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Abstract. Given a graph G(V, E), the identifying codes problem is to
find the smallest set of vertices D ⊆ V such that no two vertices in
V are adjacent to the same set of vertices in D. The identifying codes
problem has been applied to fault diagnosis and sensor based location
detection in harsh environments. In this paper, we introduce and study a
generalization of this problem, namely, the d-identifying codes problem.
We propose a polynomial time approximation algorithm based on ideas
from information theory and establish its approximation ratio which is
very close to the best possible. Using analysis on random graphs, several
fundamental properties of the optimal solution to this problem are also
derived.

1 Introduction

Consider an undirected graph G with vertex set V and edge set E. A ball of
radius t ≥ 1 centered at a vertex v is defined as the set of all vertices that
are at distance t or less from v. The vertex v is said to cover itself and all the
vertices in the ball with v as the center. The identifying codes problem defined
by Karpovsky et al. [9] is to find a minimum set D such that every vertex in
G belongs to a unique set of balls of radius t ≥ 1 centered at the vertices in
D. The set D may be viewed as a code identifying the vertices and is called an
identifying set. Two important applications have triggered considerable research
on the identifying codes problem. One of these is the problem of diagnosing
faulty processors in a multiprocessor system [9]. Another application is robust
location detection in emergency sensor networks [13]. Next we briefly describe
the application of identifying codes in fault diagnosis.

Consider a communication network modeled as an undirected graph G. Each
vertex in the graph represents a processor and each edge represents the commu-
nication link connecting the processors represented by the end vertices. Some of
the processors could become faulty. To simplify the presentation let us assume
that at most one processor could become faulty at any given time. Assume that
a processor, when it becomes faulty, can trigger an alarm placed on an adjacent
processor. We would like to place alarms on certain processors that will facilitate
unique identification of the faulty processors. We would also like to place alarms
on as few processors as possible. If D is a minimum identifying set for the case
t = 1, then placing alarms on the processors represented by the vertices in the
set D will help us to uniquely identify the faulty processor. Notice that we only
need to consider t = 1 because if t > 1 is desired, we can proceed with Gt, the
tth power of G.

Karpovsky et al [9] have studied the identifying codes selection problem ex-
tensively and have established bounds on the cardinally of the identifying sets.
They have shown how to construct the identifying sets for specific topologies
such as binary cubes and trees. For arbitrary topology, [2] presents heuristic
approaches for a closely related problem that arises in selecting probes for fault
localization in communication networks. Several problems closely related to the
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identifying codes problem have been studied in the literature. Some of these may
be found in [5], [6], [10], [11].

Karpovsky et al. [9] have shown that unique identification of vertices may
not always be possible for certain topologies. In other words, triggering of alarms
on a set of processors could mean that one of several candidate processors could
be faulty. Once such a set of possible faulty processors has been identified then
testing each processor in this set will identify the faulty processor. This moti-
vates the generalization of the identifying codes problem to d-identifying codes
problem defined below. This generalization is similar to the introduction of t/s
diagnosable systems that generalize the t-diagnosable systems introduced by
Preparata, Metze and Chien [12]. An introduction to t-diagnosable systems and
their generalization may be found in [3], [4].

1.1 Definition of the d-Identifying Codes Problem

Consider an undirected graph G(V, E) with each vertex v ∈ V associated with
an integer cost c(v) > 0 and an integer weight w(v) > 0.

Denote N [v] to be the set of vertices containing v and all its neighbors. For
a subset of vertices S ⊆ V , define the cost and weight of S as

c(S) =
∑

v∈S

c(v) and w(S) =
∑

v∈S

w(v).

Two vertices u, v ∈ V are distinguished by vertex w iff |N [w] ∩ {u, v}| = 1.
A set of vertices D ⊆ V is called an identifying set if (1) every unordered vertex
pair (u, v) is distinguished by some vertex in D and (2) D is a dominating set
of G, i.e., each vertex in G is adjacent to at least one vertex in D (we will relax
this requirement later).

Given D ⊆ V , define ID(v) = N [v] ∩ D and an equivalence relation u ≡ v
iff ID(u) = ID(v). The equivalence relation partition V into equivalence classes
VD = {S1, S2 . . . , Sl} such that u, v ∈ Si ⇐⇒ ID(u) = ID(v).

For any D ⊆ V , we denote VD to be the equivalence classes induced by D.
If D is a dominating set of G and d ≥ max{w(S1), w(S2) . . . , w(Sl)}, then D
is called a d-identifying set of G. The d-identifying codes problem is to find a
d-identifying set D ⊆ V with minimum cost.

