
A Dynamic Managed VPN Service:
Architecture And Algorithms

Ravi S.Ravindran1, Changcheng Huang1, K.Thulasiraman2

(1.Carleton University, Ottawa, 2.University of Oklahoma, Norman)

Abstract—VPN as a managed service enables the service
provider to offer more demanding and revenue generating
services. Some of the more common managed VPN services
known today include auto discovery, security and also a potential
ability to perform on demand signaling. In this paper we try to
tackle an important problem of service providers providing
bandwidth service on demand on an IP/MPLS core network. We
propose a managed VPN architecture for such a service
highlighting the novelty in our architecture. We concentrate on
an important aspect of service definition called the topology
abstraction service and define a new problem called the VPN
core capacity sharing problem that arises in this context. We
propose three schemes to solve this problem borrowing
established results from graph theory. As part of our simulation
study, we evaluate each of these strategies with different call
arrival scenarios and present their results.

Keywords: Managed VPN Service, Topology Abstraction

I. INTRODUCTION
With the increasing convergence of transport over routed IP
networks, IP-VPN[2] as a managed service has gained a lot of
momentum in the last few years. This has mostly been driven
by solutions that allow co-existence of L2/L3 VPN service
over a single IP/MPLS network. Traditional way to offer IP-
VPN services used tunnel based overlay techniques. These
VPN’s were managed completely by the VPN customers
themselves, hence were referred to as Customer Edge (CE)
based VPN’s. These VPN’s employed protocols such as L2TP
and IPSec to create tunnels over the L2 or L3 transport layer,
over which the VPN payloads were carried. The service
provider in this case only provided the capacity and QoS
guarantees as agreed upon as part of the SLA, and is ignorant
about any VPN existence. A disadvantage often noted with
CE-VPN is the lack of scalability with respect to the number
of tunnels that had to be maintained at the CE nodes to enable
a fully meshed connectivity. The new generation IP-VPN
service also called peer based or point-to-cloud based VPN
service, requires the Customer Edge (CE) devices to only peer
with one or more neighboring Provider Edge (PE) devices. [1]
Gives a comparison in terms of performance and scalability of
CE based VPN’s using IPSec, PPTP, L2TP and peer based
approach. The paper also experimentally verifies the
superiority of a managed VPN solution in terms of reliability,
performance and security characteristics. More recently, IETF

activities involved defining services over MPLS. IP-VPN
service definition over MPLS is one of them. [2] Gives a good
summary of the managed L2/L3VPN standards work in IETF
in recent years. [3] Defines an IP-VPN managed architecture
over a core MPLS network. It proposes solutions to two key
VPN issues: protocol extensions to differentiate between IP
flows belonging to different VPN’s, and methodology to route
between geographically dispersed VPN sites. To scale the
solutions in regards to management complexity, all the VPN
extensions are relevant only on the LER’s. The core routers or
the LSR’s are ignorant about any VPN existence.
With the increasing convergence of edge services onto a single
IP/MPLS network, future network services will have to
address the needs of the potential bandwidth intensive
applications of the future, a good example of this is grid
applications, where distributed processors might want capacity
for a window of time to exchange huge data. In this paper we
address one such issue, namely, providing bandwidth on
demand dynamic managed VPN service. Before we get into
the details of our idea, we briefly review literature on works
related to dynamic VPN architectures and SLA schemes
differentiated on granularity of traffic demand specifications.
The PIPE model [4] SLA tries to emulate layer 2 circuits in a
IP-VPN context. Here the virtual link is a pipe connecting two
end points of the VPN network. The PIPE is a fixed capacity
virtual circuit, and thus bandwidth is committed at any point
of the time. This model is the one more prevalent today, and
mostly built over L2 transport technologies like ATM
,FrameRelay. This model has two key shortcomings. As the
number of VPN endpoints increases, managing the VPN
traffic gets complicated, and since each of the pipes is a
dedicated circuit, there can be no multiplexing gain among
various pipes supporting the VPN or among virtual circuits
between VPN’s. This scheme requires the VPN’s to provide
traffic matrix demands. The pipes that traverse the VSP links
and nodes can be decided by solving a modified version of
Multi-Commodity Flow formulation like in [5] which
proposes a multi objective formulation with objective of
optimizing resource and link utilization. HOSE model was
first proposed in [6]. It tries to alleviate some of the
shortcomings of the PIPE model. In the case of a HOSE model
the VPN customer specifies a set of end points to be connected
with common endpoint with end-to-end performance
guarantee. [7] Discusses algorithms for provisioning with

