
Integrated VLSI Layout Compaction and Wire Balancing on a Shared Memory
Multiprocessor: Evaluation of a Parallel Algorithm

Raghu P. Cha la~an i~ , K. "hlasiramantS and M.A. Comead
*Dept. of Electrical & Computer Engineering, Concordia University, Montreal, Canada

*$Dept. of Computer Science, University of Oklahoma, Norman, OK 73019-0631

Abstract

We first present a unged formulation to three problems in VLSI physical design: Layout compaction,
Wire balancing and Integrated layout compaction and wire balancing problems. The aim of layout compac-
tion is to achieve minimum chip width. Whereas wire balancing seeks to achieve minimum total wire length,
integrated layout compaction and wire balancing seeks to minimize wire length maintaining the chip width
at the optimum value. Our formulation is in terms of the dual transshipment problem We then review our
recent work on a parallel algorithm for the dual transshipment problem We show how this algorithm called
Modified Network Dual Simplex Method provides a unified approach to solve the three problems mentioned
above and present experimental results. Our implementations have been on the BBN Bunerjly machine. We
draw attention to certain rather unusual results and argue that if the MNDS method is used, then integrated
layout compaction and wire balancing will achieve minimum chip width and a total wire length close to the
optimum achieved by the wire balancing algorithm.

1. Introduction
The rapidly increasing complexity of VLSI circuits puts pressure on VLSI CAD took from two direc-

tions. First, the amount of data to be processed rises dramatically. Second, users have come to rely on their
tools more heavily and demand higher performance. This demaud for speed up of the VLSI physical design
process calls for an application of parallel computing technology. In recent years, there has been consider-
able interest in research in the application of parallel computing technology to VLSI CAD. Recent reviews
of this research may be foundin Ill. 121, [81.

Layout compaction is an important final step in VLSI physical design process. Compaction is very criti-
cal for full-custom layouts, especially for high perfo"ce designs. In layout compaction one starts with an
initial layout and seeks to achieve a final mask layout (without changing the topology) which has minimum
chip area and is consistent with the design rules. Invariance of network topology is required in order not to
render the previous steps of placement and routing obsolete. At the end of layout annpaction relative posi-
tions of all the circuit elements will be available. Changing the positions of these elements (to be precise,
those elements which lie on a longest path between the chip boundaries) will result in increased chip width.
But the positions of the others could be varied without causing design rule violations and yet maintainhg
compacted chip width. Complete derails of different types of compaction and their relative advantages and
disadvantages may be found in [61, [71, [lll . In the wire balancing problem, one seeks to achieve minimum
overall wire length by adjusting the positions of the elements without violating any design rules. The aim of
integrated layout compaction and wire balancing is to "ize total wire length without increasing the
area of the compacted layout. In other words, mte- layout compaction and wire balancing achieves
minimum total wire length by adjusting the positions of only those elements which do not lie on the longest
paths mentioned above.

2. The Constraint Graph Approach
The constraint graph approach [IO] to the layout compaction and wire balancing problem proceeds as

follows. From the initial layout a graph G = W, E), called the conrtrainr graph, is constructed. We assume
that the layout is Mrmhattan, Le., edges of circuit elements are either horizontal or vertical. Each node of G
represents a circuit element or a group of circuit elements that are physically connected Each node vi is
associated with a variable yi representing the position of the corresponding circuit element. In the following
the circuit element corresponding to node vi will also be referred to as vi. In G, there is an edge between two
nodes, if there is a design rule constraint between the corresponding elements. Each edge in this graph is

0-8186-6507/94 $4.00 0 1994 IEEE 49

50 1994 International Symposium on Parallel Architectures, Algorithms and Networks

associated with a real numbef, called the rokn of the edge, which captures the minimum spacing constraint
between the nodes of the corresponding edge. There are three types of conslraints: minimum, m i m u m and
equality constraints.

