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Abstract—VPN as a managed service enables the service 
provider to offer more demanding and revenue generating 
services. Some of the more common managed VPN services 
known today include auto discovery, security and also a potential 
ability to perform on demand signaling. In this paper we try to 
tackle an important problem of service providers providing 
bandwidth service on demand on an IP/MPLS core network. We 
propose a managed VPN architecture for such a service 
highlighting the novelty in our architecture. We concentrate on 
an important aspect of service definition called the topology 
abstraction service and define a new problem called the VPN 
core capacity sharing problem that arises in this context. We 
propose three schemes to solve this problem borrowing 
established results from graph theory. As part of our simulation 
study, we evaluate each of these strategies with different call 
arrival scenarios and present their results. 
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I.  INTRODUCTION  
With the increasing convergence of transport over routed IP 
networks, IP-VPN[2] as a managed service has gained a lot of 
momentum in the last  few years. This has mostly been driven 
by solutions that allow co-existence of L2/L3 VPN service 
over a single IP/MPLS network. Traditional way to offer IP-
VPN services used tunnel based overlay techniques. These 
VPN’s were managed completely by the VPN customers 
themselves, hence were referred to as Customer Edge (CE) 
based VPN’s. These VPN’s employed protocols such as  L2TP 
and  IPSec to create tunnels over the L2 or L3 transport layer, 
over which the VPN payloads were carried. The service 
provider in this case only provided the capacity and QoS 
guarantees as agreed upon as part of the SLA, and is ignorant 
about any VPN existence. A disadvantage often noted with 
CE-VPN is the lack of scalability with respect to the number 
of tunnels that had to be maintained at the CE nodes to enable 
a fully meshed connectivity. The new generation IP-VPN 
service also called peer based or point-to-cloud based VPN 
service, requires the Customer Edge (CE) devices to only peer 
with one or more neighboring Provider Edge (PE) devices. [1] 
Gives a comparison in terms of performance and scalability of 
CE based VPN’s using  IPSec, PPTP, L2TP and peer based 
approach. The paper also experimentally verifies the 
superiority of a managed VPN solution in terms of reliability, 
performance and security characteristics. More recently, IETF 

activities involved defining services over MPLS. IP-VPN 
service definition over MPLS is one of them. [2] Gives a good 
summary of the managed L2/L3VPN standards work in IETF 
in recent years. [3] Defines an IP-VPN managed architecture 
over a core MPLS network. It proposes solutions to two key 
VPN issues:  protocol extensions to differentiate between IP 
flows belonging to different VPN’s, and methodology to route 
between geographically dispersed VPN sites. To scale the 
solutions in regards to management complexity, all the VPN 
extensions are relevant only on the LER’s. The core routers or 
the LSR’s are ignorant about any VPN existence.  
With the increasing convergence of edge services onto a single 
IP/MPLS network, future network services will have to 
address the needs of the potential bandwidth intensive 
applications of the future, a good example of this is grid 
applications, where distributed processors might want capacity 
for a window of time to exchange huge data. In this paper we 
address one such issue, namely, providing bandwidth on 
demand dynamic managed VPN service. Before we get into 
the details of our idea, we briefly review literature on works 
related to dynamic VPN architectures and SLA schemes 
differentiated on granularity of traffic demand specifications. 
The PIPE model [4] SLA tries to emulate layer 2 circuits in a 
IP-VPN context. Here the virtual link is a pipe connecting two 
end points of the VPN network. The PIPE is a fixed capacity 
virtual circuit, and thus bandwidth is committed at any point 
of the time. This model is the one more prevalent today, and 
mostly built over L2 transport technologies like ATM 
,FrameRelay. This model has two key shortcomings. As the 
number of VPN endpoints increases, managing the VPN 
traffic gets complicated, and since each of the pipes is a 
dedicated circuit, there can be no multiplexing gain among 
various pipes supporting the VPN or among virtual circuits 
between VPN’s. This scheme requires the VPN’s to provide 
traffic matrix demands. The pipes that traverse the VSP links 
and nodes can be decided by solving a modified version of 
Multi-Commodity Flow formulation like in [5] which 
proposes a multi objective formulation with objective of 
optimizing resource and link utilization. HOSE model was 
first proposed in [6]. It tries to alleviate some of the 
shortcomings of the PIPE model. In the case of a HOSE model 
the VPN customer specifies a set of end points to be connected 
with common endpoint with end-to-end performance 
guarantee. [7] Discusses algorithms for provisioning with 