aggregate demand vectors in a HOSE model. RANGE model
[8] allows the VPN to specify the requirement as a range of
quantitative service, hence the VPN is not required to predict
and specify any peak traffic requirements which are typically
difficult to anticipate in bursty traffic conditions. [9] Proposes
a dynamic programmable VPN architecture that allows
spawning dynamic VPN networks with dedicated router and
link resources at the discretion of the VPN customer. These
works assume access to physical router and link resources
through open programmable interface, which may not be
possible where strict trust issues exist as in case of an
enterprise and an IP-VPN service provider. Also this kind of
partitioning requires prior knowledge of demand matrix of the
VPN. [10] Proposes dynamic schemes to share resources
dedicated to various VPN’s statistically taking into account the
unused capacity on each virtual circuit and sharing the
capacity among newer session arrivals. In all the above
schemes the VSP is required to have partial or complete
knowledge of the VPN demands, and the capacity is pre-
provisioned based on the agreed SLA’s. In a dynamic scenario
we may encounter two cases, one where the VSP has no
ability to predict their future demands, and the other where the
future demands are partially known. The other extreme case of
full knowledge of traffic demands would be the same as static
provisioning and the optimal solutions follow modifications to
the multi-commodity flow problem as in [5]. In this study we
assume a lack of a demand matrix a priori, and we assume the
presence of a set of VPN customers for which the VSP does
not pre-provision any resource before hand, but the
provisioning takes place on demand. VPN service of this kind,
if offered by the VSP, would co-exist with the traditional
guaranteed VPN service. In [11][12] we explored the
possibility of providing dynamic VPN service where the VSP
would provide the VPN’s a set of abstract topologies to choose
from. These abstract topologies provide a view of the
properties of the core network, which is used by the VPN
clients in their path computation to determine end-to-end QoS
paths. In this paper we propose this concept under the
framework of a generalized dynamic managed shared VPN
service. We would also like to point out that the concepts
discussed in the paper, though centered around L3/L2 VPN’s,
are equally applicable to L1VPN’s as was discussed in [12].

To summarize the rest of the paper, section 2 proposes the idea
of dynamic managed shared VPN service, discussing key
elements that constitute this service. Section 3 proposes one of
the problems called the VPN capacity sharing problem.
Section 4 proposes three different algorithms to solve the
capacity sharing problem. Section 5 discusses our simulation
scenarios and compares the three schemes proposed in section
4.

II. DYNAMIC SHARED VPN SERVICE
In this section we discuss key architectural ideas behind
realizing a dynamic shared VPN service. The framework
adopted for our architecture is an extension of discussion in
[3]. A vanilla set up of a VPN today requires the VPN to

provide the VSP with some traffic statistics, which would be
mapped to the core resources permanently. Dynamic VPN
service is envisioned for clients that may not require
permanent virtual circuits, but require bandwidth that would
be of shorter life span. We begin our argument by assuming
that the VSP has some portion of resource that it could share
among VPN customers seeking bandwidth on demand.

VPN-CE VPN-PE

Fig 2.1 shows the components of our architecture. The novel
components of our proposal are, the VPN abstract topology
SLA database, the abstract topology generation component
and the VPN abstract topology database which is specific to a
particular virtual routing and forwarding (VRF) instance. The
abstract topology components in general deals with the
management of the abstract topologies exchanged between the
VSP and the VPN. The abstract SLA database is the repository
for all the VPN SLA, as defined in [11]. The abstract topology
database stores VPN abstractions that are computed by the
abstract topology generation component. The key idea behind
providing topology abstraction is for the VPN to make a
conscious decision before making the bandwidth request.
These abstract graphs stored as part of the VRF extensions are
part of the special abstract topology database, are flooded by
the border nodes to the VPN client nodes, which is then
injected into its traffic engineering routing database, shown as
CE-RDB in Fig 2.1. When the VPN client router needs to
compute a route, it would apply a route computing procedure
to decide if a feasible route with the required QoS exists. The
route request is then sent to the border node, where another
step of call admission control is performed before the call is
signaled, the CAC performs the functionality of managing the
VPN call statistics, computing end to end paths, and also
checking misbehaving VPN’S. In [11] we introduced the
notion of an abstraction SLA, and studied various abstract
topologies that could be generated as part of the topology
abstraction service. In this research we extend the work and
use abstraction to virtually partition the core resource, without
mapping the shared resource to the link or the switch resource
until the call signals the resources along the core nodes and
links. Here the capacity shared or dedicated to a VPN is only
stored as a state information in border edge nodes. This allows
the flexibility to overwrite it at any moment of time,
particularly in situations where a VPN needs to get priority

Call Admission
Control ABS-

SLA

CE CALL
MGMT.

