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Abstract —The problem of obtaining a planar embedding of a bicon-
nected planar graph is discussed. Our approach is based on the planarity
testing algorithm of Lempel, Even, and Cederbaum {15] and its implemen-
tation using PQ-trees [20]. In the planar embedding, the vertices of the
planar graph are placed in the plane at different horizontal and vertical
levels such that no two distinct vertices appear in the same horizontal or
vertical level, and higher numbered vertices appear at higher vertical levels.
The left-to-right order of the vertices in such a planar embedding is called
the vertex order. For each vertex i, the anticlockwise order in which edges
enter /i from lower numbered neighbors is denoted by 7(i). Linear-time
algorithms to determine 7(i)’s for all i, and the vertex order are devel-
oped. The vertex order captures the structural information about the
relative placement of vertices in a planar embedding provided by the
PQ-tree reduction algorithm. A systematic procedure to obtain an inter-
section-free drawing of the edges is described. A linear-time algorithm to
construct a very compact horvert representation [9] of a planar graph is
also presented. This algorithm, unlike those in [12], [13] does not require
the construction of the dual of the original graph.

I. INTRODUCTION

GRAPH is planar if it can be drawn on a plane with

no two edges crossing each other except at their end
vertices. Testing a graph for planarity and embedding a
planar graph in the plane have several applications. For
example, the design of integrated circuits and the layout of
printed circuit boards require testing whether a circuit can
be embedded in the plane without edge crossings. Opti-
mum single-row routing problem with no edge crossings
involves planarity testing and planar embedding [1], [2].
Several cases of the routing problem have been shown to
be equivalent to constructing planar embedding of special
classes of graphs [3]. Determining isomorphism of chem-
ical structures is simplified if the structures are known to
be planar [4], [5]. A maximum cut in a graph can be
determined efficiently if the graph is planar [6], whereas
this problem is NP-complete for an arbitrary graph [7].
Because of the great practical interest, these two problems
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—planarity testing and planar embedding—have been ex-
tensively studied in the literature.

This paper is concerned with the problem of obtaining a
planar embedding of a planar graph. One of the earliest
algorithms to construct a planar embedding of a planar
triconnected graph was proposed by Tutte [8]. In [9] Otten
and van Wijk presented an algorithm to construct what is
called the horvert representation of a planar graph. In this
representation vertices are represented by horizontal
straight-line segments and edges are drawn as vertical
straight-line segments. More recent works on the planar
embedding problem may be found in [10]-{13].

There are two efficient O(n)-time algorithms to test the
planarity of a graph G with n vertices [14], [15]. These
algorithms test G for planarity by trying to construct an
embedding of G in the plane. Tarjan [16] has shown that
his planarity testing algorithm can be used to construct a
planar embedding and given the details of how to do this
“by hand.” Williamson [17] and Brehaut [18], [19] have
discussed planar embedding algorithms based on the ideas
of Hopcroft and Tarjan’s planarity testing algorithm. In
[10], Chiba er al. study the planar embedding problem
using Lempel, Even, and Cederbaum’s planarity testing
algorithm, in short the LEC algorithm and its implementa-
tion based on PQ-trees [20].

In this paper we discuss the problem of obtaining a
planar embedding of a planar graph using the LEC al-
gorithm. To make our presentation self-contained, we
briefly discuss the LEC algorithm in the next section. We
describe in Section III the principle underlying our ap-
proach for the planar embedding problem and also sum-
marize the main contributions to be presented in the
subsequent sections.

II. LEeEMPEL, EVEN, AND CEDERBAUM’S PLANARITY
TESTING ALGORITHM AND ITS IMPLEMENTATION
USING PQ-TREES

Consider a simple biconnected graph G = (V, E) with
n=|V| vertices and m=|E| edges. The LEC algorithm
first labels the vertices of G as 1,2,-- -, n using what is
called an st-numbering [21}, [22). The graph G is then
called an st-graph. Usually in an st-graph, edge (i, j),
i< j, is oriented from i to j. Also in an st-numbering,
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Fig. 1.

st-graph G.

vertices 1 and n are adjacent and each vertex other than 1
and n is adjacent to at least one lower numbered vertex
and to at least one higher numbered vertex. Let G,,
<ks<n, denote the subgraph of G induced by the vertex
set V.= {l 2,---,k}. We define the subgraph B, as fol-
lows. G, is a subgraph of B,. In addition to G,, B,
consists of all the edges of G which emanate from vertices
of V, and enter, in G, vertices of V' —V¥,. These edges are
called virtual edges and the vertices they enter in V-V,
are called wvirtual vertices. The virtual vertices are labeled
as their counterparts in G; but kept separate. Thus in B,
there may be several vertices with the same label, each
with exactly one entering edge.
Let G be a planar embedding of a planar st-graph G. It
can be shown [23] that if Gk is a planar embedding of G,,
then all the edges and vertices of G — G « can be drawn on

one face of G,. Thus we can assume, without loss of
generality, that for a planar sz-graph, there exists a planar
embedding of B, in which all the vertices are drawn on the
outside face. Then we can draw B, such that vertex 1 is at
the lowest level; all the virtual vertices appear at the
highest level on one horizontal line; and the remaining
vertices of G, are drawn such that vertices with higher
labels are drawn higher. Such a realization of B, is called a
bush form of B,. For example, the bush form B, of the
st-graph G of Fig. 1 is shown in Fig. 2.

It has been proven [23] that the st-graph G is planar if
and only if for every B,, 2 <k < n—2, there exists a B]
isomorphic to B, such that in B} all the virtual vertices
labeled k +1 appear consecutively. Let v be a cut vertex in
B,. Then, as a consequence of st-numbering, v will be the
lowest vertex in all the maximal biconnected components
(except the component containing 1) with respect to v.
These biconnected components, called blocks, will have
the same structure as a bush form. Hence they are called
subbushes. It can be shown that B}, whenever it exists, can
be obtained by performing an appropriate sequence of
flippings and/or permutations of the subbushes around
cut vertices in B,. Bush form B, can then be formed by
merging all the virtual vertices labeled & +1. Booth and
Lueker [20] have shown that this could be done efficiently
if each B, is represented by a data structure called PQ-tree.