A minimum constraint of the type yj - yi Z a srates that vi is to the left of vi and there is a minimum spac-
ing requirement of ‘a’ units between than. This constraint can also be stated as yi - yj I -a and is represented
in G by an edge (vj vi) directed from vj to vi with an associated token mji of value -a.

A maximum constfaint of the form yj - yi I b or equivalently yi - yj Z -b is reprpsented by an edge (v ~ vj)
directed from vi to vi with token mjj of value “U’.

An equality constraint can be regarded as a pair of minimum and maximum constraints. Thus an equality
constraint will be represented by a pair of oppositely directed edges both with zero token.

Two special nodes, called the source (v,) and the sink (vJ, are used to represent the right most boundary
and the left most boundary of the layout, respectively. Circuit elements which conespond to nodes with no
outgoing edges could be placed at the left boundary, and so we add to G edges directed from each one of
these nodes to the sink vI. These edges have zero token. For a similar reason, we add to G m e t o k e n edges
directed from the source v, to the nodes with no incoming edges. The additional edges so added ensure that
the circuit elements will not be moved beyond the left and the right boundaries. These edges play a key role
in the wire balancing phase.

Besides tokens, edges are also associated with weighrs to indicate the relative costs of wires. We derive
no& weights from edge weights as follows. Let wo denote the weight of the edge (vi, vj) directed h m vi to
vi. Then the weight wi of node vi is given

Here we assume Ihat wi, = 0 if there is no wue between vi and vj. Thus a negmve node weight indicates
that moving the node to the right will degease the overall wire length and a positive node weight indicates
that moving a node to the right will increase the overall wire length.

3. Layout Compaction
Let Y denote the vector of y;s, MI the vector of m,;s and W, the vector of node weights. Let A be the

incidence matrix of G. Then in layout compaction we seek to obtain a Y Z 0 such that

A‘Y>-M*

and that the difference between the largest and the smallest y:s is as small as possible. Thus we can formu-
late this problem as an LP problem as follows.

Minimize: y3 - yr
subject to

A‘ Y 2 -MI

Y 20.
Assuming that the position of the sink is at zero coordinate, the above formulation can be written as

Minimize: y,
subject to

A‘ Y Z -M‘
Y 2 0. (1)

The works in [4], [5] present an algorithm to obtain a feasible solution of the consaainls in (1). This
algorithm called FEASIBLE, in fact solves the above layout ampaction problem if there are no negative-
token directed circuits. (A directed circuit has negative token if the sum of the tokens of all edges in the cir-
cuit is negative.) In other words, the yi values obtained by algorithm FEASIBLE will in fact result in mini-
mum chtp width. If we assume that there are no negative-token direUed circuits, then the yi-values obtained
at the end of FEASIBLE represent tbe positions of the d i f f m t circuit elements. Each nodevi with yz = 0
will be at the left boundary and eacb vi with the maximum yi will be at the right boundary. It can be shown
that the maxi“ yz-value in fact is the length of the most negative token directed path in G from the source
to the sink. In aaditional approaches, such a path in fact corresponds to a longest path from the sink vt to the
source v,.

Session B1: Algorithms 51

4. Wire Balancing

The wire balancing problem where we seek to find a Y which minimizes c w i y i can be formulated as
the following linea programming problem. 1

Minimize: w ' Y
subject to

A'Y>-M'

Y 2 0. (2)
The above linear programming problem is the dual of the transshipment problem discussed in detail in

[3], and is therefore called the dual transshipment problem (DTP).
Note that layout compaction (1) is a special case of the wire balancing problem. Algorithm FEASIBLE

determines y;s which satisfy A' Y 2 -M ' and so this algorithm determines a feasible solution for both (1)
and (2). Thus algorithm FEASIBLE serves as a link between the layout compaction and wire balancing
problems.