aggregate demand vectors in a HOSE model. RANGE model 
[8] allows the VPN to specify the requirement as a range of 
quantitative service, hence the VPN is not required to predict 
and specify any peak traffic requirements which are typically 
difficult to anticipate in bursty traffic conditions. [9] Proposes 
a dynamic programmable VPN architecture that allows 
spawning dynamic VPN networks with dedicated router and 
link resources at the discretion of the VPN customer. These 
works assume access to physical router and link resources 
through open programmable interface, which may not be 
possible where strict trust issues exist as in case of an 
enterprise and an IP-VPN service provider. Also this kind of 
partitioning requires prior knowledge of demand matrix of the 
VPN. [10] Proposes dynamic schemes to share resources 
dedicated to various VPN’s statistically taking into account the 
unused capacity on each virtual circuit and sharing the 
capacity among newer session arrivals. In all the above 
schemes the VSP is required to have partial or complete 
knowledge of the VPN demands, and the capacity is pre-
provisioned based on the agreed SLA’s. In a dynamic scenario 
we may encounter two cases, one where the VSP has no 
ability to predict their future demands, and the other where the 
future demands are partially known. The other extreme case of 
full knowledge of traffic demands would be the same as static 
provisioning and the optimal solutions follow modifications to 
the multi-commodity flow problem as in [5]. In this study we 
assume a lack of a demand matrix a priori, and we assume the 
presence of a set of VPN customers for which the VSP does 
not pre-provision any resource before hand, but the 
provisioning takes place on demand. VPN service of this kind, 
if offered by the VSP, would co-exist with the traditional 
guaranteed VPN service. In [11][12] we explored the 
possibility of providing dynamic VPN service where the VSP 
would provide the VPN’s a set of abstract topologies to choose 
from. These abstract topologies provide a view of the 
properties of the core network, which is used by the VPN 
clients in their path computation to determine end-to-end QoS 
paths. In this paper we propose this concept under the 
framework of a generalized dynamic managed shared VPN 
service. We would also like to point out that the concepts 
discussed in the paper, though centered around L3/L2 VPN’s, 
are equally applicable to L1VPN’s as was discussed in [12].  

To summarize the rest of the paper, section 2 proposes the idea 
of dynamic managed shared VPN service, discussing key 
elements that constitute this service. Section 3 proposes one of 
the problems called the VPN capacity sharing problem. 
Section 4 proposes three different algorithms to solve the 
capacity sharing problem. Section 5 discusses our simulation 
scenarios and compares the three schemes proposed in section 
4. 

II. DYNAMIC SHARED VPN SERVICE 
In this section we discuss key architectural ideas behind 
realizing a dynamic shared VPN service. The framework 
adopted for our architecture is an extension of discussion in 
[3]. A vanilla set up of a VPN today requires the VPN to 