The PQ-tree T, corresponding to the bush form B,
consists of three types of vertices.
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Fig. 2. Bush form B,.

(1)  Leaves in T, represent virtual vertices in B,. A leaf
has the same label as the virtual edge which enters
the corresponding virtual vertex.

(ii) P-nodes in T, represent cut vertices in B,. A
P-node is labeled as the cut vertex it represents.
The leaf corresponding to the virtual edge (i, j),
i < j, is a child of the P-node representing i.

(ili) Q-nodes of T, represent the maximal biconnected
components in B,. Let y, y,,---, ¥, be the cut
vertices (except the lowest vertex) appearing in that
order on the outside window of a maximal bicon-
nected component. Then this component is repre-
sented by a Q-node whose children are the P-nodes
corresponding to y,, y,,: - -, ¥, Furthermore, these
children appear in the same left-to-right order as
the order of the corresponding cut vertices on the
outside window of the maximal biconnected com-
ponent. The Q-node representing a biconnected
component is a child of the P-node which repre-
sents the lowest cut vertex in this component.

From the above it can be seen that there is a natural
correspondence between bush form B, and the PQ-tree
T;. A few definitions are now in order. Let S(k +1)
denote the set of leaves in T, which correspond to the
virtual vertex k +1. A node X in T} is said to be full if all
its descendant leaves are in S(k +1); empty if none of its
descendant leaves are in S(k +1); otherwise, X is partial.
If X is full or partial, then it is called a pertinent node. The
frontier of T, is the sequence of all the leaves read from
left to right. The pertinent subtree of T, with respect to
S(k +1) is the subtree of minimum height whose frontier
contains all the leaves in S(k +1). The root of the perti-
nent subtree is called the pertinent root. For example, the
PQ-tree T, corresponding to the bush form B, of graph G
is shown in Fig. 3.

Two PQ-trees are considered equivalent if one can be
obtained from the other by performing one or more of the
following types of operations.

(1) Reversing the order of the children of a Q-node.
(i1) Permuting the children of a P-node.

It can be shown that B} exists if and only if T} can be
converted into an equivalent PQ-tree T such that all the



336

J )

DN RE

(2.11) (9.11) (4.12) (5,11) (6,10)

(8.11) (8,12) (3,10) (3,11)

Fig. 3. PQ-tree T, corresponding to B,.
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Fig. 4. PQ-tree Ty*.

pertinent leaves appear consecutively in the frontier of 7.
Booth and Lueker have defined a set of patterns and
replacements using which T can be reduced into a PQ-tree
T in which all the pertinent leaves appear as children of
a single node. Such a T}* can be constructed whenever T}/
exists. PQ-tree T, ., can be constructed from T;* by
replacing all the leaves corresponding to the virtual vertex
k+1 by a P-node whose children are the leaves corre-
sponding to the virtual edges which enter vertices higher
than k +1 in G. For example, for the PQ-tree T of Fig. 3,
T,* and T, are shown in Figs. 4 and 5, respectively.

The LEC algorithm starts with 7, and constructs the
sequence of PQ-trees T;,T,, - - . If the graph G is planar,
then the algorithm terminates after constructing 7, _i;
otherwise, it terminates after detecting the impossibility of
reducing some T, into T).. The crucial result in the com-
plexity analysis of the LEC algorithm is stated in the
following theorem [20].

Theorem 1:
The sum of all the pertinent nodes in the PQ-trees
T,,T,,---,T,_, of a planar graph is O(m + n). [ |
III. BusH FORMS AND 7’-ORDER

In this section we first discuss the principle underlying
our procedure for drawing a planar embedding of a planar
graph G using the different bush forms constructed by the
LEC algorithm. We assume, without loss of generality, that
every vertex in G is of degree at least three. For any vertex
i,2<i<n,let T7(i) be the set of lower numbered neigh-
bors of i. Let B,= B}, B,,B;,---, B, B/,---, B,_, be the
sequence of bush forms generated by the LEC algorithm.
Consider now the virtual edges entering vertex i in B/ ;.
The left-to-right order of these edges imposes an anticlock-
wise order around i among the vertices in T'* (7). We call
this order as the 7’-order in B, for vertex i,7/(i). In
general, 7-order of vertex i in a planar embedding of G
will refer to the anticlockwise order around i of the edges
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entering i from lower numbered vertices as well as to the
corresponding order of the lower numbered vertices. In the
PQ-tree T;*,, the pertinent leaves corresponding to the
virtual edges entering vertex i in B/_; appear consecu-
tively as children of a single node in the same left-to-right
order as the virtual edges. Also, the pertinent root is a
Q-node provided |'(i)| > 1. So, if (vy, i), (v, i), - (v, 1),
J =1, is the left-to-right order of these pertinent leaves in
T.*,, then 7'(i) = (v,,v,,* -, ;). Thus 7/(i) for each i can
be constructed from the corresponding 7,*,. For example,
from the PQ-tree T,* shown in Fig. 4, we get 7/(10) =
(3,1,6).

In T,* ,, the leaf corresponding to the virtual edge (1, n)
is a child of the P-node labeled 1. Since each vertex of G
has degree at least three, all the other children of this
P-node are Q-nodes. These Q-nodes can be merged into a
single Q-node because all of them are full Q-nodes. The
order of all the edges incident into vertex n, except the
edge (1, n), is determined by the left-to-right order of their
appearance as children of this new Q-node. Let (v, n),
(vy, 1), -,(vy, n), k =1, be this order. The edge (1, n) has
the freedom to appear either on the left or on the right of
this sequence of edges. Moreover, vertex 1 will appear in
the r’-order of some other vertex less than n. So we omit
vertex 1 from 7'(n), and thus 7/(n) = (v, v, - -, v,).