5.
As Algorithm FEASIBLE progresses, the value yi - yj + mi, of each edge is modified. We shall call yi - yj

+ mu as the residual token of edge (i, j) . When all the residual edge tokens are non-negative (that is yi - y, +
mu 2 0), the algorithm terminates. Let yi = & at the end of Algorithm FEASIBLE. Interestingly, at termina-
tion the residual tokens of the edges on the most negative token directed path in G from vs to v, will all be
zero. In other words, for every (i, j) on such paths yi - yj + mu = 0. So by a simple traversal of G starting from
vr we can identify all the nodes on these most negative token paths. Let SI denote the set of these nodes.

and adjust the
y-values of those nodes not in SI so that total wire length can be minimized without increasing the area of the
layout. Thus we have the following formulation of the integrated compaction and wire balancing problem.

Integrated VLSI Layout Compaction And Wire Balancing

Our aim in integrated compaction and wire balancing is to keep each node vi E SI at yi =

Minimize: w ' Y
subject to

A' Y 2 -MI

Y 2 0. (3)
yj = hi, for vi E SI,
yi 2 0, for all other v i ,

But, as seen above constraint (4) can be replaced by:
y.- . + m . . = O

I yJ B

(4)

(5)
for every edge (vi, vj) on a most negative token path from v, to vt.

Now it is a simple matter to represent each of the above equality constraints by adding to G oppositely
oriented edges with tokens mi, and mu between vi and v, , and between v, and vi and then proceed with the
solution of the resulting optimization problem. However, such an approach will result in a significant
increase in the size of the graph. In fact, we can considerably reduce the size of the graph as discussed
below.

Constraint (5) suggests that in any new solution of the wire balancing problem,
yi = + k, for vi E S ,

where k is a fixed " a n t . We can take advantage of this property as follows.
We conshuct a new graph G by replacing the nodes in S, by a single new node, say, vl, and then remov-

ing all the edges connecting the nodes in SI. Consider now an edge (vi, vj) in G. If vi 0 SI and vj t SI, G will
have an edge (vi. vj) with token 4~ If vi E SI, then G' will have an edge (VI. vj) with token (& + mu). If vj E
SI , then G will have an edge (vi, V I) with token (-hi + mu). If after this conbruction, there are parallel edges,
in G, between two nodes then we can remove all of them except the one with the smallest token. Let the
new graph be denoted by G". In G" the weight Of every node vi 0 SI will be equal to wi. For the new node V I

representing Sl, the weight w, will be given by
w = c wi.

V i " s1

52 1994 International Symposium on Parallel Architectures, Algorithms and Networks

We now have the following formulation of the integrated compaction and wire balancing problem, where
wb y“ mg refer to the quantities defined for G‘.

MinimizeCwiy i
i

subject to
A‘Y 2 -M‘
Y 2 0,

where A is the incidence maaiX of G .
Note that the y,-valw given by algorithm FEASIBLE, define a feasible solution of (2). In this feasible

solution y, = 0, and yi = l+, i # 1 where the node VI represents graph S, of nodes and l+ is the value of yi given
by algorithm FEASIBLE.

6.
The simplex method of linear p m g m m ” g when applied to solve the dual aanssbipment problem

@TP) is called the nerwork dual simplex method. A W e d presentation of the simplex metbod and its
applications to network optimization problems may be found in (31.

1.

Modified Network Dual Simplex Method: A Review

’Ihe following are the main steps in the network dual simplex metbod:
Construct an initial basic feasible solution YO, if it exists. ’Tbi is achieved by constructing an auxiliary
graph and applying the dual simplex metbod on this graph. This step detects infeasibility of the DTP,
whenever thii is the case.
Perform a pivot operation, if this is permissible. This results in an improved value for the objective
WY.
Check the new basic feasible solution for OpIimality. (The solution is optimum, if the colresponding
basic feasible solution permits no pivot operation.) If the solution is optimum, then the algorithm ter-
mi-. Otherwise, repeat step (2) staaing from the current basic feasible solution.

As can be seen from the above, the network dual simplex method moves from one basic solution to
another. performing one pivot operaIion at a time. Any parallel implementation of this method will focus on
the parallelisation of the pivot operation. But during a pivot operation only a small subgraph of the given
graph will be involved. Thus, such an approach does not offer much scope for acbieving good speed up.