Note that if d = 1 then the d-identifying codes problem reduces to the iden-
tifying codes problem if the vertex costs and weights are equal to unity. Also,
whereas the cost of the d-identifying set is a measure of the cost of installing
alarms, the value of d is a measure of the degree of uncertainty in the identifica-
tion of faulty processors. Since the value of d is also a measure of the expenses
involved in testing each processor in an equivalence class, d has to be set at a
small value.

The identifying set must be a dominating set. However we can drop this re-
quirement after a simple transformation of the graph, i.e., adding a new isolated
vertex with weight d and a very big cost such that any cost aware algorithm will
not include this vertex in the solution set. Thus it will be the only vertex not
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adjacent to the identifying set. So we will ignore the dominating set condition
for the simplicity of presentation.

We denote lnx ≡ loge x, lg x ≡ log2 x.

1.2 Main Results

In this paper we introduce and study the d-identifying codes problem. We first
propose an approximation algorithm inspired by a heuristic for the minimum
probe selection problem [2] based on ideas from information theory. In Theo-
rem 1, we establish the approximation ratio of our algorithm in terms of an
entropy function H(·). As a byproduct of the analysis in Theorem 1, we derive
in Corollary 1 a lower bound on the cost of the optimal solution. We then study
the characteristics of the optimal entropy function that results in the approxima-
tion ratio of 1 + ln d + ln |V |+ ln(lg |V |) for the d-identifying codes problem and
of 1+ln |V |+ln(lg |V |) for the identifying codes problem in Theorem 1. We show
that the approximation ratio of our algorithm is very close to the best possible
for the d-identifying codes problem if NP 6∈ DTIME(nlg lg n). We also derive
several fundamental properties of the optimal solution using random graphs.

2 An Approximation Algorithm for the d-Identifying
Codes Problem

2.1 A Greedy Algorithm

Our algorithm is presented as Algorithm 1. Following information theoretical
terminology, H(VS) is called the entropy defined on VS which is the set of equiv-
alence classes induced by S. Similarly, I(VS ; v) = H(VS)−H(VS+v) is called the
information content of v ∈ V −S w.r.t. S. We defer the definition of the entropy
until Sect. 2.2. Actually, the framework of our greedy algorithm without specific
entropy definition is applicable to a class of identifying codes problems whose
detailed specifications can be hidden in the definition of the entropy. Based on
the framework of the greedy algorithm, one only needs to focus on the design
of entropy for other variations of the identifying codes problem, e.g., the strong
identification codes problem [11].

Algorithm 1 Greedy Algorithm
1: Initialize D = ∅
2: while H(D) > 0 do
3: Select vertex v∗ = argmaxv∈V−D I(VD; v)/c(v)
4: D ← D ∪ {v∗}.
5: end while

The time complexity of the above greedy algorithm is O(n2TH(n)), where TH

is the time complexity function of the algorithm computing H(·). The following
theorem is the main result on the approximation ratio of the greedy algorithm.
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Theorem 1. Denote VD as the set of equivalence classes induced by D ⊆ V .
Suppose an entropy function H(·) satisfies the following conditions:

(a) H(VD) = 0 for any d-identifying set D,
(a) If H(VS) 6= 0, then H(VS) ≥ 1, and
(c) I(VS ; v) ≥ I(VS+u; v) for all u 6= v, S ⊆ V ,

then the greedy algorithm returns a d-identifying set D such that c(D)/c(D∗) <
ln[H(V∅)] + 1, where D∗ = {v∗1 , v∗2 . . . , v∗|D∗|} is the minimum d-identifying set.

Proof. Suppose at the rth iteration, the greedy algorithm picks vertex vr. Let
Dr be the partial d-identifying set at the beginning of the rth iteration, Hr =
H(VDr

), and D∗
r = D∗ −Dr. Note that D1 = ∅ and H1 = H(V∅).

Since Dr ∪D∗
r is a d-identifying set, H(VDr∪D∗r ) = 0 by (a). Define D∗

r (i) =
{v∗1 , v∗2 . . . , v∗i }, i.e., the first i values from D∗

r . Note that D∗
r(0) = ∅. We have

H(VDr
) = H(VDr

)−H(VDr∪D∗
r
)

=
|D∗

r |−1∑

i=0

[H(VDr∪D∗
r (i))−H(VDr∪D∗r (i+1))] =

|D∗
r |−1∑

i=0

I(VDr∪D∗r (i); v∗i+1).