Note that during the bush growing process blocks un-
dergo flippings. The 7’-order for a vertex i gets reversed
whenever a block containing i is flipped while growing a
bush B,, k> i. Thus the r-order of vertex i/ in the final
embedding of G may not be the same as 7'(i). In Section
IV we develop an algorithm to obtain the r-orders for all
the vertices in the final planar embedding of G. An alter-
nate algorithm to determine 7-orders may be found in [10].
In the final embedding we shall place the vertices at
different vertical levels. If we assume that no two distinct
vertices of G appear on the same horizontal level, then by
scanning such an embedding left-to-right we can obtain a
horizontal order of the vertices of G. Let us call this
horizontal order the vertex order. In general, the vertex
order is not unique. We impose a property on the vertex
order which reflects the information provided by the PQ-
tree reduction process as to the relative placement of the
vertices. In Section V we develop an O(n) algorithm to
obtain such a vertex order from the r-orders of the vertices
in the final planar embedding of G. While 7(i) specifies
the anticlockwise order around vertex i/ in which the edges
entering vertex [ should be drawn, unfortunately, this
information alone is not sufficient to construct an intersec-
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(b)

Fig. 6. (a) A drawing with intersection. (b) An intersection-free
drawing,

tion-free drawing. For example, consider Fig. 6(a). Here
7(6) = (1,5). So the edges (6,1) and (6, 5) have to be drawn
in that order. If these edges were drawn as shown in Fig.
6(a), then when vertex 9 is embedded at a later time, there
would be no way to draw the edge (9,4) without intersect-
ing some of the edges already drawn. To avoid this prob-
lem, we should have drawn the edges (6,1) and (6,5) as
shown in Fig. 6(b). This example shows that to obtain an
intersection-free drawing, the edges should also be drawn
in an appropriate way if we wish to avoid redrawing any of
the edges already drawn. In Section V we study this
question further and present a procedure to draw the edges
of G. Finally, in Section VI, we present an O(n) algorithm
to construct a very compact horvert representation of a
planar graph. This algorithm is quite simple and uses only
the 7-orders of the vertices. Unlike those in [12], [13], it
does not require construction of the dual of the given
planar graph.

IV. BLOCK GRAPH AND 7-ORDER

In order to determine the 7-orders of the vertices in the
final planar embedding of a planar graph G, we first
discuss how the blocks are formed during the bush grow-
ing process. Consider the bush form B/ ;. The virtual
edges entering vertex i emerge from vertices on the outside
window of the maximal biconnected components, or blocks,
of B;_;, say Cqy, Gy *» and Cy,. When B, is con-
structed by merging these virtual edges, C,;), Ci2),° * *» Gy
merge to form a new block. We denote this block by C,,
indicating that i is the highest vertex in this block. The
blocks C,), Ci(z)»" * *» Ciky are precisely those represented
by the Q-nodes in the pertinent subtree of 7;_,. They are
considered to be enclosed by C,. For example, the block
C,o of the graph in Fig. 1 is obtained by merging (¢, Cy
and the trivial block containing only the vertex 1. Thus Cyq
encloses C; and C; and C;. It is easy to see that
*,Cyxy Will not be blocks in the bush forms

s “n—-1-

Ci(l)’ Ci(2)’ o

i Piv1™ "
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Fig. 7. Block graph.

While growing the bushes, C; may be involved in several
permutations and flippings. Permutations do not affect the
'-order of any vertex in C;. On the other hand, flipping C;
reverses the r’-order of i. Furthermore, if C; encloses C,
then the 7’-order of j will also be reversed whenever C; is
flipped. Since our interest is to determine the r-order of
each vertex in the final embedding of G, we need to
determine the status of each block, namely, reversed or
not, in the final embedding. Let 7(i) denote the 7-order of
vertex i in the final embedding of G. If 7,(i) denotes the
list obtained by reversing the list 7'(i), then (i) is equal
to either 7'(i) or 7.,,(i).

To develop an efficient algorithm for determining the
status of each block in the final embedding, we construct a
labelled directed graph called the block graph. If C; is a
block with only one edge then 7'(i) will have only one
vertex in it. As a result, flipping C; will have no effect on
(i) and so 7(i)=7'(i). So, in our discussion we will
consider only those blocks which have at least three edges.
Such blocks will be referred to as non-trivial blocks. In the
block graph vertices represent non-trivial blocks and edges
represent the enclosing relation among them. We denote
the vertex representing block C; as ¢;, and with each vertex
we associate a label. The label of vertex c; is R if block C;
is reversed when the first block enclosing C; is formed;
otherwise the label is NR. If block C; encloses the blocks
Ciays Ciayr***»Cixy» then in the block graph we draw
edges directed from vertex c; to each one of the vertices
€y Ci2)r” * *s Cigky- The blocks enclosed by C; can be easily
identified during the PQ-tree reduction process, since the
corresponding Q-nodes, Q;q, Qiz» * > Qx> are all pres-
ent in the pertinent subtree of 7, ;. Note that during
reduction (i —1), when we transform T,_, to T;*,, these
nodes are processed and merged.into a single Q-node
representing C;. As an example, the block graph of the
planar st-graph G shown in Fig. 1 is given in Fig. 7.

To determine the label of each vertex in the block graph,
consider the reduction (i —1). Since the label of each of
the blocks which C, encloses indicates the status of that
block, namely, whether the block is reversed or not, when
C, is formed, it is necessary that we keep track of the
flippings which the blocks undergo as reduction (i —1)
progresses. For this purpose, we construct what we call the
ith intermediate block graph which is denoted by IBG(J).