VRF

 ABS-

LSDB

CE-RDB

 Abstract Topology LSDB

Generation Component

Fig 2.1, Dynamic VPN Service Components

over the resource. The process of providing dynamic
abstraction involves several steps, which have been shown in
the sequence of events in Fig. 2.6. This begins with the VPN
client and VSP agreeing on an abstraction SLA as discussed in
[11]. The key components of the SLA would include the type
of abstract topology, as an example, for the VSP topology
shown serving two VPN’s in Fig 2.2, Fig 2.3-2.5 are few
abstract topology instances generated for one of the VPN, the
metric information associated with the abstract topology, and
the abstract topology refresh interval. In [11] we had evaluated
the performance of various abstract topologies and a way to
provide service differentiation based on the granularity of the
abstraction. In this paper we concentrate on the schemes that
would be used to share the core capacity between the VPN’s,
which is a step prior to generating the abstract topologies. The
metric we aim to abstract is the VSP’s shareable core resource.
Once the SLA is agreed upon, the VSP would use one of the
proposed abstraction schemes to generate the abstract
topology. The remaining steps of Fig.2.6 are self-explanatory.
Fig. 2.7 shows the five steps involved in providing a shared
dynamic VPN service. These steps are from the point of view
of a border node providing abstract topologies to the client.
Here, for a given instance of a VPN being serviced by the
border node, Steps 1&2 identify the set of border nodes
hosting this VPN. In Steps 3&4, we use an abstraction scheme
to generate the abstract topology, which is flooded to the
respective VPN client served by the border node. This process
is repeated every VPN abstract topology refresh interval,
which as we stated before, is another abstraction parameter
negotiated between a VPN and the VSP.

The complexity of generating a virtual topology with residual
bandwidth as the metric information depends on two key
factors: the scheme used to virtualize the core resource and the
abstract topology generated out of the virtualization. In [11]
we concentrated on the latter part of generating the virtual
topologies using the shortest widest path algorithm, which
basically generated a shortest widest path tree, which was used
to generate abstraction to the VPN clients. But this approach
we observed to be too aggressive which resulted in higher
crankback calls, which motivated us into research for better
heuristics. In the next section we formally define our problem
and propose algorithms in the following section.

III. VPN CAPACITY SHARING PROBLEM
We start by introducing the notations used in the rest of the
paper: Given a directed graph G(V,E) representing the core of
the VSP, each link ei,j∈E is associated with total capacity of li,j,
and shared capacity represented as Ri,j. Ri,j - li,j represents the
resource use for guaranteed service. Let B represent the set of
border PE nodes, and C the set of all CE nodes connected to the
VSP’s network. Let the set VPNabs be the set of customers
subscribing to abstraction service. A border node bi ∈ B
supports one or many of the VPN instances from set VPNabs.
The VPN’s are connected to the border nodes through their CE
nodes. For a VPNabs instance k we represent the set of
corresponding CE nodes as set CE,k and the set of border nodes
as PE,k, and for a given border node bi ∈ PE,k the set of CE
nodes connected to it as CEi,k. As part of the dynamic VPN
service, each of the VPN’s in VPNabs is served with abstract
topologies. For a given VPNabs i we represent the abstract graph
as Gabs(i)(Vi, Ei), where Vi is the set of virtual nodes, some or all
of which may map to a border node PEi. Ei is the set of virtual
link connecting a pair of virtual nodes (x, y)∈ Vi. A virtual link
e∈Ei is associated with a vector of abstracted metric denoted as
v(e) . Here we restrict ourselves to only one abstracted metric
i.e virtualized core capacity. Hence for edge e∈Ei connecting
nodes (x, y)∈ Vi, we have v(e)={bwabs[x][y]}. This bandwidth
represents the capacity exposed by the VSP between the pair of
Vi nodes connected by a virtual link. The capacity over an
access link is the available physical residual capacity. The
VPN’s use the abstract graph Gabs(i)(Vi, Ei) to compute end-to-
end path. Using the above notations we state the VPN capacity
sharing problem as follows:

VPN-CE VPN-PE VPN-PE VPN-CE
VPN i, Subscribes to a

Abstract topology service
PE verifies Abstraction

Service SLA and generates
abstract topologies

VPN i, Subscribes to a
Abstract topology service

PE Provide, QoS
Abstract Topology, with

Resource information

PE Provide, QoS Abstract
Topology, with Resource

information

VPN i, would use the
Abstract topology to

generate a call.