provide the VSP with some traffic statistics, which would be 
mapped to the core resources permanently. Dynamic VPN 
service is envisioned for clients that may not require 
permanent virtual circuits, but require bandwidth that would 
be of shorter life span. We begin our argument by assuming 
that the VSP has some portion of resource that it could share 
among VPN customers seeking bandwidth on demand. 
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Fig 2.1 shows the components of our architecture. The novel 
components of our proposal are, the VPN abstract topology 
SLA database, the abstract topology generation component 
and the VPN abstract topology database which is specific to a 
particular virtual routing and forwarding (VRF) instance. The 
abstract topology components in general deals with the 
management of the abstract topologies exchanged between the 
VSP and the VPN. The abstract SLA database is the repository 
for all the VPN SLA, as defined in [11]. The abstract topology 
database stores VPN abstractions that are computed by the 
abstract topology generation component. The key idea behind 
providing topology abstraction is for the VPN to make a 
conscious decision before making the bandwidth request. 
These abstract graphs stored as part of the VRF extensions are 
part of the special abstract topology database, are flooded by 
the border nodes to the VPN client nodes, which is then 
injected into its traffic engineering routing database, shown as 
CE-RDB in Fig 2.1. When the VPN client router needs to 
compute a route, it would apply a route computing procedure 
to decide if a feasible route with the required QoS exists. The 
route request is then sent to the border node, where another 
step of call admission control is performed before the call is 
signaled, the CAC performs the functionality of managing the 
VPN call statistics, computing end to end paths, and also 
checking misbehaving VPN’S. In [11] we introduced the 
notion of an abstraction SLA, and studied various abstract 
topologies that could be generated as part of the topology 
abstraction service. In this research we extend the work and 
use abstraction to virtually partition the core resource, without 
mapping the shared resource to the link or the switch resource 
until the call signals the resources along the core nodes and 
links.  Here the capacity shared or dedicated to a VPN is only 
stored as a state information in border edge nodes. This allows 
the flexibility to overwrite it at any moment of time, 
particularly in situations where a VPN needs to get priority 
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over the resource. The process of providing dynamic 
abstraction involves several steps, which have been shown in 
the sequence of events in Fig. 2.6. This begins with the VPN 
client and VSP agreeing on an abstraction SLA as discussed in 
[11]. The key components of the SLA would include the type 
of abstract topology, as an example, for the VSP topology 
shown serving two VPN’s in Fig 2.2, Fig 2.3-2.5 are few 
abstract topology instances generated for one of the VPN, the 
metric information associated with the abstract topology, and 
the abstract topology refresh interval. In [11] we had evaluated 
the performance of various abstract topologies and a way to 
provide service differentiation based on the granularity of the 
abstraction. In this paper we concentrate on the schemes that 
would be used to share the core capacity between the VPN’s, 
which is a step prior to generating the abstract topologies. The 
metric we aim to abstract is the VSP’s shareable core resource. 
Once the SLA is agreed upon, the VSP would use one of the 
proposed abstraction schemes to generate the abstract 
topology. The remaining steps of Fig.2.6 are self-explanatory. 
Fig. 2.7 shows the five steps involved in providing a shared 
dynamic VPN service. These steps are from the point of view 
of a border node providing abstract topologies to the client.  
Here, for a given instance of a VPN being serviced by the 
border node, Steps 1&2 identify the set of border nodes 
hosting this VPN. In Steps 3&4, we use an abstraction scheme 
to generate the abstract topology, which is flooded to the 
respective VPN client served by the border node. This process 
is repeated every VPN abstract topology refresh interval, 
which as we stated before, is another abstraction parameter 
negotiated between a VPN and the VSP. 

 

 

 

 

 

 

 

 

 

The complexity of generating a virtual topology with residual 
bandwidth as the metric information depends on two key 
factors: the scheme used to virtualize the core resource and the 
abstract topology generated out of the virtualization. In [11] 
we concentrated on the latter part of generating the virtual 
topologies using the shortest widest path algorithm, which 
basically generated a shortest widest path tree, which was used 
to generate abstraction to the VPN clients. But this approach 
we observed to be too aggressive which resulted in higher 
crankback calls, which motivated us into research for better 
heuristics. In the next section we formally define our problem 
and propose algorithms in the following section.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