To start with, we add to IBG(i) vertices to correspond
to the Q-nodes in the pertinent subtree of 7, ; and
associate with each one of these vertices the label NR.
Suppose a node, say X, in T,_, is being processed and that
Qs Q- Q, are the Q-nodes which are pertinent children
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of X. First consider the case that X is a P-node. Let Q
be the Q-node created after the processing of X is com-
pleted. Then we add to IBG(i) a vertex, say gy, to corre-
spond to Q » and an edge directed from gy to each one of
the vertices representing Q, Oy, * -, Q. The label of g, is
NR. On the other hand, if X is a Q-node, then IBG(/) will
contain a vertex, say gy, corresponding to X. In this case,
as before, we add to IBG(i) an edge directed from gy to
each one of the vertices corresponding to Q, Oy, -, Q,. If
any of the nodes Q 3 Q>+ *» Q, is reversed while processing
X, then we change the label of the corresponding vertex in
IBG(i) to R. Note that IBG(i) is essentially a directed tree
in which each leaf corresponds to a Q-node in T,_, repre-
senting a block of G;_;. The root of IBG(i) will represent
the block C; and its label is NR.

The labels of the vertices in the block graph representing
the blocks Cy, Ci),°  *» Ci(xy €nclosed by C; can be de-
termined as follows. We traverse IBG(i) depth-first start-
ing at its root. Suppose, during this traversal, we are at
vertex y. If the label of y in IBG(i) is R, then we switch
the labels of all the children of y in IBG(i). (By switching
the label we mean setting the label to R if its current value
is NR, or setting the label to NR if its current value is R.)
At the end of the traversal of IBG(i), we can determine
from the vertex labels whether a block enclosed by C; is
flipped in the embedding of C;. These labels are then given
to the appropriate vertices in the block graph.

In the following, FIND-LABEL-IBG(i) will refer to
the procedure which constructs IBG(i) and determines the
labels (in the block graph) of the vertices representing the
blocks enclosed by C,.

Theorem 2:

Cost of procedure FIND-LABEL-IBG(i) is O(N,),
where N, is the number of pertinent nodes in 7;_;.

Proof: It can be seen that the number of leaves in
IBG(i) is no more than N,, the number of pertinent nodes
in T,_,. Note that IBG(i) is a directed tree and each
internal vertex of this tree has out-degree at least 2 because
we consider only non-trivial blocks. This means that IBG(i)
has O(N,) edges. So the cost of constructing IBG(i) and
the cost of traversal of IBG(i) to determine the labels of
its vertices are both O(N;). The theorem follows since the
procedure FIND-LABEL-IBG(i) involves only these two
Costs. |

We now give a formal presentation of our procedure to
construct the block graph. In this procedure, the labels of
the vertices of the block graph are stored in the array
STATUS. ,
procedure BLOCK -GRAPH;
comment procedure BLOCK-GRAPH constructs the block

graph and stores the status information of each
block during the PQ-tree reduction process.
STATUS(:) represents the status of block C; in
the block graph.

begin
fori==2ton—1do
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begin
{Construct the block graph and determine the status
of the blocks}
FIND-LABEL-IBG(i);
for each pertinent Q-node Q; in 7;_, do
begin
draw a directed edge from c; to c;;
STATUS ()= label of Q; {as obtained by
FIND-LABEL-IBG(i)}
end;
obtain Tj;
{The Q-node which is the pertinent root in T;*,
represents block C;}
STATUS (i) == NR
end
end BLOCK-GRAPH;

In Fig. 7 we have shown within parentheses the label
of each vertex in the block graph for the planar graph of
Fig. 1.

Theorem 3:

Procedure BLOCK-GRAPH correctly constructs the
block graph and determines the status information of each
block in O(n) time.

Proof: Correctness of the procedure follows from our
discussion so far. To find the complexity, note that the
cost of procedure BLOCK-GRAPH during reduction
(i —1), exclusive of the cost for procedure FIND-
LABEL-IBG(i), is proportional to the number of blocks
enclosed by C;. From Theorem 2 the cost of procedure
FIND-LABEL-IBG(i) is proportional to the number of
pertinent nodes in 7;_,. Hence the overall cost of proce-
dure BLOCK-GRAPH is proportional to the number of
pertinent nodes in all T;’s. Thus from Theorem 1 the
complexity of procedure BLOCK-GRAPH is O(m + n)
which is O(r) for a planar graph. ]

Having obtained the block graph and the status of each
block in it, we now need to find whether a block will be
reversed in the final embedding of G or not. This will
determine 7(i) for each vertex i. Note that block C, will
not be present in the block graph because it is not processed
during any reduction. Also blocks C;, 2<i<n—1 will be
present in the block graph if and only if |7'(i)| >1. As in
the procedure FIND-LABEL-IBG(i), we determine the
t-orders by traversing the block graph in a depth-first way.
Suppose we are at a vertex, say ¢;, of the block graph. If
the status of the block C; is R, then all the blocks enclosed
by C; require flippings. These blocks are represented in the
block graph by the children of ¢; and so we update their
status by switching their labels. No updating of the labels
is required if the status of C; is NR. If the final status of C,
is NR then 7(i) = 7'(i); otherwise, 7(i) = 7.,(i). As an
example, in Fig. 8, we give the final status of each block
using the block graph of Fig. 7 and the 7-orders of the
vertices in the final embedding of G.

We shall denote by FIND-STATUS the procedure
-which determines the status of each block in the final
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Block Status 7' -order 7-order
€12 NR (8,11,4) (8,11,4)
c11 NR (8,2,5,10,3,9) (8,2,5,10,3,9)
Cio R (3,1,6) (6,1,3)
Co K NR (3,4) (3,4)
Cg R (7.1) (1,7)
Cy WR R (2,1) (1,2)
Ce¢ K NR (5,1) {5,1)
Cs -- (1) (1)
Cq -- (1) (1)
c3 - (L (1)
(o) - (1) (1)
Fig. 8. r-orders obtained from status information.

embedding of G and hence 7(i), 2 < i < n. The following
theorem is easy to prove.

Theorem 4:
Procedure FIND-STATUS determines 7(i), 2<i<n,
correctly in O(n) time. [ ]

It can be easily seen that procedure BLOCK-GRAPH
can be implemented along with the PQ-tree reduction
procedure. From Theorems 2, 3, and 4, we conclude that
the 7-orders in the final planar embedding of a planar
graph can be constructed in O(n) time.