By (c), I(VDr∪D∗
r (i); v∗i+1) ≤ I(VDr∪D∗

r (i−1); v∗i+1) · · · ≤ I(VDr ; v
∗
i+1).

According to the greedy algorithm, I(VDr ; v
∗
i+1)/c(v∗i+1) ≤ I(VDr ; vr)/c(vr).

Hence

Hr = H(VDr ) =
|D∗r |−1∑

i=0

I(VDr∪D∗
r (i); v∗i+1)

≤ c(D∗
r)

c(vr)
I(VDr ; vr) ≤ c(D∗)

c(vr)
I(VDr ; vr).

Then we know that Hr+1 = Hr − I(VDr ; vr) ≤ (1− c(vr)
c(D∗) )Hr.

Let the number of iterations of the greedy algorithm be t = |D|, where D is
the solution returned by the greedy algorithm. We have

1 ≤ Ht ≤
∏

v∈Dt

(1− c(v)
c(D∗)

)H0 ≤ exp{− c(Dt)
c(D∗)

}H0.

The first inequality holds because of (b) (note that Dt = D − vt) and the
last inequality is true because 1− x ≤ e−x.

On the other hand, by (a), H(VD) = 0,

I(VDt ; vt) = H(VDt) ≤
c(D∗)
c(vt)

I(VDt ; vt) ⇒ c(vt) ≤ c(D∗).

So c(D)
c(D∗) = c(Dt)+c(vt)

c(D∗) = c(Dt)
c(D∗) + c(vt)

c(D∗) ≤ ln[H(V∅)] + 1. ut
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Using a similar argument, we can derive a lower bound on the cost of the
minimum d-identifying set if the costs of all the vertices are equal.

Corollary 1. Let G(V, E) be a graph with n vertices with equal cost which are
labeled such that I(V∅; v1) ≥ I(V∅; v2) · · · ≥ I(V∅; vn). Then the optimal cost of
the minimum d-identifying set, OPTd(G) ≥ K, where K is the smallest integer
such that

∑K
i=1 I(V∅; vi) ≥ H(V∅).

2.2 Optimal Entropy Function

Let fd(·) be some non-negative function (to be specified later) and Hd(VD) =∑
S∈VD

fd(w(S)) and Hd(∅) = 0, where VD = {S1, S2, ...} is the set of equiva-
lence classes induced by D ⊆ V .

We first examine Condition Theorem 1(c), i.e., I(VS ; v) ≥ I(VS+u; v) for any
u 6= v, S ⊆ V . In Fig. 1, there are two cases. In Case 1, v is adjacent to all
the vertices in Tuv and Tv. In Case 2, v is only adjacent to vertices in Tuv,
where T is an equivalence class in VS ; Tuv, Tu, Tv, and T0 is the set of vertices
in T adjacent to both u and v, only u, only v, and none of u, v, respectively.
In other words, Tuv ∪ Tu, Tv ∪ T0 ∈ VS+u and Tuv, Tu, Tv, T0 ∈ VS+u+v. Let
i = w(Tuv), j = w(Tu), k = w(Tv), and l = w(T0).

u v

T

Tuv  Tv Tu  T0

Case 1

u v

T

Tuv  Tu
 T0

Case 2

Fig. 1. Two cases. In Case 1, v is adjacent to all the vertices in Tuv and Tv. In Case
2, v is only adjacent to vertices in Tuv

It is easy to verify that the following conditions are necessary and sufficient
for Theorem 1(a)-(c) to be true:

If i, j, k, l ∈ {0, 1, 2 . . .} and at most one of i, j, k, l is 0, then

fd(i + j + k + l)− fd(i + k)− fd(j + l)
≥ [fd(i + j)− fd(i)− fd(j)] + [fd(k + l)− fd(k)− fd(l)], (1)

fd(t) = 0, 0 ≤ t ≤ d, and (2)
fd(t) ≥ 1,∀t ≥ d + 1. (3)

Recall that the approximation ratio given in Theorem 1 is ln[H(V∅)] + 1=
ln fd(w(V )) + 1. An entropy function is called optimal if it is the minimum
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function among all functions that satisfy (1)-(3). Because the approximation
ratio is ln fd(w(V )) + 1, we are only interested in the order of the function and
ignore the constant coefficients and constant terms in the function. Assume that
w(V ) is large. We next construct optimal entropy functions. We first consider
d = 1. For this special case, define

f1(n) = n lg n. (4)

Lemma 1. f1(n) satisfies (1)-(3).