III. VPN CAPACITY SHARING PROBLEM 
We start by introducing the notations used in the rest of the 
paper: Given a directed graph G(V,E) representing the core of 
the VSP, each link ei,j∈E is associated with total capacity of li,j, 
and shared capacity represented as Ri,j. Ri,j - li,j  represents the 
resource use for guaranteed service. Let B represent the set of 
border PE nodes, and C the set of all CE nodes connected to the 
VSP’s network. Let the set VPNabs be the set of customers 
subscribing to abstraction service. A border node bi ∈ B 
supports one or many of the VPN instances from set VPNabs. 
The VPN’s are connected to the border nodes through their CE 
nodes. For a VPNabs instance k we represent the set of 
corresponding CE nodes as set CE,k and the set of border nodes 
as PE,k, and for a given border node bi ∈ PE,k the set of CE 
nodes connected to it as CEi,k. As part of the dynamic VPN 
service, each of the VPN’s in VPNabs is served with abstract 
topologies. For a given VPNabs i we represent the abstract graph 
as Gabs(i)(Vi, Ei), where Vi is the set of virtual nodes, some or all 
of which may map to a border node PEi.  Ei is the set of virtual 
link connecting a pair of virtual nodes (x, y)∈ Vi. A virtual link 
e∈Ei is associated with a vector of abstracted metric denoted as 
v(e) . Here we restrict ourselves to only one abstracted metric 
i.e virtualized core capacity. Hence for edge e∈Ei  connecting 
nodes (x, y)∈ Vi, we have v(e)={bwabs[x][y]}. This bandwidth 
represents the capacity exposed by the VSP between the pair of 
Vi nodes connected by a virtual link. The capacity over an 
access link is the available physical residual capacity. The 
VPN’s use the abstract graph Gabs(i)(Vi, Ei) to compute end-to-
end path.  Using the above notations we state the VPN capacity 
sharing problem as follows: 
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Step 2: Find set PEk  ⊂ B and CEk ⊂ C for VPN k 
Step 3: Apply a proposed Abstraction Scheme to 
generate Abstract Graph Gabs(k)(V,E) 
Step 4: Update VPN node’s CEK with Gabs(k)(V,E) 
Step 5: Goto Step 1 
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Given a set of VPNs in VPNabs, where each VPN instance i∈ 
VPNabs is provided by an abstract topology Gabs(i)(Vi, Ei), and 
each virtual link is assigned a virtual capacity as decided by 
the VSP. The objective of the problem is to device a 
methodology for the VSP to share the VSP core resource 
among VPNabs instances so that for a given VPN, the VSP 
maximizes its probability of making a correct decision of 
successfully computing or rejecting a path locally. 

The above problem’s objective has been defined from a VPN 
customer’s perspective. It can also be framed from the VSP’s 
perspective where the objective is to share the core capacity so 
as to maximize the network utilization. In case of a dynamic 
VPN service maximizing network utilization is not only a 
function of the type of routing strategy applied in the core 
network, but also function of efficiency of the scheme applied 
to share the shareable core capacity. A poor capacity-sharing 
algorithm might just be very conservative in exposing the core 
resource information, and hence could lead to bad resource 
utilization. Generating an abstraction to a VPN is a two-step 
process. First step involves computing a subgraph SGi((Vi,Ei) 
where Vi is the set of  PEi nodes and a subset of the core nodes, 
and Ei the subset of physical core links. The second step is to 
generate an abstract topology Gabs(i)(Vi, Ei) from the sub-graph 
SGi(Vi,Ei). Since the metric to be abstracted is the residual 
capacity, the complexity of generating a topology boils down to 
the complexity involved in generating a subgraph for each of 
the VPN’s.  For a simple case where the subgraph is a tree, this 
problem boils down to generating Steiner Tree graph with the 
link weights as a function of the residual capacity. This 
problem is known to be NP-Complete and makes the core 
capacity sharing problem difficult to solve. In the next section 
we propose three abstraction heuristics for the capacity sharing 
problem, which is to be used in Step 3 of the abstraction 
process described in Fig 2.7. In the rest of the discussion we 
have assumed Vi ⊂PEi, hence using the terminology border 
nodes instead of virtual nodes in the context of abstract 
topologies in the rest of the paper. In Section 5 we evaluate 
these heuristics using a simulation setup. 

IV. VPN CAPACITY SHARING ALGORITHMS 
In this section we propose capacity sharing schemes that use 
different graph algorithms to provide abstract views of the 
VSP’s core network. The motivation behind the abstraction 
schemes is to provide accurate information to the VPN 
customers by minimizing overlap between the virtualized core 
resource and at the same time maximizing the capacity 
multiplexing gain in the VSP’s core. The key challenge of any 
capacity sharing schemes is to fairly share the core resource 
among all the VPN’s and to minimize the call rejections at the 
associated PE nodes. We propose three approaches. The first 
one uses maximum capacity path for abstraction. This was 
suggested in [11] too. The two other novel approaches are 
called the max-min bound approach and tree graph approach. 
In the following we elaborate on each of these schemes. 
 
