviation for W,(n), and the average running time for each
set of these excessive runs. The data for W,(n) i¢ also visualized by the histograms
shown in Fig. 9 and Fig. 10. Based on these data we can see that the worst W,(n) for
our SA and TS is substantially better than the best W,(n) for LPK; the running time
for SA and TS is longer than that for LPK; all algorithms produce the same W, (r) for
all runs, a good sign that W, (rn) is probably minimized, as required by our model.

Since the running time for LPK is much less than that for SA or TS (roughly 1/8),
the W, (r) for one random run of SA or TS should be compared with the expected best
W, (n) for multiple (say 8) random runs of LPK. To be more general, we want to find
the expected best W,(n) for k random runs of each algorithm for 1 <k < 100.
Fortunately, instead of repeatedly performing sets of k runs and computing the average
of the best, we can derive such data from the existing data for the 1000 runs of each

Table 4. Statistics for 1000 runs of R600.

algorithm Wy (n) ave. W,y(n) best W,(n) worst W,(n) std. dev. W, (n) ave. time (sec.)

LPK 100 40373.81 39717 41075 225.50 22.87
SA 100 38265.11 38058 38491 71.61 158.83
TS 100 38321.22 38074 38590 78.56 164.20

Table 5. Statistics for 1000 runs of G600.

algorithm W,(n) ave. W,(n) best W, (n) worst W,(n) std. dev. W,(n) ave. time (sec.)
LPK 100 1961.17 1732 2139 66.95 18.47

SA 100 541.29 454 640 31.89 189.79
TS 100 688.77 551 833 44.57 184.16

Simulated Annealing and Tabu Search Algorithms for ... 175

700

s AAdaaiat ML e 700

600 [sA 3 600 £ == 3
[LPK 3 E] Lek 3
500 £ 500 E 3
5400 £ 5 400 E E
Z 3 é £ E
5 300 E 3 & 300 E
= E 3 %] E 3
[E = 4 E 3
=~ E j 3 = E 3
200 F 4 200 | E
=
100 E- 4 100 E- E
of AMMB 3 oF ;
TTTYSTUFISETRTIYY (RTVITYTI FRUUTRINNI IRTAUVIT: B bbb b
370 380 390 400 410 420 370 380 390 400 410 420
w,(m)/100 w,(m) /100
(a) (b)
Fig. 9. Histograms for R600.
700 g T e 700 g e
sa 600 E = s
5 3 wx 3 [vex 3
500 | 3
5 3 § 400 F 3
B R :
5 300 b N 3 3 300 b E
2 E E E E E
5 E £ E
200 £ 3 200 | 3
100 £ 3 100 E 3
o Etﬂ E oF 3
conn oo o Boncbuoneieiono oo 3
5 10 15 20 5 10 15 20
w,(m)/100 w,(m)/100
(a) (b

Fig. 10. Histograms for G600.

of the algorithms, as described in Appendix B. The results are summarized in Tables
6 and 7 for R600 and G600 respectively. We can conclude from these two tables that
in the same time frame as for running SA or TS once, repeated running of LPK cannot
provide better performance.

5.3. Extensive studies

To put our results in perspective, we also perform similar, though less intensive,
experiments with random graphs and geometric graphs with n ranging from 200 to
1000, d ranging from 4 to 100, and m ranging from 4 to 100. We run each algorithm

176 L. Tao et al.

Table 6. Expected best W,(r) for k runs of
R600.

k LPK SA TS

1 4037331 38285.11 38321.22

2 4024566 3822481 38277.06

5 40107.26 3818223 38231.26
10 40031.07 38155.18 38202.24
25 3995272 3812456 38168.06
50 3990095 3810525 3814391
100 3985135 3808899 38120.84

Table 7. Expected best W,(n) for k runs of

k LPK SA TS

1 1961.17 541.29 688.77

2 1923.61 523.34 663.76

5 1882.86 505.49 637.48
10 1855.65 494.68 621.01
25 1823.77 482.64 602.91
50 1802.57 474.90 590.95
100 1783.39 468.37 579.69