PE verifies the call
resource demand,

verifies against the
core topology

Call Rejected, if No resource
or the demand exceeds the
VIRTUALIZED CAPACITY

PE signals the resource
through the core

Call Accepted
PE Updates Core Topology

information

Abstract Topology Update
Sent out to the VPN

clients
Abstract Topology Update
Sent out to the VPN clients

Abstract_Topology(G, B, VPNabs)
G: VSP Core Graph
B: Set of border node
Vabs: Set of subscribed VPN’s
Step 1: For each VPN k∈ VPNabs

Step 2: Find set PEk ⊂ B and CEk ⊂ C for VPN k
Step 3: Apply a proposed Abstraction Scheme to
generate Abstract Graph Gabs(k)(V,E)
Step 4: Update VPN node’s CEK with Gabs(k)(V,E)
Step 5: Goto Step 1

Fig 2.7, Topology Abstraction Process

Fig 2.6, Abstract topology Generation Pseudo Code

Fig. 2.4:Source Star Abstraction
Fig. 2.5: Star Abstraction

Fig. 2.2: VSP Network Fig. 2.3: Full Mesh Abstraction

Given a set of VPNs in VPNabs, where each VPN instance i∈
VPNabs is provided by an abstract topology Gabs(i)(Vi, Ei), and
each virtual link is assigned a virtual capacity as decided by
the VSP. The objective of the problem is to device a
methodology for the VSP to share the VSP core resource
among VPNabs instances so that for a given VPN, the VSP
maximizes its probability of making a correct decision of
successfully computing or rejecting a path locally.

The above problem’s objective has been defined from a VPN
customer’s perspective. It can also be framed from the VSP’s
perspective where the objective is to share the core capacity so
as to maximize the network utilization. In case of a dynamic
VPN service maximizing network utilization is not only a
function of the type of routing strategy applied in the core
network, but also function of efficiency of the scheme applied
to share the shareable core capacity. A poor capacity-sharing
algorithm might just be very conservative in exposing the core
resource information, and hence could lead to bad resource
utilization. Generating an abstraction to a VPN is a two-step
process. First step involves computing a subgraph SGi((Vi,Ei)
where Vi is the set of PEi nodes and a subset of the core nodes,
and Ei the subset of physical core links. The second step is to
generate an abstract topology Gabs(i)(Vi, Ei) from the sub-graph
SGi(Vi,Ei). Since the metric to be abstracted is the residual
capacity, the complexity of generating a topology boils down to
the complexity involved in generating a subgraph for each of
the VPN’s. For a simple case where the subgraph is a tree, this
problem boils down to generating Steiner Tree graph with the
link weights as a function of the residual capacity. This
problem is known to be NP-Complete and makes the core
capacity sharing problem difficult to solve. In the next section
we propose three abstraction heuristics for the capacity sharing
problem, which is to be used in Step 3 of the abstraction
process described in Fig 2.7. In the rest of the discussion we
have assumed Vi ⊂PEi, hence using the terminology border
nodes instead of virtual nodes in the context of abstract
topologies in the rest of the paper. In Section 5 we evaluate
these heuristics using a simulation setup.

IV. VPN CAPACITY SHARING ALGORITHMS
In this section we propose capacity sharing schemes that use
different graph algorithms to provide abstract views of the
VSP’s core network. The motivation behind the abstraction
schemes is to provide accurate information to the VPN
customers by minimizing overlap between the virtualized core
resource and at the same time maximizing the capacity
multiplexing gain in the VSP’s core. The key challenge of any
capacity sharing schemes is to fairly share the core resource
among all the VPN’s and to minimize the call rejections at the
associated PE nodes. We propose three approaches. The first
one uses maximum capacity path for abstraction. This was
suggested in [11] too. The two other novel approaches are
called the max-min bound approach and tree graph approach.
In the following we elaborate on each of these schemes.

Maximum Capacity Abstraction Scheme:
In this approach the VSP exposes the capacity of the widest
path between two border nodes belonging to a given VPN. For

a given pair of border nodes (b1, b2)∈B belonging to a given
VPN i, let P ={p1,p2….pk} be the set of the k paths available
between the two nodes. Let C(pi) be the capacity of each path.
We use as the bandwidth bw))((max

...1 iki
pC

=
abs(b1,b2) between

the two nodes. This problem can be solved in O(|V|2) time
using an algorithm suggested in [13], using which a shortest
widest path tree can be computed from a border node
computing the abstraction. Once the tree is computed, any
desired abstraction can be generated based on the agreed
abstraction SLA [11]. The total complexity of this scheme for
a single VPN would be O(||V|2+ |ABS|), here |ABS| refers to the
complexity involved in generating the abstract topology. This
approach is very aggressive since the same maximum capacity
path is abstracted to all the VPNs. This aggressive mode of
capacity sharing does well when the abstract topologies are
accurate at the time calls are being processed. There are two
reasons why this scheme might not fair well. First is a case
where one of the VPN’s starts misbehaving and seeks
bandwidth more aggressively. Another reason why this may
not work well is when multiple calls from different VPN’s
arrive at the border node at the same time leading to resource
contention and to higher call crank back probability. The next
heuristic we propose is more conservative, which also
addresses the key issue handling multiple call arrivals from
different VPN’s simultaneously.