Maximum Capacity Abstraction Scheme: 
In this approach the VSP exposes the capacity of the widest 
path between two border nodes belonging to a given VPN. For 

a given pair of border nodes (b1, b2)∈B belonging to a given 
VPN i, let P ={p1,p2….pk} be the set of the k paths available 
between the two nodes. Let C(pi) be the capacity of each path.  
We use  as the bandwidth bw))((max

...1 iki
pC

=
abs(b1,b2) between 

the two nodes.  This problem can be solved in O(|V|2) time 
using an algorithm suggested in [13], using which a shortest 
widest path tree can be computed from a border node 
computing the abstraction. Once the tree is computed, any 
desired abstraction can be generated based on the agreed 
abstraction SLA [11]. The total complexity of this scheme for 
a single VPN would be O(||V|2+ |ABS|), here |ABS| refers to the 
complexity involved in generating the abstract topology. This 
approach is very aggressive since the same maximum capacity 
path is abstracted to all the VPNs. This aggressive mode of 
capacity sharing does well when the abstract topologies are 
accurate at the time calls are being processed. There are two 
reasons why this scheme might not fair well. First is a case 
where one of the VPN’s starts misbehaving and seeks 
bandwidth more aggressively.  Another reason why this may 
not work well is when multiple calls from different VPN’s 
arrive at the border node at the same time leading to resource 
contention and to higher call crank back probability.  The next 
heuristic we propose is more conservative, which also 
addresses the key issue handling multiple call arrivals from 
different VPN’s simultaneously. 
 
Mixed Bound Abstraction Scheme: 
In this scheme, for a VPN k the VSP provides two capacity 
bounds, upper bound capacity (UBOUNDk) and lower bound 
capacity (LBOUNDk).  We define UBOUNDk as the aggregate 
bandwidth that can be requested in between two consecutive 
abstract topology update instances. UBOUNDk also indicates 
the slice of the shared network capacity available between any 
two border nodes. This bound is derived from the max-flow 
computation, which does not map to a single path flow.  
LBOUNDk on the other hand gives a single path flow capacity 
approximation that can be requested from the VSP.  The 
UBOUNDk as said is computed using the max flow algorithm. 
The key idea here is to virtually expose a slice of the max flow 
possible between two border nodes for a given VPN. The 
computed max flow is shared with the VPN’s as decided by 
their priority factor αi for VPN i. For a given border node k, αi 
satisfies, ∑αi =1. Here i sums over all the VPNs supported on 
the border node. For example , for a given VPN k, and a pair 
of border nodes x,y ∈PEk,  if bwmax[x][y] is the maximum flow 
achievable between the two border nodes, then the VSP would 
expose a capacity of   UBOUNDk[x][y] equivalent to              
αi * bwmax[x][y] to VPN i. The priority factor could be used to 
control the net capacity virtually allocated to a given VPN at 
any point of time.  By default we assign it to the number of 
subscribed VPN’s, i.e αi = 1/|VPNabs|. 
In order to give a single path flow approximation, we compute 
LBOUNDk. In an aggressive mode, the LBOUNDk[x][y]  can 
be set to the capacity of the shortest widest path, but with the 
drawback of higher crank back calls which are caused by 
multiple calls arriving simultaneously at the border node with 



aggregate demand exceeding the available capacity. Here we 
propose a less aggressive approach using M-Route flow 
algorithm to compute the lower bound. We would suggest 
interested readers to refer [16] for definition of M-Route flow.  
To define loosely, M-Route flow is any flow that can be 
expressed as a non-negative linear sum of elementary M-
Flows. [16] Defines M-Route flow in the context of both edge 
and vertex disjoint paths. For our study we use the theory of 
M-Route edge flows.  Using M-Route flow as the LBOUND 
the border node has a higher probability to satisfy requests 
simultaneously for aggregate capacity less than or equivalent to 
M-Route max flow, this hinges on the fact that a M-Route max 
flow can be decomposed into set of M-Route elementary flows. 
The question now is a way to choose the value of M. M is 
upper bounded by the maximum number of edge disjoint paths 
existing in a given VSP core topology, which can be obtained 
applying Menger’s theorem. Ideal way to assign a value to M 
would be to analyze the call arriving pattern, and fixing it to the 
expected number of calls arriving simultaneously at the border 
node during a time window of the abstract update interval, 
because its most likely that the VPN’s are making requests 
using the same abstract topologies in this time period. But if the 
call arrivals are very aggressive then one may find M to be still 
very large, which may return zero flow values because of 
physical topological constraints. Another practical way to 
assign M would be to initialize it to the number of VPN 
instances being served by the concerned border node. In order 
to correlate UBOUND  and LBOUND  for a given VPN, the 
amount of LBOUND  exposed is made a function of 