550

e e e e o0 ™
525 w(n}=0|a SA ave. 4 SA ave.
500 = TS ave. |- 640 m TS ave.
475 E- @® LPK ave. | : 600 E ® LPK ave. |:
hollow: best hollow: best,
450 E 560 £ _
® 4B E E ¥ 520
~ Q)
3 H0E 3 3 480
375 E
440
350 L} - »
400 E
325 & o a O oa
3 a
300 A 360
2 E L bl NP 320 B b ! Losertondiinn,d
0 5 10 15 20 25 0 2 4 8 8 10 12
ave. time (sec.) ave. time (sec.)
(@ m=S5 (b) m=10

Fig. 11. Performance comparisons for R200_4.

10 times for each graph and report the average W,(n), the best W,(x), and the average
running time in Figs. 11 to 18 for random graphs, and Figs. 19 to 26 for geometric
graphs. In each figure we use a distinct symbol shape to represent each algorithm, use
solid symbols to represent the information on average W,(n), and use hollow symbols
to represent the information on the corresponding best W, ().

We can conclude from these data that for all these problem instances, SA and TS
always outperform LPK in terms of solution quality, especially for geometric graphs.

w,(n)/10

wm)

w,(m)/100

Simulated Annealing and Tabu Search Algorithms for ...

360 gy ==, 420 g ——
350 £ @ wi(r)=0{a SA ave. | 410 E w (m)=25|a SA ave. |3
L | TS ave
340 B 2 400 B ® LPK ave. |
c hollow: best
330 £ E S 390 F E
N
320 £ E k 880 E
310 E 3 a0k E
A
300 E 2 a - 360 £ E
a2 A
200 E E asoL» = a2
280 EL Ll) 340 Bluwnuliuaduid bl
0 5 10 15 20 25 30 0 5 10 15 20 25 30
ave. time (sec.) ave. time (sec.)
(@ m=5) m=10
Fig. 12. Performance comparisons for R200_20.
980 g —————y pTT——————
970 E w (m)=0[a SA ave. |- 1100 & w (m)=24!a SA ave. |
| TS ave. E u TS ave. é
860 & ® LPK ave, |- E ® LPK ave. |7
950 E hollow: best| : 1080 & hollow: best|-3
x i
940 @ E ® E C E
S~1060 E E
a00 . : =
920 E E
1040 £ o s 3
810 £ E E E
c 8 3 E
900 E- o 1020 N
890 Suduundionoalia) Linenbunan| Rulowoyl IV FTYINVUR PTVPINTIY INPIVPIVIN FOVRTIIR Y
0 20 40 60 80 100 120 0 30 60 90 120 150 180
ave. time (sec.) ave. time (sec.)
(a) m=10 (b) m=20
Fig. 13. Performance comparisons for R400_8.
175) T T T T T T T £ 185 g T T T T T T T]
E w, (M=0[a SA ave. |] w (n)=24[a SA ave. | 3
170 £ m TS ave. |3 180 ™ TS ave. |3
E ® LPK ave. | 3 ® LPK ave. [1
£ hollow: best| J hollow: best| 3
165 @ 3 §) E
] 3 E
160 £ E ®]
£ 3 (] E
E E 3 170 3
156 £ E 3
150 = Y 165 ¢ n a
145 EI 1, 1, 1, 1, 1, | { 160 E| ! 1 1 1 1, 1 1

0 20 40 60 BO 100 120 140 160
ave. time (sec.)

(@ m=10

0 20 40 60 BO 100 120 140 160
ave. time (sec.)

(b) m =20

Fig. 14. Performance comparisons for R400_40.