Mixed Bound Abstraction Scheme:
In this scheme, for a VPN k the VSP provides two capacity
bounds, upper bound capacity (UBOUNDk) and lower bound
capacity (LBOUNDk). We define UBOUNDk as the aggregate
bandwidth that can be requested in between two consecutive
abstract topology update instances. UBOUNDk also indicates
the slice of the shared network capacity available between any
two border nodes. This bound is derived from the max-flow
computation, which does not map to a single path flow.
LBOUNDk on the other hand gives a single path flow capacity
approximation that can be requested from the VSP. The
UBOUNDk as said is computed using the max flow algorithm.
The key idea here is to virtually expose a slice of the max flow
possible between two border nodes for a given VPN. The
computed max flow is shared with the VPN’s as decided by
their priority factor αi for VPN i. For a given border node k, αi
satisfies, ∑αi =1. Here i sums over all the VPNs supported on
the border node. For example , for a given VPN k, and a pair
of border nodes x,y ∈PEk, if bwmax[x][y] is the maximum flow
achievable between the two border nodes, then the VSP would
expose a capacity of UBOUNDk[x][y] equivalent to
αi * bwmax[x][y] to VPN i. The priority factor could be used to
control the net capacity virtually allocated to a given VPN at
any point of time. By default we assign it to the number of
subscribed VPN’s, i.e αi = 1/|VPNabs|.
In order to give a single path flow approximation, we compute
LBOUNDk. In an aggressive mode, the LBOUNDk[x][y] can
be set to the capacity of the shortest widest path, but with the
drawback of higher crank back calls which are caused by
multiple calls arriving simultaneously at the border node with

aggregate demand exceeding the available capacity. Here we
propose a less aggressive approach using M-Route flow
algorithm to compute the lower bound. We would suggest
interested readers to refer [16] for definition of M-Route flow.
To define loosely, M-Route flow is any flow that can be
expressed as a non-negative linear sum of elementary M-
Flows. [16] Defines M-Route flow in the context of both edge
and vertex disjoint paths. For our study we use the theory of
M-Route edge flows. Using M-Route flow as the LBOUND
the border node has a higher probability to satisfy requests
simultaneously for aggregate capacity less than or equivalent to
M-Route max flow, this hinges on the fact that a M-Route max
flow can be decomposed into set of M-Route elementary flows.
The question now is a way to choose the value of M. M is
upper bounded by the maximum number of edge disjoint paths
existing in a given VSP core topology, which can be obtained
applying Menger’s theorem. Ideal way to assign a value to M
would be to analyze the call arriving pattern, and fixing it to the
expected number of calls arriving simultaneously at the border
node during a time window of the abstract update interval,
because its most likely that the VPN’s are making requests
using the same abstract topologies in this time period. But if the
call arrivals are very aggressive then one may find M to be still
very large, which may return zero flow values because of
physical topological constraints. Another practical way to
assign M would be to initialize it to the number of VPN
instances being served by the concerned border node. In order
to correlate UBOUND and LBOUND for a given VPN, the
amount of LBOUND exposed is made a function of

k k

k αi , hence
if bwm-route[x][y] is the maximum M-Route flow achievable
between the two border nodes, then the VSP would expose a
capacity of LBOUNDk [x][y] equivalent to αi * bwm-route[x][y]
to VPN i. [16] Proposes an algorithm to compute a M-Route
Flow, which can be found in maximum of (M-1) runs of the
max-flow algorithm bringing the pseudo polynomial
complexity to O(M*|V| |E|) using the shortest augmenting path
algorithm. For a given pair of border nodes x and y, we can
observe that for M=1, UBOUND [x][y]>= LBOUND [x][y],
but this condition may not hold for M>=2. In cases where
UBOUND [x][y]<LBOUND [x][y], we set
UBOUND [x][y]=LBOUND [x][y]. In cases were
LBOUND [x][y] is zero, we switch to a best effort service and
set LBOUND [x][y] to the maximum capacity value between x
and y. Since the M-Route flow dominates the complexity total
complexity for the mixed bound approach is
O(|B|*|M|*|V| |E|+

2

k k

k k

k k

k

k

2 |ABS|). Fig 4.1 shows the pseudo code to
compute the UBOUND and LBOUND for a given VPN k
from a border nodes perspective.