Lemma 2. Given d ≥ 2, the function defined below satisfies (1)-(3).

fd(n) =





n lg(n/d), n ≥ d

0, otherwise.
(5)

Proof. Since fd(n) is a nondecreasing function and

fd(d + 1) = (d + 1) lg(1 +
1
d
) = lg((1 +

1
d
)d+1) ≥ lg e > 1,

Condition (3) is true.
Condition (2) holds by definition of fd(n).
We next prove that Condition (1) holds.
If i + j + k + l ≤ d, the proof is trivial. Without loss of generality, assume

i + j + k + l ≥ d + 1. Consider 5 cases:
Case 1: i, j, k, l ≥ d.

fd(i + j + k + l) + fd(i) + fd(j) + fd(k) + fd(l)
= (i + j + k + l) lg((i + k + j + l)/d) + i lg(i/d)

+j lg(j/d) + k lg(k/d) + l lg(l/d)
= (i + j + k + l) lg(i + j + k + l) + i lg i + j lg j

+k lg k + l lg l − 2(i + j + k + l) lg d

≥ (i + k) lg(i + k) + (j + l) lg(j + l) + (i + j) lg(i + j)
+(k + l) lg(k + l)− ((i + k) + (j + l) + (i + j) + (k + l)) lg d

= fd(i + k) + fd(j + l) + fd(i + j) + fd(k + l)

Case 2: Precisely one of i + k, j + l, i + j, and k + l is ≤ d.
Due to the symmetry of i, j, k, l in the function, assume that i + k ≤ d. We

have i ≤ d and k ≤ d. Let g(n) = n lg(n/d).
Therefore

fd(i + j + k + l) + fd(i) + fd(j) + fd(k) + fd(l)
≥ g(i + j + k + l) + g(i) + g(j) + g(k) + g(l)− g(i)− g(k)
≥ g(j + l) + g(i + j) + g(k + l) + (g(i + k)− g(i)− g(k))

= fd(j + l) + fd(i + j) + fd(k + l) + ((i + k) lg
i + k

d
− i lg

i

d
− k lg

k

d
)

≥ fd(j + l) + fd(i + j) + fd(k + l)
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Case 3: Precisely i + k ≤ d and j + l ≤ d or i + j ≤ d and k + l ≤ d.
Assume i + k ≤ d and j + l ≤ d.
In this case, i, j, k, l ≤ d. It suffices to show that

fd(i + j + k + l) ≥ fd(i + j) + fd(k + l).

This is obviously true.
Case 4: Precisely i + k ≤ d and i + j ≤ d (ignore those equivalent cases).
We have i, j, k ≤ d. Hence

fd(i + j + k + l) + fd(i) + fd(j) + fd(k) + fd(l)
= fd(i + j + k + l) + fd(l)
≥ (i + j + k + l) lg((i + j + k + l)/d) + l lg(l/d)
= [(j + k + l) lg(i + j + k + l) + l lg l] +

[i lg(i + j + k + l)− (i + j + k + l) lg d− l lg d]
≥ [(j + l) lg(j + l) + (k + l) lg(k + l)]− [((j + l) lg d + (k + l) lg d)]
= fd(j + l) + fd(k + l)

Case 5: All or 3 of the 4 terms, i + k,j + l, i + j, and k + l are ≤ d.
The proof for this case is trivial. ut
Finally, we get the main results of this paper.

Theorem 2. Using the entropy Hd(VD) =
∑

S∈VD
fd(w(S)) with fd(·) as de-

fined in (5), the greedy algorithm guarantees the approximation ratio of 1+ln d+
ln(|V | lg |V |).
Proof. Without loss of generality, assume w(V ) > d ≥ maxv∈V w(v). We have

Hd(V∅) = fd(w(V )) = w(V ) lg(w(V )/d) ≤ d|V | lg |V |.
The rest of the proof follows from Theorem 1. ut

Corollary 2. For the identifying codes problem, our algorithm guarantees the
approximation ratio of 1 + ln |V |+ ln(lg |V |).

We next show that the function defined in (5) is optimal in asymptotic sense,
i.e., the approximation ratio based on Theorem 1 cannot be improved by finding
better entropy.

Lemma 3. f(n) ≥ Θ(n lg n).

2.3 Hardness of the d-Identifying Codes Problem

To study the hardness, i.e., the approximability of the d-identifying codes prob-
lem, we consider a subclass of d-identifying codes problem where the vertex costs
and weights are 1. Since this subclass includes the identifying codes problem,
d-identifying codes problem is at least as hard as identifying codes problem (here
d is treated as a variable). On the other hand, an interesting question is whether
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the approximability of the d-identifying codes problem changes with some fixed
d. For example, if the best approximation ratio for the identifying codes problem
is φ, one may ask whether the 2-identifying codes problem is φ/2 approximable.
The next lemma shows that the approximability will not change if d is a constant.