k k

k αi , hence 
if bwm-route[x][y] is the maximum M-Route flow achievable 
between the two border nodes, then the VSP would expose a 
capacity of   LBOUNDk [x][y] equivalent to αi * bwm-route[x][y] 
to VPN i. [16] Proposes an algorithm to compute a M-Route 
Flow, which can be found in maximum of (M-1) runs of the 
max-flow algorithm bringing the pseudo polynomial 
complexity to O(M*|V| |E| ) using the shortest augmenting path 
algorithm. For a given pair of border nodes x and y, we can 
observe that for M=1, UBOUND [x][y]>= LBOUND [x][y], 
but this condition may not hold for M>=2. In cases where 
UBOUND [x][y]<LBOUND [x][y], we set 
UBOUND [x][y]=LBOUND [x][y]. In cases were 
LBOUND [x][y] is zero, we switch to a best effort service and 
set LBOUND [x][y] to the maximum capacity value between x 
and y. Since the M-Route flow dominates the complexity  total 
complexity for the mixed bound approach is 
O(|B|*|M|*|V| |E|+

2

k k

k k

k k

k

k

2 |ABS|).  Fig 4.1 shows the pseudo code to 
compute the UBOUND  and LBOUND  for a given VPN k 
from a border nodes perspective. 

k k

 
 
 
 
 
 
 
 
 

 
Tree Based Abstraction Scheme 
Here we partition the network using tree graphs, in such a way 
that there is minimum overlap between the trees computed for 
each VPN used to build abstract topologies. The tree approach 
guarantees single path abstractions, at the same time giving 
better guarantee of finding a path when requested for the core 
capacity, as long as there is a minimal overlap of the VPN 
trees. In order to minimize the VPN tree overlaps, we make 
the edge weight as a function of number of occurrences. We 
explain the abstraction scheme following the steps stated in 
the pseudo code as shown in Fig. 4.2. In Step 3, before 
computing the Steiner graph, we initialize the link weights as 
function of the residual capacity. In this abstraction scheme we 
also introduce a new link variable called vpnCount. This 
variable indicates the number of times the edge has been part 
of a Steiner tree. We initialize the edge cost as a function of 
vpnCount and the residual capacity. The idea of resetting the 
cost is that, the links with more available bandwidth would be 
at lower cost compared to links with high cost and higher 
utilization. Since the goal is to optimize the usage of the core 
resource, we employ a minimum cost tree algorithm, which 
also correlates with preventing over subscribing congested 
links, leading to even abstraction of the available resource. In 
Step 4 we compute the Steiner tree, Ti, for a VPN i and Step 5 
shows the vpnCount variable of the edge ei ∈ Ti being 
incremented by 1. Making the link cost a function of 
vpnCount also dissuades the future VPN tree computations 
from using the links used by the previous VPN tree 
computation. After the trees are computed, in Step 6 we assign 
the virtual capacity to the virtual link of the abstract graph. For 
a particular VPN i, and a source root node which is also the 
concerned border node bi, we summarize bandwidth between 
the node bi and another border node bj, by identifying the edge 
set Ei from the tree Ti that comprises the tree path. The virtual 
capacity of the path is the bottleneck capacity of all the edges 
belonging to the path.  Steiner tree is a strongly NP Complete 
problem, but literature provides good heuristics to compute 
Steiner trees. We use the minimum cost Steiner tree algorithm 
from [15] for the tree computation. The complexity of deriving 
a source rooted abstract topology for a given VPN is             
O(|Bk|*|V|2+|ABS|). 