k k

Tree Based Abstraction Scheme
Here we partition the network using tree graphs, in such a way
that there is minimum overlap between the trees computed for
each VPN used to build abstract topologies. The tree approach
guarantees single path abstractions, at the same time giving
better guarantee of finding a path when requested for the core
capacity, as long as there is a minimal overlap of the VPN
trees. In order to minimize the VPN tree overlaps, we make
the edge weight as a function of number of occurrences. We
explain the abstraction scheme following the steps stated in
the pseudo code as shown in Fig. 4.2. In Step 3, before
computing the Steiner graph, we initialize the link weights as
function of the residual capacity. In this abstraction scheme we
also introduce a new link variable called vpnCount. This
variable indicates the number of times the edge has been part
of a Steiner tree. We initialize the edge cost as a function of
vpnCount and the residual capacity. The idea of resetting the
cost is that, the links with more available bandwidth would be
at lower cost compared to links with high cost and higher
utilization. Since the goal is to optimize the usage of the core
resource, we employ a minimum cost tree algorithm, which
also correlates with preventing over subscribing congested
links, leading to even abstraction of the available resource. In
Step 4 we compute the Steiner tree, Ti, for a VPN i and Step 5
shows the vpnCount variable of the edge ei ∈ Ti being
incremented by 1. Making the link cost a function of
vpnCount also dissuades the future VPN tree computations
from using the links used by the previous VPN tree
computation. After the trees are computed, in Step 6 we assign
the virtual capacity to the virtual link of the abstract graph. For
a particular VPN i, and a source root node which is also the
concerned border node bi, we summarize bandwidth between
the node bi and another border node bj, by identifying the edge
set Ei from the tree Ti that comprises the tree path. The virtual
capacity of the path is the bottleneck capacity of all the edges
belonging to the path. Steiner tree is a strongly NP Complete
problem, but literature provides good heuristics to compute
Steiner trees. We use the minimum cost Steiner tree algorithm
from [15] for the tree computation. The complexity of deriving
a source rooted abstract topology for a given VPN is
O(|Bk|*|V|2+|ABS|).

Steiner Tree Abstraction Scheme(G, VPN(k), Bi, Ci,k)
Step 1 Find Border Node set Bi,k
Step 2 Initialize Graph Gabs(k)(Bi,k, Ek)
 For ∀ bj∈ Bi,k, e(Bi ,bj)∈Ek , Set bwabs[Bi][bj] =0
Step 3: For edge ei ∈ G(V,E),
 Set Cost(ei) = vpnCount(ei)*(l(ei))/(R(ei))
Step 4: Use a Steiner tree heuristic on nodes Bi to
 generate Steiner graph Tk(V,E)
Step 5. For each edge ei ∈ Tk(V,E)and ei ⊂ G(V,E)
 Set vpnCount (ei) = vpnCount(ei) +1
Step 6: For each bj∈ Bi,k ,Let P ={e1…ek}, ei ∈ Tk(V,E)
 Set bwabs[Bi][bj] =min{bw(e1)…bw(ek))
Ste

 Mixed Bound Abstraction(G, VPN(k), Bi, Ci,k, αk ,M)
Step1: Find border node set Bi,k
Step 2: Init. Graph Gabs(k)(Bi,k,Ek), For ∀ bj∈Bi,k e(Bi ,bj)∈Ek,
 UBOUNDk[Bi][bj]=0, LBOUNDk[Bi][bj]=0
Step 3: For each virtual link ex,y∈Ek, where x= Bi,∀ bj ∈ Bi,k
 Set UBOUNDk[Bi][bj]= αk* MaxFlow(G, x, y)
 Set LBOUNDk[Bi][bj]= αk* M-RoutFlow(G, x, y, M)
 If(LBOUNDk[Bi][bj]= 0)
 Set LBOUNDk[Bi][bj]= MaxCapacity(G, x, y)
 If (UBOUNDk[Bi][bj] <LBOUNDk[Bi][bj])
 Set UBOUNDk[Bi][bj]= LBOUNDk[Bi][bj]