Lemma 4. Assume that the identifying codes problem is feasible. For any fixed
d ≥ 2, if there exists a φ-approximation algorithm for the d-identifying codes
problem, there also exists a φ-approximation algorithm for the identifying codes
problem.

Proof. We first give a φ-approximation algorithm for the identifying codes prob-
lem on G(V, E) staring from the φ-approximation algorithm for the d-identifying
codes problem:

1. Construct a graph G′(V ′, E′) defined as follows: Split each vertex v ∈ V into
d copies denoted as vd = {v1, v2 . . . , vd}. For all (u, v) ∈ E, add edges to
connect all vertices in ud to all vertices in vd and for all v ∈ V , add edges to
join each pair of vertices in vd(See Fig. 2). Formally,

V ′ =
⋃

v∈V

{v1, v2 . . . vd}, and

E′ = {(ui, vj), i, j = 1, 2 . . . , d|(u, v) ∈ E}⋃
{(vi, vj), i, j = 1, 2 . . . , d)|v ∈ V }.

2. Apply the φ-approximation algorithm to get a d-identifying set Dd on G′.
3. Return D = {v ∈ V |vd ∩Dd 6= ∅} as an identifying set on G.

The construction of G′ takes O(d2|E|) time with d as a constant.
We next show that the above procedure is a φ-approximation algorithm for

the identifying codes problem.
Let D∗ be an optimal solution to the identifying codes problem on G. It is

easy to verify that D′
d = {v1|v ∈ D∗} is a d-identifying set of G′. Denote D∗

d as
an optimal d-identifying set of G′. We have

c(D∗
d) = |D∗

d| ≤ |D′
d| = |D∗| = c(D∗).

Because in G′, ∀v ∈ V, v1, v2 . . . , vd ∈ V ′ has the same set of neighbors in G′,
there is no way to distinguish them in G′. Hence the set of equivalence classes
of V ′ induced by Dd is simply V ′

Dd
= {vd|v ∈ V }.

Observe that condensing all the vertices in vd for all v ∈ V into a single
vertex v transforms G′ back to G. So an identifying set of G can be formed
by picking all the vertices whose corresponding set of vertices in G′ contain at
least one vertex in Dd. Hence the set D returned by the above procedure is an
identifying set of G. Since the vd’s are pairwise disjoint,

c(D) = |D| ≤ |Dd| = c(Dd) ≤ φ · c(D∗
d) ≤ φ · c(D∗).

ut

9



G(V, E) G'(V', E')

Fig. 2. Transformation from identifying codes problem to 2-identifying codes problem:
The identifying set and d-identifying set consists of the solid vertices

Lemma 4 means that for any fixed d, the d-identifying codes problem is at
least as hard as the identifying codes problem in term of approximability. Thus,
with an application of the results in [6], we have the following theorem.

Theorem 3. For any given d ≥ 1, the d-identifying codes problem with unit
vertex costs and weights is not approximable within (1 − ε) ln |V | unless NP ∈
DTIME(nlg lg n).

In view of Corollary 2, we can see that the approximation ratio of our algo-
rithm is quite tight for the d-identifying codes problem where the vertex costs
and weights are 1. Furthermore, we can expect that our approximation ratio is
also very tight for general d-identifying cods problem as in the special case.

3 A Special Case with Unit Vertex Costs and Weights

In Sect. 2, we established the approximation ratio, i.e., the ratio of the cost of
the approximation solution and the optimal cost of the d-identifying set. In this
section we shall investigate the characteristics of the optimal solution itself.

Since it is difficult to study the d-identifying codes problem with arbitrary
vertex costs and weights, we shall only consider a special class of d-identifying
codes problem in which the cost and weight of each vertex is 1. In this setting,
the cost and weight of a set of vertices is just the cardinality of the set.

We shall next investigate the impact of d on the cardinality of the resultant
solution. Let OPT1(G) and OPTd(G) be the cardinality of the minimum iden-
tifying set and the minimum d-identifying set, respectively. We shall show that
the value of OPT1(G) / OPTd(G) is unbounded.

Lemma 5. Given d ≥ 2 and M > 0, there exists a graph G such that

OPT1(G)/OPTd(G) ≥ M.