 
Steiner Tree Abstraction Scheme(G, VPN(k), Bi, Ci,k) 
Step 1     Find Border Node set Bi,k
Step 2     Initialize Graph Gabs(k)( Bi,k, Ek) 
                For ∀ bj∈ Bi,k, e(Bi ,bj )∈Ek , Set bwabs[Bi][ bj] =0 
Step 3: For edge ei ∈ G(V,E),  
            Set Cost(ei) = vpnCount(ei)*( l(ei))/(R(ei)) 
Step 4: Use a Steiner tree heuristic on nodes Bi to  
             generate Steiner graph Tk(V,E) 
Step 5. For each edge ei ∈ Tk(V,E)and ei ⊂ G(V,E) 
             Set vpnCount (ei) = vpnCount(ei) +1 
Step 6: For each bj∈ Bi,k ,Let P ={e1…ek}, ei ∈ Tk(V,E) 
           Set  bwabs[Bi][ bj] =min{bw(e1)…bw(ek)) 
Ste

 

 

 

 Mixed Bound Abstraction(G, VPN(k), Bi, Ci,k, αk ,M) 
Step1: Find border node set Bi,k  
Step 2: Init. Graph Gabs(k)(Bi,k,Ek), For ∀ bj∈Bi,k  e(Bi ,bj )∈Ek, 
       UBOUNDk[Bi][ bj]=0, LBOUNDk[Bi][ bj]=0 
Step 3: For each virtual link ex,y∈Ek, where x= Bi,∀ bj ∈ Bi,k
           Set UBOUNDk[Bi][ bj]= αk* MaxFlow(G, x, y) 
           Set LBOUNDk[Bi][ bj]= αk*  M-RoutFlow(G, x, y, M)  
           If(LBOUNDk[Bi][ bj]= 0) 
               Set LBOUNDk[Bi][ bj]= MaxCapacity(G, x, y) 
           If (UBOUNDk[Bi][ bj ] <LBOUNDk[Bi][ bj]) 
               Set UBOUNDk[Bi][ bj]= LBOUNDk[Bi][ bj] 

 

 

 
p 7: Flood G 

 

abs(k)( Bi,k, Ek) to nodes Ci,k

Fig 4.2, Tree Graph Abstraction Scheme 

 
Step 4 : Flood Gabs(k)( Bi,k,Ek) to nodes Ci,k

Fig 4.1, Mixed Bound Abstraction Scheme 



V. SIMULATION STUDY 
The simulation was implemented using OpNet, on a network 
topology of 50 nodes with an average degree of 4.  10% of the 
total number nodes in the core topology n were chosen 
randomly as the PE nodes. Each of the PE nodes was 
configured to handle five different VPN instances. For 
comparing the capacity sharing schemes we use four different 
metrics: Success Ratio, CrankBack Ratio, MissCall Ratio and 
the Call Performance Ratio. Success Ratio is a measure of 
making a right routing decision using the abstraction provided 
by the VSP. This includes the case of computing a feasible 
path, as well as the case of rejecting a path locally at the VPN 
client’s end. The correctness of a rejected path is verified by re-
computing the path with the exact state of the network. The 
CrankBack Ratio is defined as the fraction of calls that have 
been cranked back because of a successful path computation at 
the VPN’s end, but bouncing back from the border node 
because of insufficient capacity in the core.  Note that though 
crankback ratio and success ratio are correlated they are not 
exactly complementary.  MissCall Ratio is the fraction of calls 
that have been rejected wrongly locally by the VPN, even when 
the core has sufficient resource to accept it. This could be either 
because of inaccurate abstraction of core capacity or poor 
granular abstract topology subscribed by the VPN client. One 
can see that success ratio and crankback ratio are correlated, 
and the ideal values one expects is 1 for the success ratio and 0 
for the crankback ratio. An aggressive heuristic may have very 
good success ratio but a poor crankback record. To bring out 
this relationship in assessing the performance of the heuristics, 
we introduce the Call Performance Ratio metric. We define the 
Call Performance Ratio of th heuristic as the ratio of success 
ratio to the crankback ratio. So ideally, higher this value betters 
the heuristic. To make an objective study of the differences in 
these capacity sharing heuristics, for our simulations we fixed 
the abstract topology to be source-rooted abstraction as 
described in [14] and also discussed in [11]. The simulation 
setup has link bandwidths for the access as well as the core 
initialized to 1000 units. The bandwidth call requests from the 
VPN client nodes were modeled as Poisson arrivals. Similarly 
the call holding times are negatively exponentially distributed. 
During the simulation it was assumed that all the core border 
nodes have up to date information of the core topology. The 
VPN abstract topology update interval was set at value less 
than the mean arrival rate of the calls. The bandwidth request 
follows a uniform distribution of [1-500]. In the graphs 
discussed later the x-axis traffic load relates to the ratio of the 
arrival rates to the service rate.  