177

178 L.Taoetal

W, (m)/100

w,(n)/100

w,(n)/160

145 gy == 145 perrgrrreen rerrerrr
140 B w, (7)=36 (A SA ave. _ E @ i(mM=3%8475A ave. | 3
PY B TS ave. 140 £ c | TS ave. |3
® LPK ave. E @ LPK ave. |]
135 C hollow: best|J - E hollow: best|]
E E o E 3
130 £ 3 SN E
£ E = E F
E = E 1
E E] E B
125 F 3 S 130 F 3
E E E k!
120 b 3 £ ®]
-]
A B E 125 2 83
115 E E E b
110 Bl bl 3 120 Buuliiuil i3
0 100 200 300 400 0 100 200 300 400 500
ave. time (sec.) ave. time (sec.)
(a) m=20 (b) m =40
Fig. 15. Performance comparisons for R800_16.
0 [T 760 g —— ——
E ® 4 (m=36[a SA ave. £ w(n)=396{ 4 SA ave. |
& m TS ave. F ® TS ave. |]
720 E ® LPK ave. |] 750 c ® LPK ave. [
hollow: best o E hollow: best| 3
=4 E 3
S o f 3
710 ® E E
Cl C]
3 F]
700 730 £ E
a £ [I
2B E A EE
690 | 720 |- 3
Eout 1 wlinvoanbn I Baodnrunlinin oo Lnnolii g
0 100 200 300 400 500 0 100 200 300 400 500 600
ave. time (sec.) ave. time (sec.)
(a) m=20 (b) m=40
Fig. 16. Performance comparisons for R800_80.
220 gy 225 T
215 E o w(m)=150 |4 SA ave. E o wi(mM=400j4 SA ave.
i :_ ® TS ave. | 220 o ® TS ave.
E © ® LPK ave. | j ® LPK ave.
210 E hollow: best| 3 o 215 hollow: best|
: E
205 F E ~
3 =
E 3 E 210
200 E E 3
205
195 £ 3 2 A
i
190 £ A 3 200 3
185 %J_.nnu alaaio 1 FERET SYTVTIITY 3 195 FUTEY PYTPPOTTTY IPPRTRIA | FRYITY T I-
0 200 400 600 800 200 400 600 800 1000
ave. time (sec.) ave. time (sec.)
(@ m=25 (b) m=50

Fig. 17. Performance comparisons for R1000_20.

1160

1150

w,(m)/100
AN
-z
[+ b
o (=]

1120

1110

1100

180

150

120

20

w(m)

60

30

200

160

w,(n)/10

80

40

Simulated Annealing and Tabu Search Algorithms for ...

v e AAAALLsas Laeas ate, MRS A e o 1190
E ° w (m)=160{ 4 SA ave. | 3
£ m TS ave. |-
3 ¢ @® LPK ave. | 3 1180
E hollow: best| 3 o
E E S
i >
E E 1170
E = ~
: i 3
A B3 1160
é‘l.“......Imm...l.. FINYTTE PRTTRYTETI FYTT) ::: 1150
0 200 400 600 800 1000
ave. time (sec.)
(a) m=25

Fig. 18. Performance comparisons
E ° w,(m)=0[a SA ave. 240
E | TS ave.
E ® LPK ave. 200
E c hollow: best
E 160
O
E ~ 120
3
80
3 a 40

a
o
| wlisosalossigssunl R

2 4 6 8 10 12
ave. time (sec.)

(am=>5

Fig. 19. Performance comparisons for G200_4.

L LA LA L o L AL

wy(n)=0[4 54 ave.
[] | TS ave.
© ® LPK ave.
hollow: best

o 2

TETE CREWERRTVE FRUVENETEE ARUYRAVETI SURIRT)

T T T T S T O T T T YT

ovovolenndionon b 1 Ly

o 3 & 9 12 15
ave. time (sec.)