The graph constructed in Lemma 5 looks rather artificial. So let’s consider the
size of d-identifying sets on average basis. To study the average characteristics,
assumptions are needed on the distribution of graphs. Given the vertices of G,
the cardinality of the d-identifying set is totally decided by the edges. So we
assume that for any unordered pair of vertices there is an edge with probability
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p which is a constant. Notice that this is exactly the definition of a class of
random graphs [1], [7].

For the sake of completeness, we first present Suen’s inequality proved in
[8], [14]. Let A1, A2 . . . , An be a set of events, and X =

∑n
i=1 Xi, where Xi

is the indicator variable of event Ai(Xi = 1 if event Ai occurs and Xi = 0
otherwise). We use i ∼ j to indicate that events Ai and Aj are dependent. Denote
µ =

∑n
i=1 E[Xi], ∆ =

∑
i,j:i∼j E[XiXj ], and δ = max1≤i≤n

∑
j:j∼i E[Xj ]. Then

Pr(X = 0) ≤ exp{−µ + ∆e2δ}.
Let P ≡ pd+1 + (1 − p)d+1, Q(i) ≡ p2d+2−i + (1 − p)2d+2−i, R+(p, d)≡

ln(1 + ( 1−p
p )d+1)/ ln( 1

p ) , and R−(p, d) ≡ R+(1− p, d).
The following lemma is easy to prove.

Lemma 6. R+(p, d) (R−(p, d)) is a strictly decreasing (increasing) function of
p and a decreasing (decreasing) function of d for p ∈ [1/2, 1) (p ∈ (0, 1/2]).

Given ε ∈ (0, 1), denote p−ε ∈ (0, 1/2], p+
ε ∈ [1/2, 1) as two values such that

R−(d, p−ε ) = R+(d, p+
ε ) = ε. Since R−(1/2, d) = R+(1/2, d) = 1, p−ε < 1/2 < p+

ε .
It can be shown that p−ε + p+

ε = 1 and p−ε → 0 (p+
ε → 1) if ε → 0.

Lemma 7. If 1 ≤ i ≤ d, 0 < ε < 1, and p ∈ [p−ε , p+
ε ], then

(
d + 1− ε

d + 1− i
)(

ln Q(i)
ln P

− 1) > 1.

Theorem 4. Given 0 < ε < 1, ∀p ∈ [p−ε , p+
ε ], with high probability, there exists

no d-identifying set of cardinality of (d+1−ε) ln n
ln(1/P ) in G(n, p) if n is sufficiently

large.

Proof. Let c = (d+1−ε) ln n
ln(1/P ) . it suffices to show that

Pr(There exists a d-identifying set of cardinality c) = o(1) → 0.

Consider a given set C of cardinality c. Let S ⊂ V be a set of d + 1 vertices,
define event AS : ∀u, v ∈ S, IC(u) = IC(v). We can see that C is a d-identifying
set iff no such event occurs for all S with |S| = d + 1. Denote XS to be the
indicator variable for event AS .

It can be seen that two events AS and AS′ are dependent iff S ∩ S′ 6= ∅.
Let X =

∑
S⊂V−C,|S|=d+1 XS .

Evidently, Pr(C is a d-identifying set) ≤ Pr(X = 0).
Assume n− c− d− 1 ≥ n/k for some small k (recall d is a constant). Then

µ =
(

n− c

d + 1

)
(pd+1 + (1− p)d+1)c ≥ (n− c− d− 1)d+1P c

≥ (n/k)d+1P c = exp{(d + 1) ln n− (d + 1) ln k + c ln P}
= exp{(d + 1) lnn− (d + 1) ln k − (d + 1− ε) ln n}
= exp{ε ln n− (d + 1) ln k} = Θ(nε),
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∆ =
d∑

i=1

(
n− c

2d + 2− i

)(
2d + 2− i

d + 1

)
(p2d+2−i + (1− p)2d+2−i)c,

and

δ =
d∑

i=1

(
d + 1

i

)(
n− c− d− 1

d + 1− i

)
P c

Denote θ = min1≤i≤d{(d+1−ε
d+1−i )(

ln Q(i)
ln P −1)}−1. By Lemma 7, θ > 0. We have

∆

µ
≤

d∑

i=1

(
n−c

2d+2−i

)(
2d+2−i

d+1

)
(
n−c
d+1

) (
Q(i)
P

)c =
d∑

i=1

(
n− c− d− 1

d + 1− i

)
(
Q(i)
P

)c

≤
d∑

i=1

(
ne

d + 1− i
)d+1−i(

Q(i)
P

)c

≤
d∑

i=1

exp{(d + 1− i)(1− (d + 1− ε)
(d + 1− i)

(
ln Q(i)
ln P

− 1)) ln n + d}

≤
d∑

i=1

exp{−θ(d + 1− i) ln n + d} ≤ d exp{−θ ln n + d} = Θ(n−θ) = o(1).