V. VERTEX ORDER AND PLANAR EMBEDDING

We now turn our attention to the problem of construct-
ing a planar embedding of G using the 7-orders of the
vertices in the final embedding. The embedding scheme
envisaged in Section III places the vertices of G in the
plane at different horizontal and vertical levels such that
no two distinct vertices are placed in the same vertical or
horizontal levels. Recall that the left-to-right order of the
vertices of G in such a placement is called the vertex order,
denoted by p. Since the vertex order in general is not
unique, we shall impose on p a property which reflects the
information provided by the PQ-tree reduction process as
to the placement of vertices from 7(i) relative to the
position of vertex i. First we develop an algorithm to
determine such a vertex order and then discuss a method
to draw a planar embedding of G.

We propose to construct an embedding of G by embed-
ding the vertices 2, 3,-- -, n in that order. By “embedding
vertex i” we mean connecting i to its lower numbered
neighbors using the order specified by 7(i). Thus when
vertex i is to be embedded, the lower numbered vertices
1,2,---,i—1 are already embedded. Some of these em-
bedded vertices may be adjacent to vertices greater than i
in G. We shall call these vertices as Type 2 vertices relative
to i. All the other vertices will be called Type I vertices
relative to i. In the following we shall refer to these
vertices as simply Type 2 and Type 1 vertices, respectively,
if the context makes it clear that they indeed have these
properties relative to vertex i.

We represent the vertex order p as a doubly linked list.
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(412) (9.11) (3,11) (3.10)

(112)

(8,10) {s,11)

(1)

(8.11) (812)
Fig. 9. PQ-tree Ty’ 7£(10) = (3), 74(10) = (1), 74(10) = (6).

To start with pu contains the vertex n and we add the
vertices in 7(n),7(n—1),---,7(2) to p in that order.
Whenever a vertex is placed in p, we store the address of
the element in g corresponding to that vertex so that we
can access any vertex in p in constant time. When we add
the vertices in 7(i) to ., vertex i should be already present
in p since i should be in 7(j) for some j > i. Moreover, at
this stage all the Type 2 vertices in (i) will also be present
in p. So we need to add to g only the Type 1 vertices from
7(i). Note that we can check whether a vertex is Type 2 or
not by simply testing for its presence in p.

Consider reduction (i —1) in which the PQ-tree T,_, is
transformed into the PQ-tree T;*,. When the pertinent
root in T,_, is processed, it can have at most two partial
children (which are partial Q-nodes) but any number of
full children (some of which may be pertinent leaves). Just
before the pertinent children of the pertinent root are
merged to obtain T;*,, one of the partial children should
have its full children at its right end and the other should
have its full children at its left end. We shall call these
partial children as the Left Child and the Right Child,
respectively. All the other pertinent children of the perti-
nent root will be called Center Children. Thus all the
Center Children will be full. For example, for the planar
graph G of Fig. 1, we have shown in Fig. 9 the PQ-tree Ty"
at the time the pertinent root of the PQ-tree T, is being
processed. In this figure we have indicated the Left Child,
Right Child, and the Center Child of the pertinent root.

It is easy to see that in 7/(i) the vertices corresponding
to the pertinent leaves of the Left Child should appear
consecutively and we denote this portion of /(i) as 7/(i).
Similarly, the vertices in 7(i) corresponding to the Center
Children and Right Child should appear consecutively and
we denote these portions of 7'(i) as 74(i) and 74(),
respectively. Thus /(i) = (7/(i), 1£(i), 74(i)) and at least
one of 7/(i), 74(i) and 74(i) is not empty for every i,
2 i< n. Note that 7/(i), 74(i) and 74(i), 2<i<n, can
easily be obtained during PQ-tree reduction without in-
creasing the computational complexity of the reduction
procedure. Furthermore, if 7/(i) is reversed to obtain the
final 7-order 7(i), then 7, (i), 7.(i), and 74(i) will simply
be the reversals of 74(i), 74(i) and 7/(i), respectively.
Hence, 7,(i), 1-(i), and 74(i) can be obtained in O(n)
time using the algorithm discussed in Section IV. In our
example, since the block C), is reversed in the final
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Vertex i (¢5] i) Tc(i) TR(L)
12 (8,11,4) - (8,11,4) -
11 (8,2,5,10,3,9) (8,2) - (5,10,3,9)
10 (6,1,3) (6) (1) (3)
9 (3,4) (3) == (4)
8 (1,7) - (L) (Xp]
7 (1.2) - (1) (2)
6 (5:1) (5) (1) -
5 (1) - (1) -
4 (1) - (1) -
3 (1) - (1) -
2 (L) - (1) -
Fig. 10. 7, 7, and 7z orders.

embedding of G, 7,(10) = (6), 7-(10) = (1) and 7(10) =
(3). In Fig. 10 we show 7,(i), 7-(i) and 7x(i) for all the
vertices i of the planar graph shown in Fig. 1.

The orders 7,(i), Tz(i), and 7.(i) for each i give a
natural placement of the vertices of 7(i) relative to the
position of i. Thus we want to construct g such that for
any vertex i, 2 <i < n, all the vertices in 7, (i) will appear
to the left of i in p, and all the vertices in 7,x(i) will appear
to the right of 7 in p. If the vertices are placed according to
such a p, then in the final embedding the blocks contain-
ing the vertices in 7, (i) will be on the left side of i and
those containing the vertices in 7x(i) will be on the right

side of i. A vertex order with this property would aid us in

obtaining an elegant planar embedding.

To construct such a p, we place the Type 1 vertices from
7.(i) to the immediate left of vertex i, and the Type 1
vertices from 7g(i) to the immediate right of i. After
placing the vertices from r,(i) and 7x(i), we place the
Type 1 vertices from 7.(i) around vertex i in p. We split
these Type 1 vertices into two halves and place the first
half to the left of vertex i and the second half to the right
of vertex i in p such that the left-to-right order of these
vertices in p is the same as in 7-(i).