@ m=5

W, (m)/10

210

180

150

120

ity ey wai B B
w,(7)=400[4 SA ave. E
| TS ave. E
ul ® LPK ave. |
F hollow: best| J
E -
E A O 1
bbbl I Lod
0 200 400 600 800 1000
ave. time (sec.)
(b) m =50

for R1000-100.
M s e L
5_ o w,(n)=25!4a SA ave. _§
£ B TS ave. |]
E c ® LPK ave. |
E hollow: best| J
3 8 s 3
E &
o i 1 A
0 3 [9 12 15 18

ave. time (sec.)
by m=10

e e
E_ Py w (m=25/a SA ave. _E
E o ® TS ave. E
£ @® LPK ave. |]
E hollow: best|J
E . E
E o .

0 3 8 9 12 15
ave. time (sec.)

(b) m =10

Fig. 20. Performance comparisons for G200_20.

179

180 L. Taoetal

wWy(m/10

w,()/100

w,(n)/100

100

80

60

40

20

80

80

70

60

50

40

45

40

a5

30

25

20

15

10

7

T

w,(7)=24|a SA ave.
|8 TS ave.
@ LPK ave.
hollow: bes

[oX J

2

AL LR LA PSRN ALY LAY L

I L L i 1]
20 40 60 80 100 120
ave. time (sec.)

(@ m=10

(=]

w,(m)/10

120

100

80

60

40

20

SUMMS ML LS i W i
° w (r)=84 4 SA ave. E

8 TS ave. |]

¢ ® LPK ave. |
hollow: best 3

.

[} A é

El bt i 1 L
0 20 40 60 80 100

ave. time (sec.)

(b) m=20

Fig. 21. Performance comparisons for G400_8.

w (m)=24 [a SA ave.
L4 ® TS ave.
@ LPK ave.
c hollow: bes

il Uil Ul AL L LD L

FTVTYITI FPITTRTITS NITTYOIT | i | fiad
10 20 30 40 50 60
ave. time (sec.)

(a) m=10

g

(=

w,(m)/100

A L L A B e |
L 4 w,(r)=84[4 SA ave.
C ® TS ave.

® LPK ave.
hollow: best|

> 4
[n]

N YT IATTTOUTIN FERTTEVITS [VVIUTTTTN INRTIN

10 20 30 40 50 60 70 80
ave. time (sec.)

(b) m =20

Fig. 22. Performance comparisons for G400_40.

L
c w, (7)=38[4 SA ave.
= 8 TS ave. |-
® LPK ave.
: hollow: best} :

3 8
a 3

sl 1 f L L I
0 100 200 300 400 500 600
ave. time (sec.)

@ m=20

W (m)/100

45

40

35

30

25

20

® w()=396[4 5A ave. |]
& TS ave. ;
® LPK ave. | 3
hollow: best| 3
. 3
A
L L] ! | 1 Lud
0 100 200 300 400 500 600

ave. time (sec.)

(b) m = 40

Fig. 23. Performance comparisons for G800_16.

w,(m)/100

W, (m)/100

w,(7)/100

290

360

330

300

270

240

20

600
580
560
540
520
500
480
480
440
420

Simulated Annealing and Tabu Search Algorithms for ... 181

E e w,(m=368a SA ave. 420 | w(m=096[a A ave |3
F C ® TS ave. £ ® TS ave. |3
E ® LPK ave. 406 E ® LPK ave. |
E hollow: best o E] hollow: best| 3
F © 390 F 3
E Z c n E
3 3 360 £ 3
3 . 345 £ 3
E A
; A : 330 £ E
TP NPT OO ORI FUROPIN: T TP IRV PITRIN-
0 150 300 450 600 750 50 100 150 200 250
ave. time (sec.) ave. time (sec.)
(@) m=20 (b) m =40
Fig. 24. Performance comparisons for G800_80.
T 90 g
° w(7)=150[& SA ave. _; ; w,(m)=400] 4 SA ave. ;
P B TS ave. E 80 & m TS ave. |
@ LPK ave. | E ® LPK ave. |]
hollow: best é g 70 i_ PY hollow: best %
i X £ ¢ .
3 £ 60F E
LEE G E E
83 3 3 E
E 50
E 40 | 3
2 E A E
il Loninbinslinn 3 30 Basrwnlnin bl 3
0 100 200 300 400 500 0 100 200 300 400 500
ave. time (sec.) ave. time (sec.)
(a) m=25 (b) m=50
Fig. 25. Performance comparisons for G1000_20.
M e 640 T ——
w (n)=150 [ao SA ave. 630 E w,(m)=400{4 SA ave. =
3 | TS ave. | B TS ave.
= ® ® LPK ave. | 620 F ® LPK ave. | -
hollow: best| hollow. best
] ; g 610) E
2
. > 600 E .-
3 u} £ C
~ 590 g E
3 E 3
= E 580 F =
- E 570 F E
= A E 560 E A E
PIVRTRETI FVUYETUITY PETSTUUTE ITTUUTNITY (INTRUTNTE IV} 550 L aynoond ul m TITY
(¢} 100 200 300 400 500 0 100 200 300 400 500 600
ave. time (sec.) ave. time (sec.)
(a) m=25 (b) m =50