Fig 5.1 compares the Success ratio for each of the three 
abstraction algorithms. Here we see the mixed bound scheme 
performing poorly than the other two schemes, the reason 
being that a lot of calls were rejected locally because of the 
aggregate demands exceeding upper bound capacity as dictated 
by the VSP, even though there is resource available in the core. 
The maximum capacity scheme and the tree graph scheme of 
abstraction show a much better Success ratio compared to 
mixed bound scheme. Though we notice a slightly poorer 
performance by the tree graph approach, this is offset by a very 
low crank back ratio that we see later, which makes it in fact a 
better algorithm. Fig. 5.2 gives a comparison of the CrankBack 

Ratio of the three schemes. As expected, we observe that the 
mixed bound scheme has the least CrankBack ratio compared 
to the other schemes,. The lower CrankBack ratio can be 
attributed to the upper bound capacity that can be used to 
determine the aggregate capacity the VPN could seek from the 
core. Hence most of the calls are rejected locally when the 
demands exceed the upper limit capacity. Comparing the mixed 
bound approach and tree graph approach, we see that the tree 
graph approach outperforms the mixed bound approach in 
regards to the CrankBack ratio, which can be attributed to 
better abstraction strategy applied by abstracting capacity. Fig 
5.3 compares the MissCall ratio of the three schemes. We see 
that in most cases the total number of missed calls are twice the 
ratio of the mixed and the tree graph schemes.  The higher 
number of missed calls can be attributed to higher calls being 
rejected locally by the VPN’s even though there is the needed 
resource to satisfy the requests.  Fig 5.4 gives a comparison of 
the performance metric, which gives a clearer idea of the 
heuristic’s performance. We see that of the three heuristics the 
mixed bound heuristic performs the best, followed by the tree 
graph heuristic. But the performance of the Mixed Bound 
heuristic is offset by the complexity of the algorithm which is 
at least O(|E|) times expensive than the Maximum Capacity or 
the Tree Graph heuristic. 

In addition to comparing the three parameters discussed above, 
we also evaluated the core network utilization when each of the 
three schemes is employed. In Fig. 5.5 we note that the 
maximum capacity abstraction leads to the best network 
utilization. The higher network utilization for the maximum 
capacity scheme can be attributed to its aggressive nature of 
sharing resources, but with a drawback of higher CrankBack 
ratio. Tree graph scheme does slightly poorly compared to the 
maximum capacity approach. This also shows that in a core 
resource sharing scenario the network utilization is also a 
function of the capacity sharing heuristic. Summarizing the 
results, we see that of the three schemes, aggressive schemes 
like maximum capacity heuristic enjoys higher success ratio, 
but with the drawback of high CrankBack ratio. Mixed bound 
scheme turns out to be more conservative, leading to poor 
Success ratio and high miss call ratio, but with very good 
CrankBack ratio. Tree graph approach enhanced with the idea 
of tree separation when abstract topologies are computed stands 
out satisfactorily in all the four performance metrics, which 
makes it the best of the three schemes.
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Fig 5.1, Success Ratio Comparison 
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VI. CONCLUSIONS 
In this paper we proposed a dynamic managed VPN service 

and noted its differences from the traditional VPN definitions. 

An architecture as an extension to the existing IP-VPN solution 
was proposed. We then defined core capacity sharing problem 
in a dynamic managed VPN service context. As a way to solve 
this problem we proposed three heuristics. The maximum 
capacity abstraction, which is an aggressive way to sharing 
resource, has satisfying Success ratio, but its CrankBack ratio 
is almost twice those of the other two schemes. Mixed Bound 
approach tries to address the drawback of the maximum 
capacity scheme by defining a virtual upper bound and lower 
bound for the bandwidth that can be requested from the VSP. 
This scheme was the most conservative of the three schemes 
with poor Success Ratio and high algorithm complexity. The 
third scheme we proposed uses Tree Graphs, using Steiner 
trees as a way to virtualize capacity applying a method to 
minimize overlap of the trees that were later used to generate 
abstract topologies.  This method faired well in all the four 
performance metrics. It also performed quiet well in terms of 
overall network utilization of the core. 

Fig 5.2, CrankBack Ratio 
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