Thus we can obtain the vertex order p using the follow-
ing procedure VERTEX-ORDER.
procedure VERTEX-ORDER;
comment procedure VERTEX-ORDER determines the

vertex order p from

7(i) = (1.(), 7c(0), = (1)),

2<ign.
begin
initialize p to contain the vertex n;
for i :=n downto 2 do
begin
if 7,(i) is not empty
then place in p the Type 1 vertices from 7, (i) to
the left of vertex i;
if mz(i) is not empty
then place in p the Type 1 vertices from 74(i) to
the right of vertex i;
if 7.(7) is not empty
then place in p the vertices from 7.(i) around
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7(i) placed in u Vertex order pu

Initial 12

T(12) 8,12,11,4

7(11) 8,12,2,11,5,10,3,9,4

7(10) 8,12,2,11,5,6,10,1,3,9,4

7(9) 8,12,2,11,5,6,10,1,3,9,4

7(8) 8,7,12,2,11,5,6,10,1,3,9,4

T(7) 8,7,12,2,11,5,6,10,1,3,9,4

7(6) 8,7,12,2,11,5,6,10,1,3,9,4

T(5) 8,7,12,2,11,5,6,10,1,3,9,4

T(4) 8,7,12,2,11,5,6,10,1,3,9,4

7(3) 8,7,12,2,11,5,6,10,1,3,9,4

T(2) 8,7,12,2,11,5,6,10,1,3,9,4
Fig. 11. Finding vertex order.

vertex i such that the left-to-right order of these
vertices in p is the same as in 7.(i)
end
end VERTEX-ORDER;

We illustrate in Fig. 11 the above procedure to find the
vertex order for the graph of Fig. 1. In this figure we show
the progressive growth of the vertex order as we add the
vertices in 7(i), n>i> 2.

We now prove that the vertex order constructed as
above has the desired property.

Theorem 5:

In the vertex order constructed by procedure VERTEX -
ORDER, the vertices in 7,(i) will appear to the left of
vertex i for any i, 2 <i<n, and the vertices in 75(i) will
appear to the right of vertex i.

Proof: Note that procedure VERTEX-ORDER places
all the Type 1 vertices from 7,(i) to the left of i in the
vertex order p in the same left-to-right order as in 7, (i),
and also places all the Type 1 vertices from 7z(i) to the
right of / in p in the same left-to-right order as in 7,(i). So
we need only to prove that all the Type 2 vertices in 7, (i)
will appear to the left of i in g and all such vertices in
7p(i) will appear to the right of i in p.

For any vertex v, let first(v) be the highest numbered
neighbor of v. This means that v is in (first(v)) and it is
placed in p when we add the vertices from r(first(v)). Also
v is a Type 1 vertex in r(first(v)). Hence procedure
VERTEX-ORDER will place v around first(v) and no
Type 2 vertex in 7(first(v)) will appear between v and
first(v) in p.

Now let j be a Type 2 vertex in 7,(i). From the PQ-tree
reduction procedure it should be clear that in T}, the node
corresponding to vertex j will appear to the left of the
node corresponding to vertex i. Let i, first(i),
first(first(i)), - -, x and j, first(j), first(first( j)),---, y be
the sequences of vertices such that first(x) = first(y) = k.
Suppose we carry out the PQ-tree reduction procedure
making sure that at each step the Q-nodes representing the
different blocks of a bush form give rise to the r-orders in
the final embedding, then no reversal of these nodes at any
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step will be required. So, in such 7,_;, the nodes corre-
sponding to the vertices x and y should appear as children
of a Q-node with the node corresponding to vertex y
appearing to the left of the node corresponding to vertex
x. Since both x and y are Type 1 vertices in 7(k),
procedure VERTEX-ORDER will place y to the left of x
in u. This along with the fact that any vertex in the
sequence i, first(i), first(first(:)),- - -, x and in the sequence
J» first( j), first(first( j)),- - -, y is placed around its succes-
sor in the sequence in p implies that j will be placed to
the left of i in w. Thus all the Type 2 vertices from , (i)
will be placed to the left of vertex i in p.

Similarly we can prove that all the Type 2 vertices from
7z(i) will be placed to the right of vertex i in p. [ ]

The following theorem establishes the complexity of
procedure VERTEX-ORDER.

Theorem 6:

Procedure VERTEX-ORDER determines the vertex
order in O(n) time.

Proof: Tt is easy to see that for a given i, the cost of
placing in p the Type 1 vertices from 7(i) is at most
17L(D|+ |7c(i)|+ |7 (7)], which is the in-degree of vertex i
in the sr-graph G. Summing up these costs over all i,
2 <i<n, we get the cost of computing the vertex order as
O(n) for a planar graph. =

Having obtained the vertex order, we now describe our
drawing procedure to obtain a planar embedding. We
place the vertices of G in the plane at different horizontal
and vertical levels. In the following, the horizontal line at
vertical level r will be denoted by X, and the vertical line
at horizontal level r will be denoted by Y,. Whereas the
vertical level of a vertex in the placement is dictated by its
st-number, the horizontal level is dictated by the position
of the vertex in the vertex order p. In such a placement no
two vertices will appear in the same horizontal or vertical
level. We then construct a planar embedding of G by
constructing planar embeddings of the vertex induced sub-
graphs G,, G;,- - -, G, = G, successively. At each step of the
embedding process, we have to ensure that the correspond-
ing Type 2 vertices appear on the ouiside window. Clearly,
this requirement is satisfied by G,.

Suppose we have embedded G,_; such that all the
vertices connected to vertices numbered i or higher are on
the outside window of G,_,. When we embed vertex i,
clearly it will appear on the outside window of G,. How-
ever, the edges connecting i to vertices in 7(i) should be
drawn so that in G; all the Type 2 vertices appear on the
outside window. Let 7(i)=(j, j,,"**,j,). Connecting
vertex i to the vertices j, and j, forms a circuit, say x,, in
G;. In addition to the edges (jj, i) and (j, i), this circuit
will contain the path from j, to j, traced along the
outside window of G,_;.