Similarly, we can show that e2δ = O(exp{nε−1}) → 1.
Hence −µ + ∆e2δ = −µ(1− ∆

µ e2δ) ≤ Θ(−nθ) and
Pr(There exists a d-identifying code of cardinality c) ≤ (

n
c

)
exp{Θ(−nθ)}

Since
(
n
c

)
exp{Θ(−nθ)} = O(exp{Θ(ln2 n− nθ)),

Pr(There exists a d-identifying set of cardinality c) = o(1) → 0.

ut
Theorem 5. For a set of vertices C ⊆ V and |C| = (d+1+ε) ln n

ln(1/P ) ,

lim
n→∞

Pr(C is a d-identifying set ) = 1.

By Theorem 4 and Theorem 5, with high probability, the cardinality of mini-
mum d-identifying set is approximately (d+1) ln n/ ln(1/P ) when n is sufficiently
large.

4 summary

In this paper we introduced and studied the d-identifying codes problem that
generalizes the identifying codes problem studied in [9]. This problem is of great

12



theoretical and practical interest in several applications, in particular, fault di-
agnosis in multiprocessor systems and placement of alarms for robust identifi-
cation of faulty components in sensor networks. The value of d associated with
the identifying set is a measure of the degree of uncertainty in the identification
of faulty processors. We presented an approximation algorithm and established
its approximation ratio. This algorithm is a generalization of the heuristic pre-
sented in [2] but without analysis of the approximation ratio. Our analysis also
provides a way to compute a lower bound on the cost of the optimum solution.
We also established certain hardness results in terms of approximability of the
d-identifying codes problem.

We performed a probabilistic analysis on random graphs assuming that ver-
tex costs and weights are all equal. We established that a d-identifying set of
certain cardinality exists with very high probability. We also showed that a d-
identifying set of cardinality smaller than this number does not exist with a high
probability.

Further investigation of the identifying codes problem on special topologies
such as hypercubes is in progress.
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Appendix: Omitted Proofs

Lemma 1. f1(n) satisfies (1)-(3).

Proof. Conditions (2)-(3) are trivial. We only show the proof to Condition (1).
Let i, j, k, l ≥ 0 and at most one of them be 0. Consider 2 cases.
Case 1: i, j, k, l > 0. It suffices to show that

(i + j + k + l) lg(i + j + k + l)− (i + k) lg(i + k)− (j + l) lg(j + l)
≥ [(i + j) lg(i + j)− i lg i− j lg j] + [(k + l) lg(k + l)− k lg k − l lg l].

Equivalently, we will prove that

lg(
(i + j + k + l)(i+j+k+l)iijjkkll

(i + k)(i+k)(j + l)(j+l)(i + j)(i+j)(k + l)(k+l)
) ≥ 0.

Define function

g(x) = ln(
(x + j + k + l)x+j+k+lxxjjkkll

(x + k)x+k(j + l)j+l(x + j)x+j(k + l)k+l
).

It suffices to show that ∀x > 0, g(x) ≥ 0. We have

g′(x0) = ln
x0(x0 + j + k + l)
(x0 + k)(x0 + j)

= 0 ⇔ x0 = kj/l > 0.

g′′(x0) = l/[x0(x0 + j + k + l)] > 0.

Since

(x + j + k + l)x+j+k+lxxjjkkll

(x + k)x+k(j + l)j+l(x + j)x+j(k + l)k+l

= (1 +
xl − jk

(x + k)(x + j)
)x(1− xl − jk

(j + l)(x + j)
)j

×(1− xl − jk

(x + k)(k + l)
)k(1 +

xl − jk

(j + l)(k + l)
)l,

g(x0) = ln 1 = 0 and hence ∀x > 0, g(x) ≥ g(x0) = 0.
Case 2: Precisely one of i, j, k, l is 0.
Without loss of generality, assume l = 0. It suffices to show that

∀x ≥ 0, h(x) = ln(
(i + j + x)i+j+xii

(i + x)i+x(i + j)i+j
) ≥ 0.