p 7: Flood G

abs(k)(Bi,k, Ek) to nodes Ci,k

Fig 4.2, Tree Graph Abstraction Scheme

Step 4 : Flood Gabs(k)(Bi,k,Ek) to nodes Ci,k

Fig 4.1, Mixed Bound Abstraction Scheme

V. SIMULATION STUDY
The simulation was implemented using OpNet, on a network
topology of 50 nodes with an average degree of 4. 10% of the
total number nodes in the core topology n were chosen
randomly as the PE nodes. Each of the PE nodes was
configured to handle five different VPN instances. For
comparing the capacity sharing schemes we use four different
metrics: Success Ratio, CrankBack Ratio, MissCall Ratio and
the Call Performance Ratio. Success Ratio is a measure of
making a right routing decision using the abstraction provided
by the VSP. This includes the case of computing a feasible
path, as well as the case of rejecting a path locally at the VPN
client’s end. The correctness of a rejected path is verified by re-
computing the path with the exact state of the network. The
CrankBack Ratio is defined as the fraction of calls that have
been cranked back because of a successful path computation at
the VPN’s end, but bouncing back from the border node
because of insufficient capacity in the core. Note that though
crankback ratio and success ratio are correlated they are not
exactly complementary. MissCall Ratio is the fraction of calls
that have been rejected wrongly locally by the VPN, even when
the core has sufficient resource to accept it. This could be either
because of inaccurate abstraction of core capacity or poor
granular abstract topology subscribed by the VPN client. One
can see that success ratio and crankback ratio are correlated,
and the ideal values one expects is 1 for the success ratio and 0
for the crankback ratio. An aggressive heuristic may have very
good success ratio but a poor crankback record. To bring out
this relationship in assessing the performance of the heuristics,
we introduce the Call Performance Ratio metric. We define the
Call Performance Ratio of th heuristic as the ratio of success
ratio to the crankback ratio. So ideally, higher this value betters
the heuristic. To make an objective study of the differences in
these capacity sharing heuristics, for our simulations we fixed
the abstract topology to be source-rooted abstraction as
described in [14] and also discussed in [11]. The simulation
setup has link bandwidths for the access as well as the core
initialized to 1000 units. The bandwidth call requests from the
VPN client nodes were modeled as Poisson arrivals. Similarly
the call holding times are negatively exponentially distributed.
During the simulation it was assumed that all the core border
nodes have up to date information of the core topology. The
VPN abstract topology update interval was set at value less
than the mean arrival rate of the calls. The bandwidth request
follows a uniform distribution of [1-500]. In the graphs
discussed later the x-axis traffic load relates to the ratio of the
arrival rates to the service rate.

Fig 5.1 compares the Success ratio for each of the three
abstraction algorithms. Here we see the mixed bound scheme
performing poorly than the other two schemes, the reason
being that a lot of calls were rejected locally because of the
aggregate demands exceeding upper bound capacity as dictated
by the VSP, even though there is resource available in the core.
The maximum capacity scheme and the tree graph scheme of
abstraction show a much better Success ratio compared to
mixed bound scheme. Though we notice a slightly poorer
performance by the tree graph approach, this is offset by a very
low crank back ratio that we see later, which makes it in fact a
better algorithm. Fig. 5.2 gives a comparison of the CrankBack

Ratio of the three schemes. As expected, we observe that the
mixed bound scheme has the least CrankBack ratio compared
to the other schemes,. The lower CrankBack ratio can be
attributed to the upper bound capacity that can be used to
determine the aggregate capacity the VPN could seek from the
core. Hence most of the calls are rejected locally when the
demands exceed the upper limit capacity. Comparing the mixed
bound approach and tree graph approach, we see that the tree
graph approach outperforms the mixed bound approach in
regards to the CrankBack ratio, which can be attributed to
better abstraction strategy applied by abstracting capacity. Fig
5.3 compares the MissCall ratio of the three schemes. We see
that in most cases the total number of missed calls are twice the
ratio of the mixed and the tree graph schemes. The higher
number of missed calls can be attributed to higher calls being
rejected locally by the VPN’s even though there is the needed
resource to satisfy the requests. Fig 5.4 gives a comparison of
the performance metric, which gives a clearer idea of the
heuristic’s performance. We see that of the three heuristics the
mixed bound heuristic performs the best, followed by the tree
graph heuristic. But the performance of the Mixed Bound
heuristic is offset by the complexity of the algorithm which is
at least O(|E|) times expensive than the Maximum Capacity or
the Tree Graph heuristic.

In addition to comparing the three parameters discussed above,
we also evaluated the core network utilization when each of the
three schemes is employed. In Fig. 5.5 we note that the
maximum capacity abstraction leads to the best network
utilization. The higher network utilization for the maximum
capacity scheme can be attributed to its aggressive nature of
sharing resources, but with a drawback of higher CrankBack
ratio. Tree graph scheme does slightly poorly compared to the
maximum capacity approach. This also shows that in a core
resource sharing scenario the network utilization is also a
function of the capacity sharing heuristic. Summarizing the
results, we see that of the three schemes, aggressive schemes
like maximum capacity heuristic enjoys higher success ratio,
but with the drawback of high CrankBack ratio. Mixed bound
scheme turns out to be more conservative, leading to poor
Success ratio and high miss call ratio, but with very good
CrankBack ratio. Tree graph approach enhanced with the idea
of tree separation when abstract topologies are computed stands
out satisfactorily in all the four performance metrics, which
makes it the best of the three schemes.

Success Ratio

75

80

85

90

1 2 3 5 10
Taffic Load

Su
cc

es
s

R
at

io

Maximum Capacity
Mixed Bound
Tree Graph

Fig 5.1, Success Ratio Comparison

CrankBack Ratio

0
2
4
6
8

10
12

1 2 3 5 10
Traffic Load

C
ra

nk
B

ac
k

R
at

io

Maximum Capacity
Mixed Bound
Tree Graph

Miss Call Ratio

0

5

10

15

20

1 2 3 5 10
Traffic Load

M
is

s
C

al
l R

at
io

Maximum Capacity
Mixed Bound
Tree Graph

Performance Ratio

0
5

10
15
20
25
30

1 2 3 5 10

Traffic Load

Pe
rf

or
m

an
ce

 R
at

io

Maximum Capacity
Mixed Bound
Tree Graph

Network Utilization

0
10
20
30
40
50

1 2 3 5 10

Load

N
et

w
ro

k
U

til
iz

at
io

n

Maximum Capacity
Mixed Bound
Tree Graph

VI. CONCLUSIONS
In this paper we proposed a dynamic managed VPN service

and noted its differences from the traditional VPN definitions.