Fig. 26. Performance comparisons for G1000-100.

182 L. Taoetal

Compared with the average W,(n) for LPK, the average improvements of W, (n) over
all of our benchmark geometric graphs are 51.8%; for SA and 42.9%; for TS respectively;
the average improvements of W,(n) over all of our benchmark random graphs are
11.6% for SA and 10.5% for TS respectively. For each of these problem instances, all
the algorithms reach the same minimal W, (x).

6. Conclusion

This study demonstrates that simulated annealing and tabu search are intrinsically
more powerful than the Kernighan-Lin approach for the multiway graph partition
problem (maximum and minimum average improvements on average weighted cut
size are 51.8%; and 10.5%, respectively). It also shows the importance of the design of
the solution neighborhood structure. Based on our experience reported in this paper,
we believe that the running time of our algorithms can be greatly reduced if we combine
the aggressive search in the tabu search approach with the stochastic search in the
simulated annealing approach. While the former is critical to finding “good” solutions
in practical time frames, the latter is effective in avoiding cycling in the solution space.
This conviction is supported by our initial success for our new approach, called
stochastic probe, which will be reported in another paper very shortly.

Appendix A

Given a positive integer k, a partition of k is a set of positive integers {ky,k,,...,k,}
(m < k)suchthatk = ' 7, k,. In this appendix we want to prove the following theorem:

Theorem 1: Given positive integers m and k such that m < k, any partition of k into
P ={ky,ky,...,ky} maximizing) ; ;< ;<mkik; will minimize ¥, ;< ;<mlk: — kjl.

a

First we prove the following two lemmas.

Lemma 1: Let x and y be positive integers. If x > y + 1, then x2 + y* > (x — 1) +
(y + 1)~
il

Proof: If x > y + 1,then2x — 1 > 2y + 1. Therefore x*? — x2 +2x — 1 > y? — y? +
2y + 1,0r x2 — (x — 1) > (y + 1)® — y2. So we have the lemma.
a

Lemma 2: Let mand k (m < k) be positive integers and P = {k,,k,,...,k,,} a partition
of k. Assume that there exists a pair x and y in Psuch that x — y > 1. Let x’ = x — 1,
y=y+1l,and P =P — {x,y} u{x',y’}. We have

Z |k; — k;| > Z tk; — ki)]
l<i<j<m 1<i<j<m
k,',kjEP k,‘,ijP'

Simulated Annealing and Tabu Search Algorithms for ... 183

and
Yookk> Y kik)
1<i<j<m 1<i<jgsm
kikjeP ki kje P’

Proof: We can partition P into P = P, U {x} U P, U {y} U P, where

P, — the set of numbers in P which are greater than or equal to x,
P, — the set of numbers in P which are smaller than x and greater than y,
P; — the set of numbers in P which are equal to or smaller than y.