Let R, denote the region bounded by the lines X,, X,,
Y., and Y, and R, denote the region bounded by the lines
X, X, Y, and Y. Let P, denote the path from j; to j,
traced along the outside window of G,_,. We now show
that the edges (i, j,) and (i, j,) can be drawn in the
regions R, and R,, respectively, so that the circuit x; does
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Fig. 12. Planar embedding of the graph in Fig, 1.
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not enclose any Type 2 vertex which lie in these regions.
Our arguments are based on the facts that

(1) in the vertex order p constructed by procedure
VERTEX-ORDER, no Type 2 vertex appears between
vertex i and a Type 1 vertex,

(ii) in p, all the vertices from 7, (i) lie to the left of i
and those from 7x(i) lie to the right of i,

(iii) 7(i) can have at most two Type 2 vertices from
each block of G,_,, and

(iv) when the pertinent root of T,_, is processed, it can
have at most two partial children.

Suppose j; and j, are both Type 1 vertices. Then the
edges (i, j)) and (i, ji, ) can be drawn as desired in R, and
R,, respectively, because, as mentioned above, these re-
gions will contain no Type 2 vertices.

Consider then the case when one of j, and j,, say j,, is
a Type 2 vertex. Suppose R; contains a Type 2 vertex x
and it is not possible to draw (i, j,) in R, to the right of x.
We may assume that x is not on the path P.. Then x must
be lying on the outside window of a block of G,_; which
intersects with R,. This block may be the same as the one
containing j, or it may not. In either case, we can draw the
edge (i, j,) in R, to the left of x and the edge (i, j;) in the
region R, — R, without the circuit x; enclosing any Type
2 vertices from these regions.

Since every other Type 2 vertex which does not lie in R,
or R, will necessarily be on the circuit x; or outside of it,
we have the following theorem. .

Theorem 7:

The edges (i, j;) and (i, j,) can be drawn in the regions
R, or R, so that the circuit x; encloses no Type 2 vertices.

]

Thus to embed vertex i, we first draw the edge (i, i)
within the region R, such that this edge lies to the right of
all the Type 2 vertices from 7(i) which lie in R, — R,.
Next we draw the edges (j,, ), (J3,4), - *,(Jj,» i) entering
vertex i from below in such a way that any edge enters
vertex i to the immediate right of its predecessor in the
sequence. Note that the edge (i, 7) has to be drawn so
that this edge lies to the left of all the Type 2 vertices from
7(i) placed in the region R,. Embedding vertex i this way
we obtain a planar embedding of G, Repeating this
procedure we can obtain planar embeddings of G,,,,
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Fig. 13.

G, ., - +,G,=G. In Fig. 12 we show a planar embedding
of the planar graph G shown in Fig. 1 obtained using the
above procedure.

VI. HORVERT REPRESENTATION OF A PLANAR

GRAPH

In [9], Otten and van Wijk introduced the concept of
horvert representation of a planar graph. As mentioned in
Section I, in a horvert representation vertices are repre-
sented by horizontal segments and edges are drawn as
vertical segments. Also, the segments representing the
vertices are drawn at different vertical levels such that the
one representing the vertex with s-number 1 is placed at
level i. Otten and van Wijk also described a procedure to
obtain a horvert representation using a planar embedding
and the corresponding dual of the given graph. Linear-time
algorithms to construct the horvert representation have
recently been presented independently by Tamassia and
Tollis [12], and Rosenstiehl and Tarjan [13]. These al-
gorithms also use a dual of the given graph. In this section
we present another linear-time algorithm to construct a
horvert representation. Our algorithm does not involve the
dual of the given graph.

Given a graph G and an st-numbering N of G. For each
vertex i <n, let {ij,i,, -, i;} be the set of higher num-
bered neighbors of i. Consider now a planar embedding of
G. Suppose for each i < n, the edges (i, i), (i, i5)," - -, (i, ;)
appear in that order as we scan them clockwise around i.
Then we define the y-order of i as y(i) = (iy, iy, ", iy)-

11 1 7
8

2 21 5
12 7 7

[188 1 5 1
2 11 5 11 6 6

8§ 12 11

For example, y(3) = (10, 11, 9) in the planar graph em-
bedded as in Fig. 12. In [10] Chiba er al. presented a very
simple and elegant algorithm based on depth-first-search
(DFS) to determine the y-orders using the r-orders of the
vertices.

Our algorithm for horvert representation first constructs
what we call the edge-order tree of the given graph G and
then performs a DFS of this tree. The order in which the
edges of the tree are traversed during this DFS would

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 35, NO. 3, MARCH 1988

Edge-order tree for Fig, 12.

determine the order in which edges of G have to be drawn
in the horvert representation.

The edge-order tree of G is a directed tree T each edge
of which corresponds to a unique edge of G. Each node of
T is assigned a label i € {1,2,-- -, n} and the unique node
labelled 1 is the root of T. We construct T as follows. We
start with a single node labelled 1. At the ith step, we pick
the node labelled i and draw the directed edges (i, i),
(iyiy),- - -, (i, i) in that order (as prescribed by y(i)) and
clockwise around i. The end nodes of these edges are
assigned the labels iy, i,,- - -, i\, respectively. The construc-
tion of T is completed after (n —1) steps. Note that in T
more than one node may have the same label. As an
example, the edge-order tree of the graph embedded as in
Fig. 12 is shown in Fig. 13.

After constructing the edge-order tree T, we perform a
DFS on T, starting with the node labelled 1. During this
DFS, the outgoing edges at a node are traversed in the
order in which these edges were drawn around that node.