The above difficulty can be resolved by permitting concurrent pivot operations. But at the end of concur-
rent pivots, the resulting solution may not be basic. Thus, we need an algorithm to generate a basic feasible
solution from a given feasible solution. But while doing so, we should ensure tbat the objective value W‘Y
never inmeases. In [9], we have described a new method called the Modified Network Dual Simplex
(M N D S) which addresses these concerns.

An outline of MNDS is as follows.

Modi6ed Network Dual Simplex (MNDS) Method
1.

2.

3.

Test feasibility of the DTP. (Apply Algorithm FEASIBLE.) If feasible, consmct a feasible solution Y,
otherwise, the algorithm terminates.
(Steps 2 - 4 construct, from a given feasible solution Y, a basic feasible solution Y’ with dy’ 5

Consauct the subgraph of the given graph which contains all the edges with zero residual tokens;
determine the connected components of this subgraph. Coalesce the nodes in each component and con-
struct a condensed graph G .
Perform shortest path computatiom on the condensed graph and update. the yz-values.
Repeat steps (2) and (3) until all the nodes coalesce into a single node. (At this point, the edges with
zero residual tokens will span all the nodes of the original graph; a spanning tree with all its edges bav-
ing zem residual tokens will define a basic feasible solution.)
Check the optimality of the basic feasible solution obtained in step 2. If it is optimal, the algorithm ter-
minates; otherwise, perform ccmcurrent pivot operations resulting in a new feasible solution Y.

W9.)
2.

3.
4.

5 .

6. R e p e a t ~ t e p ~ 2 - 5 . 0
Note that MNDS does not require constructing an auxiliary graph to construct a basic feasible solution.

Session B1: Algorithms 53

This is an attractive fealnre from the point of view of paralleVdistributed implementation.

7. Application of MNDS to Layout Compaction, Wire Balancing and Integrated
Layout Compaction and Wire Balancing Problems

We now show how the MNDS method provides a unified approach to solving the layout compaction,

To achieve layout compaction, apply Algorithm FEASIBLE to the constraint graph (Step 1 of MNDS

To achieve wire balancing, apply the MNDS method on the constmint graph with weights assigned to

To achieve integrated layout compaction and wire balancing, adapt MNDS as follows:

wire balancing and integrated layout compaction and wire balancing problems.

described in Section 6).

nodes. (See Section 2.)

1.
2.

3.

4.

5. Repeat steps 3 and 4 until the solntion is optimal.

8. Experimental Evaluation and Conclusion

Apply Algorithm FEASIBLE (Step 1 of MNDS) and obtain the feasible solution Y.
Coalesce all the nodes which lie on the longest paths from the sink to the source and consmct the con-
densed graph G ‘ (described in Section 5). Using Y, obtain the feasible solution Y’ for G .
Starting from the feasible solution Y’, consmct a basic feasible solution for (3”. (See Steps 2 - 4 of
MNDS.)
If the basic feasible solution obtained at step 3 is not optimal, perform concurrent pivot operations
which result in a new feasible solution Y .

0
Note that steps 3 - 5 above correspond to applying MNDS on (3”. (See Section 5.)

We have applied our algorithm for integrated layout compaction and wire balancing described in Section
7 on large industrial designs received from Cadence Design Systems. Our implementations have been on the
BBN Bumrlly shared memory machine. The execution rimes and speed-ups for different numbers of proces-
sors are given in Tables 1 - 5.

For these designs, we have also summarised in Table 6, the savings in layout area and total wire length
achieved by wire balancing as well as by integrated layout compaction and wire balancing. me correspond-
ing algorithms are as outlied in Section 7.