Let N,, N,, N, be the cardinalities of P, P,, and P, respectively. We have N, + 1 +
N, +14+ N;=m,and

) _;_(lki_kjl=1 Z_‘ ki =kl + (N =N =1 = N3) + (=N; =1 = N, + N;)
i P A

1<i<j<m
ki kjeP

So we have Inequality 1.
Because x > y + 1, from Lemma 1, we have x2 + y? > x'? + y’2. Since

k= %Y K+02+y)+2) kk
1<l<m 1<i<j<m
k,¢{x,y} kiskje P

1<i<m

= 2 K+2+yH+2 ¥ kk,
k¢{x",y'} ‘ ’

we have Inequality 2.

d

Proof of Theorem 1:

Since partition P ={ky,k,,...,k,} maximizes) ; <;<;<mk:k;, by Lemma 2, there can
be no x, y € P such that x > y + 1. On the other hand, if max(P) — min(P) < 1, then
Y 1<i<j<mlk; — k;| must reach its smallest possible value r(m — r), where r is the
remainder of k/m. The theorem is thus proved.

O
Appendix B
If we already have the costs for s runs of an algorithm with random initial solutions,

we can easily derive from these costs the expected minimal cost for k (k « s) runs of
the algorithm with random initial solutions.

184 L. Taoetal

Let L = (c,,c,,...,¢s) be the list of given costs in nondecreasing order of their value.
The expected minimal cost for k runs of the algorithm is

s—k+1

Z Di ¢
i=1

where p; is the probability that c; is the minimal for k costs randomly chosen from L.
We can decompose p; as p; = p} - p? where p}! is the probability that none of the first
i — 1 costs in L is among the k chosen costs, and p? is the probability that c; is among
the k chosen costs. It can be verified that

=it 1) —j
l= —_——
=l

and

p?=1—ﬁ<1 1) k

MU TS i vy o)) s+t

The cost derived above is more reliable than the one obtained by simply running
the algorithm k times because it is based on the information for a much larger
population of costs.

References

1. F. Berman and L. Snyder, “On mapping parallel algorithms into parallel architectures”, J.
Parallel Distributed Comput. 4 (1987) 439-458.

2. V. Cerny, “A thermodynamical approach to the traveling salesman problem: An efficient
simulation algorithm”, J. Optim. Theory Appl. 45 (1985) 41-51.

3. K. Efe, “Heuristic models of task assignment scheduling in distributed system”, IEEE
Comput. 31 (1982) 50-56.

4. C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for improving network

partitions”, Proc. 19th Design Automation Conf., 1982, pp. 175-181.
. M. R. Garey and D. S. Johnson, “Computers and interactability: A guide to the theory of
NP-completeness”, W. H. Freeman and Company, CA, 1979.

. F. Glover, “Tabu search — Part 17, ORSA J. Comput. 1 (1989) 190-206.

. F. Glover, “Tabu search — Part 2”, ORSA J. Comput. 2 (1990) 4-32.

. B. Hajek, “Cooling schedules for optimal annealing”, Math. Operat. Res. 13 (1988) 311-329.

D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon, “Optimization by simulated

annealing: An experimental evaluation; Part I, graph partitioning”, Operat. Res. 37 (1989)

865-892.

10. B. W. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning graphs”, Bell

Syst. Tech. J. 49 (1970) 291-307.
11. 8. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by simulated annealing”,
Science 220 (1983) 671-680.

(9,

RIS R-N

Simulated Annealing and Tabu Search Algorithms for ... 185

12. C. H. Lee, C. L. Park, and M. Kim, “Efficient algorithm for graph-partitioning problem using
a problem transformation method”, Comput.-Aided Des. 21 (1989) 611-618.

13. L. Tao, Y. C. Zhao, J. Guo, K. Thulasiraman, and M. N. S, Swamy, “An efficient tabu search
algorithm for m-way graph partitioning ”, Proc. Supercomputing Symp., Fredericton, New
Brunswick, June 1991, pp. 263-270.

14. J. D. Ullman, Computational Aspects of VLSI, Computer Science Press, 1984.