Let us now define a 2X m array Edge-Order as follows.
If the edge (i, j), i < j, is the kth edge traversed during
the DFS of T, then Edge-Order (i, k) =i and Edge-Order
(2, k)= j. In our horvert representation, the edge (i, j)
will be drawn as a vertical line connecting the two points
with coordinates (k, i) and (k, j). To complete the repre-
sentation, each level is then examined. All the points on
this level which represent a vertex of G are connected
together by a straight line segment representing the corre-
sponding vertex. As an example, using the edge-order tree
of Fig. 13, we obtain the array Edge-Order as

6 1 101 3 3 3 9 1 4 4 1
10 10 11 3 10 11 9 11 4 9 2 12f

It is easy to prove that the construction we have just
described indeed produces a horvert representation. Sup-
pose that, while constructing the edge-order tree 7T, we
place at the same vertical level all nodes having the label i.
Then the tree at the beginning of the ith step in the
construction of T is a representation of the bush form
B/_.. So, the nodes labelied i represent the corresponding
virtual vertices of B/_, and must, therefore, appear con-
secutively on level i. This means that if we connect all the
nodes of ¢ labelled i by a horizontal segment, then this
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]

t 2 3 4 5 6 7 8 9 101 12 13 14 15
Fig. 14. A horvert representation for Fig. 1.

segment will not intersect with any of the edges of T
except possibly at their end nodes. Since in our representa-
tion the vertical segments corresponding to the edges leav-
ing vertex i in G appear around the horizontal segment
corresponding to vertex i in the order specified by y(i), it
follows that in this representation no vertical segment will
intersect with any horizontal segment and hence it is a
horvert representation. »

We now observe that Edge-Order of a planar graph G is
a very succinct representation of a planar embedding of G.
For example, we can obtain 7(i) for any i from the
Edge-Order as follows. First, we scan the second row of
Edge-Order. If i occurs in columns k,, k,,- - -, k,, then the
entries in position (1, k,),(1, k,),- - -,(1, k,) will give 7(i).
Similarly, we can also obtain the y-orders by scanning the
first row of Edge-Order.

Let us next define the width and height of a horvert
representation as the number of horizontal levels and the
number of vertical levels, respectively, required for the
representation. Our procedure constructs a horvert repre-
sentation with width m and height n. We now describe a
procedure which obtains a very compact horvert represen-
tation with width at most 2n —4.

Consider again the edge-order tree 7. Let a DFS be
performed on T as explained before. Suppose that T has r
leaves I,,1,,--,1,. Assume that if i < j, then the DFS
visits /; before it visits /;. Let E; be the set of edges of T
traversed by the DFS before visiting leaf /;. Then the sets
E/,E},---,E!, such that E{=E, and E/=E,—E,_,,
i > 2, defines a partition of the edge set of T. It is easy to
verify that all the edges in any E;/ can be assigned the
same horizontal level. For example, the edge-order tree of
Fig. 13 has 15 leaves and so at most 15 horizontal levels
are required to construct a horvert representation of the
graph of Fig. 1. One such horvert representation is shown
in Fig. 14.

We next get an upperbound on r. Note that in an
st-numbering each vertex i #1, n is adjacent to at least one
higher numbered vertex and to-at least one lower num-
bered vertex. Hence, it follows that for any vertex i,
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1 < i < n, there are at least two edges of the form (i, p) and
(i,q) with p>i and g <i such that these two edges will
both belong to the same E/, 1<k <r. This means that
r < m —(n —2). Since for a simple planar graph m < 3n —6,
it follows that for such a graph r < 2n —4. In the following
EDGE-ORDER will refer to our procedure described
above for assigning horizontal levels to the edges in a
horvert representation. The following theorem follows from
our discussion so far.

Theorem 8:

For a simple biconnected planar graph procedure
EDGE-ORDER achieves a horvert representation of width
no more than 2n —4. s

Clearly, the complexity of procedure EDGE-ORDER is
O(m) = 0(n) since it essentially involves a depth-first-
search of 7. We wish to note that the algorithm due to
Rosentiehl and Tarjan [13] also constructs a horvert repre-
sentation of width no more than 2n —4.

Our procedure for horvert representation assumes that
v-orders are available. We now show that this representa-
tion can also be obtained using r-orders. Given a bicon-
nected graph G and an st-numbering N of the vertices of
G. Suppose we now renumber the vertices of G such that a
vertex is assigned the number n —i +1 if its st-number is
under N is i. It is easy to see that the new numbering N’ is
also an st-numbering. Furthermore, r-orders under N be-
come a set of y-orders under N’ and vice versa. Thus if
only 7-orders under N are available, then we can treat
them as y-orders under numbering N’ and apply the
procedures of this section to obtain a horvert representa-
tion.

VIL

In this paper, we have discussed the problem of con-
structing a planar embedding of a planar graph. Our
discussion is based on Lempel, Even, and Cederbaum’s
planarity testing algorithm and its PQ-tree implementa-
tion. We first developed an O(n) time algorithm to de-
termine the 7-orders of the vertices in a planar embedding.
The r-order of vertex i is the anticlockwise order in which
edges connecting i to lower numbered neighbors appear in
the planar embedding. We then developed an O(n) time
algorithm to determine what we call the vertex order which
gives the relative positions of the vertices in the planar
embedding. The vertex order captures the structural infor-
mation as to the relative placement of vertices provided by
the PQ-tree reduction algorithm. We also described a
procedure to obtain a planar embedding based on the
vertex order and the r-orders.

We next defined the concept of y-orders of vertices. The
y-order of a vertex is the clockwise order in which edges
appear in a planar embedding. We presented a linear-time
algorithm to construct what we call the array Edge-Order
and a compact horvert representation of a planar graph.
Our algorithm does not involve the dual of the given graph
and uses the y-orders. We also showed that the width of
the horvert representation obtained by this algorithm is at
most 2n —4. The algorithm in [13] also achieves a horvert

CONCLUSION
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representation of width no more than 2n —4. We showed
that a horvert representation can also be obtained using
r-orders.

The Edge-Order is a very succinct representation of a
planar embedding. For example, it contains all the infor-
mation necessary to determine y-orders as well as -orders.
We note that in [10] Chiba et al. give a very elegant
algorithm to determine y-orders using r-orders.
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