Observation 1
For all the graphs, in particular large graphs, the chip width at the end of wire balancing (MNDS algo-

rithm) is not significantly larger than the optimum chip width obtained by Algorithm FEASIBLE. (Step 1 of

Observation 2
For all the graphs, in particular large graphs, the total wire length at the end of integrated layout compac-

tion and wire balancing is not significantly larger than the o p t i ” wire length obtained by wire balancing.
The above, rather unusual, results can be explained as follows.
Consider the MNDS algorithm of Section 6. We shall refer to one application of Steps 2 - 5 of this algo-

rithm as one pass of MNDS. Similarly, one application of the corresponding steps 3 and 4 of the integrated
layout compaction and wire balancing algorithm will be referred to as one pass of this algorithm.

1.

2.

3.
4.

5.

Results of Table 6 lead to the following two important observations.

MNDS).

Now, we have the following.
In several cases that we have considered, MNDS requires no more than 5 passes. Also, a significantly
large percentage of the wire length minimization occurs in the first pass itself.
In their first steps, both the wire balancing (MNDS) and the integrated layout compaction and wire bal-
ancing algorithms place the nodes at positions which give minimum chip width.
Step 2 of both these algorithms perform identical computations (determining the condensed graph).
Also, in the first pass, steps 3 and 4 of the wire balancing algorithm and step 3 of the integrated layout
compaction and wire balancing algorithm perform identical operations.
Step 5 of MNDS and Step 4 of the integrated layout compaction and wire balancing algorithm differ in
the first pass. Whereas pivots performed by MNDS may change the yi values which may result in

54 1994 International Symposium on Parallel Architectures, Algorithms and Networks

larger chip width, the pivots performed by the integrated layout compaction and wire balancing a l p
rithm do not change the chip width since these operations are on G .

Thus, both these algorithms start with the same initial solution (optimum chip width) and do not si@-
cantly differ in their first passes. C o m b h g this with the fact that MNDS achieves a significant amount of
optimization in the 6rst pass itself, we have strong reason to infer that:

The integrated layout compaction and wire balancing algorithm of Section 7 achieves optimum
chip width and a total wire length which is not significantly different from the optimum wire
length achieved by the wire balancing algorithm.
Since a good part of the integrated layout compaction and wire balancing algorithm operates
on a condensed graph, usually it takes about 30% less time than the wire balancing algorithm.
As a result, one would prefer to use the integrated layout compaction and wire balancing algo-
rithm to achieve optimum chip width and a total wire length close to optimum.

We should add that this important inference may not be true if the traditional dual simplex method is
used to solve wire balancing problem.

Acknowledgements
We would l i e to thank Mr. Ravi Varadarajan of Cadence Design System, Inc. for providing us the test

graphs for layout compaction and wire balancing problems. We would also l i e to thank Dr. C. Tropper of
McGill University for providing access to the BBN Butterfly parallel computer.

References
Aganval, P., “VU1 Computer Aided Design Using Multiprocessing Systems,” Technical Report,
AT&T, Bell Labs, Murray Hill, N.J., 1991.
Banerjee, P., “The Use of Parallel Processing for VLSI CAD Applications: A Tutorial,” Proc. Inrl.

Chvatal, V., Linear Programming, fieeman Company, Potomac, Maryland, 1983.
Comeau, M.A. and K. Thulasiraman, “Structure of the Submarking Reachability Problem and Network
Programming,” IEEE Trans. Circuits and System, Vol. CAS-35,89-100, 1988.
Comeau, M.A., K. Thulasiraman and K.B. Lakshmanan, “An Effcient Asynchronous Distributed Re
tocol to Test Feasibility of the Dual Transshipment Problem,” Roc. Allerton Conf. on Communication,
Control and Computer, Univ. of Illinois, Urbana, 634-640, Sept. 1987.
Lengauer, T., Combinatorial Algorithms for Integrated Circuit Layout, John Wiley & Sons, England,
1990.
Sherwani, N., Algorithms for VU1 Physical Design Automation, Kluwer Academic Publishers, MA,
1993.
Tham, K.Y., “Parallel Recessing for CAD Applications,” IEEEDesign Test. 13-17, October 1987.
Thulasiraman, K., R.P. Chalasani and M.A. Comeau, “Parallel Network Dual Simplex Method on a
Shared Memory Multiprocessor,” Proc. 5th IEEE Symp. on Parallel and Distributed Processing. 408-
415,1993.
Yoshimura, T., “A Graph Theoretical Compaction Algorithm,” Pmceedings of the 1985 IEEE Inrema-
tional Symposium on Circuits and Systems, 1455-1458.1985.
Wolf, W.H. and A.E. Dunlop, “Symbolic Layout and Compaction.” in “Physical Design Automation of
VLSI Systems,” Edited by Reas, B. & M. Loremetti, 1988.