An architecture as an extension to the existing IP-VPN solution
was proposed. We then defined core capacity sharing problem
in a dynamic managed VPN service context. As a way to solve
this problem we proposed three heuristics. The maximum
capacity abstraction, which is an aggressive way to sharing
resource, has satisfying Success ratio, but its CrankBack ratio
is almost twice those of the other two schemes. Mixed Bound
approach tries to address the drawback of the maximum
capacity scheme by defining a virtual upper bound and lower
bound for the bandwidth that can be requested from the VSP.
This scheme was the most conservative of the three schemes
with poor Success Ratio and high algorithm complexity. The
third scheme we proposed uses Tree Graphs, using Steiner
trees as a way to virtualize capacity applying a method to
minimize overlap of the trees that were later used to generate
abstract topologies. This method faired well in all the four
performance metrics. It also performed quiet well in terms of
overall network utilization of the core.

Fig 5.2, CrankBack Ratio

VII. REFERENCES
[1] Francesco Palmieri, “VPN Scalability Over High Performance

Backbones evaluating MPLS VPN against Traditional Approaches”,
Proceeding ISCC 03

[2] Paul Knight, Chris Lewis, “Layer 2 and 3 Virtual Private networks:
Taxonomy, Technology and Standardization Efforts”, IEEE
Communication Magazine, June 2004

[3] IETF draft, Eric Rosen et al,“BGP/MPLS IP VPN’s”
Fig 5.2, Miss Call Ratio [4] Nick Duffield et al, “draft-duffield-vpn-qos-framework-00.txt”, IETF

Draft.
[5] Chun Tung Chou, “Traffic Engineering for MPLS-based Virtual Private

Networks”, IEEE, 2002
[6] N.G.Duffield, P.Goyal, A.Greenberg, P.Mishra et al, “A flexible model

for resource management in VPN”, in Proc. ACM SIGGCOMM, 1998,
pp 95-108

[7] Amit Kumar, Rajeev Rastogi, Avi Siberschatz, “Algorithms for
Provisioning Virtual Private Networks in Host Model”, IEEE/ACM
Transactions on Networking, Vol. 10 No.4 August 2002

[8] Ibrahim Khalil , Torsten Braun, “Edge Provisioning and Fairness in
VPN-DiffServ Networks”, IEEE-ICC 2000

[9] Rebecca Issacs, “ Light Weight Dynamic Programmable VPN”, IEEE-
OPENARCH, 2000.

[10] Rahul Garg, Huzur Saran, “Fair Bandwidth Sharing about Virtual
Networks: A capacity Resizing Approach”, IEEE, INFOCOM 2000

Fig 5.2, Performance Ratio

Fig 5.2, Network Utilization
[11] Ravi Ravindran, Peter Ashwood-Smith et al, “Multiple Abstraction

Schemes for Generalized Virtual Private Networks”, IEEE-CCECE-
2004, Niagara.

[12] Ravi Ravindran, ChangCheng Huang, K.Thulasiraman, “Topology
Abstraction as VPN Service”, IEEE, ICC, 2005.

[13] Z.Wang and J.Crowcroft, “Quality-of-Service Routing for Supporting
Multimedia Applications,” IEEE Journal on Selected Areas in
Communications, Vol. 14, no.7, September 1996, pp.1228-1234.

[14] Turgay korkmaz and Marwan Krunz, “Source-Oriented Topology
Aggregation with Multiple QoS parameters in Hierarchical Networks”,
ACM Transactions on Modeling and Computer Simulations, Vol 10, No.
4, Pages 295-325, October 2000.

[15] Kou, L., G. Markowsky, L.Berman, “A fast Algorithm for Steiner
Trees”, Acta Informatica, Springer-Verlag, 1981: vol. 15, pp.141-145. Fig 5.4, Network Utilization Ratio Comparison

[16] W. Kishimoto, M.Takeuchi, “On M-Route Flow in Networks”,
ICCS/ISITA’92.

	I. Introduction
	II. DYNAMIC SHARED VPN SERVICE
	
	III. VPN Capacity Sharing Problem
	IV. VPN capacity sharing algorithms
	Mixed Bound Abstraction Scheme:
	Tree Based Abstraction Scheme
	V. Simulation Study
	VI. Conclusions
	VII. References