Since h′(x) = ln( i+j+x
i+x ) ≥ 0 and h(0) = 0, ∀x ≥ 0, h(x) ≥ h(0) = 0. ut

Lemma 3. f(n) ≥ Θ(n lg n).
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Proof. Set i = j = k = l = 2id in (1), we get

fd(2i+2d)− 2fd(2i+1d) ≥ 2(fd(2i+1d)− 2fd(2id)). (6)

Solving the recurrence inequalities on i, we get

fd(2i+2d) ≥ 2fd(2i+1d) + 2if(2d). (7)

Hence, fd(2id) ≥ i2i−1f(2d). Letting n = 2id completes the proof. ut

Lemma 5. Given d ≥ 2 and M > 0, there exists a graph G such that

OPT1(G)/OPTd(G) ≥ M.

Proof. Given d ≥ 2 and M > 1, we construct a graph G using vertices in Fig. 3.
In Fig. 3, there are k equal sized sets of disjoint vertices L1, L2 . . . , Lk, with

each set being called a super node. Let L = L1 ∪ L2 · · · ∪ Lk, |L1| = |L2| · · · =
|Lk| = d, S = {s1, s2 . . . , sl}, where l = dlg(k + 1)e, i.e., |S| = dlg(k + 1)e.

L1

L2 Lk

L3

S

Fig. 3. The vertex set of the component B constructed in the proof of Lemma 5: L′is
are equal sized sets with each containing d vertices. S is a set of dlg(k + 1)e vertices
which distinguish vertices from different L′is.

Add edges between vertices in L and S such that:
a) For i = 1, 2 . . . , k, j = 1, 2 . . . , l, sj is either adjacent to all the vertices in

Li or none of the vertices in Li.
b) ∀i 6= j, vertices in Li and Lj are distinguished by vertices in S (This is

possible because |S| = dlg(k + 1)e).
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Since all vertices contained in a super node have the same neighbors except
for themselves, at least d − 1 of them should be included in any identifying set
to distinguish the d vertices in the same super node. So OPT1(G) ≥ (d − 1)k.
Obviously, OPTd(G) = |S| = dlg(k + 1)e.

So OPT1(G)/OPTd(G) ≥ M if k is large enough. ut

Lemma 7. If 1 ≤ i ≤ d, 0 < ε < 1, and p ∈ [p−ε , p+
ε ], then

(
d + 1− ε

d + 1− i
)(

ln Q(i)
ln P

− 1) > 1.

Proof. If p = 1/2, the proof is trivial. We now consider 2 cases.
Case 1: 1/2 < p ≤ pε.

By Lemma 6, ε ≤ R+(p, d) ≤ 1 and ∀1 ≤ i ≤ d,R+(p, d) > R+(p, 2d + 1− i).
So

ln Q(i)
ln P

− 1 =
ln(p2d+2−i + (1− p)2d+2−i)

ln(pd+1 + (1− p)d+1)
− 1

=
(2d + 2− i)−R+(p, 2d + 1− i)

(d + 1)−R+(p, d)
− 1

=
(d + 1− i) + R+(p, d)−R+(p, 2d + 1− i)

(d + 1)−R+(p, d)

≥ d + 1− i

d + 1− ε
+

R+(p, d)−R+(p, 2d + 1− i)
d + 1− ε

.

Therefore,

(
d + 1− ε

d + 1− i
)(

ln Q(i)
ln P

− 1) ≥ 1 + R+(p,d)−R+(p,2d+1−i)
d+1−i > 1.

Case 2: pε ≤ p < 1/2.

ln Q(i)
ln P

− 1 =
(d + 1− i) + R−(p, d)−R−(p, 2d + 1− i)

(d + 1)−R−(p, d)
.

The rest of the proof is the same as in Case 1. ut

Theorem 5. For a set of vertices C ⊆ V and |C| = (d+1+ε) ln n
ln(1/P ) ,

lim
n→∞

Pr(C is a d-identifying set ) = 1.
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Proof. Let X =
∑

S⊂V,|S|=d+1 XS , where XS is defined as in the proof of Theo-
rem 4. By Markov’s inequality, we have,

Pr(C is a d-identifying set) = Pr(X = 0) = 1− Pr(X ≥ 1) ≥ 1− E(X).

E(X) =
∑

S

E(XS) =
d+1∑

i=0

∑

|S∩C|=i

E(XS)

=
d+1∑

i=0

(|C|
i

)(
n− |C|
d + 1− i

)
P |C|−i(pd+1−i)ipi(i−1)/2

≤ nd+1P |C|−d−1 ≤ exp{−ε ln n + (d + 1) ln(1/P )} → 0.

ut
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