Con$ on CAD, ICCAD-88,1988.

Session B1: Algorithms 55

T h e in
Seconds

9.94
5.80
4.32
3.69
3.39
3.18
2.65
2.81
2.22
2.10

Parallel

speea UP
1.0
1.7
2 3
2.7
2.9
3.1
3.8
3 5
4.5
4.7

I Parallel
F ' I o ~ " I Seconds

No of
Procesxm

1
2
3
4
5
6
7
8
9
10

'Ilme in P d e l
Seconds spes UP

16.77 1.0
10.01 1.7
8.04 2.1
6.58 2.5
5.99 2.8
5.84 2.9
5.35 3.1
5.06 3.3
4.93 3.4
4.92 3.4

ij

1 .o
2.1
3.0
3.8
5.2
5.3
5.5
6.6
7.9
6.9
9.4
10.2
9.6
8 A

8.6
S5 noder

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

No of
PrOeeSSOIS

1
2
3
4
5
6
7
8
9
10

6246.28
2940.98
2099.63
1654.00
1206.52
1169.54
1131.48
949.17
793.67
901.98
66351
609.81
653.85
741.68
724.64

Table 2: Graph with 157 n0d.s

No of
hcessors

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Table

Tune in
Seconds

10013.66
4882.85
3055.94
2512.66
2353.02
1922.75
1731.23
1567.94
1415.48
1487.65
1320.82
1389.09
1175.26
1176.46
1307.63

I: Graph wlth

Parallel

sped UP

1 .o
2.1
3.3
4.0
4.3
5.2
5.8
6.4
7.1
6.7
7.6
7.2
8.5
85
7.7

'12 nodes

56 1994 International Symposium on Parallel Architectures, Algorithms and Networks

T i e in
Seconds

33738.35
16606.27
1183075
9313.02
8157.26
6807.90
5655.07
5126.10
5162.44
4557.98
4453.89
4217.13
4089.29
4075.00
3881.05

No of
Processors

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Parallel

speed UP

1.0
2.0
2.9
3.6
4. I
5.0
6.0
6.6
6.5
7.4
7.6
8.0
8.3
8.3
8.7

35.65788

Table 5: Graph with 2087 nodes

49600

Objective I hpm;ment I Chipwidth I Improzment I
x 108

33.35350 6.46

I Layoutcompaction I
49600 0 I WireBalancing I

I 8.270312 I - I 123800 I - I
I Integrated Layout Compac- I tion & Wire Balancing

I 6.396859 I 22.65 I 128300 I -3.63 I

149

I WireBalancing I 157

I 11348.29 I - I 331450 I - I

I Layoutcompaction I 8.2703 12

6.396859

6.654659 I
~~~~~~ 

Integrated Layout Compac- 
tion &Wire Balancing 

123800 

22.65 128300 -3.63 

19.54 123800 0 6.654659 

O I  
33.35350 I 6.46 I 49600 I 

l o l  19.54 123800 

I Layoutcompaction I 

tion &Wire Balancing 

5636.508 50.33 370250 -11.71 

6239,136 45.02 331450 0 

Layout Compaction 

Wire Balancing 

Integrated Layout Compac- 28140 84 46.38 321000 
tion & Wire Balancing 

Layout Compaction 

Integrated Layout Compac- 307.7869 1016000 
tion & Wire Balancing 

Table 6: Savings in Chip Width and Total Wire Length 


