Unimodular Property of Fundamental Cut-Set and Circuit Matrices

The unimodular property of the fundamental cut-set and circuit matrices Q_f and B_f of a linear graph has been established earlier in Refs. 1, 2, 3. In this correspondence we give a new graph-theoretic proof of this property.

Consider a connected graph G and the fundamental cut-set matrix Q_i of G with respect to a tree T. Let the branches of T be denoted by $b_1, b_2, \ldots, b_{\nu-1}$ where ν is the number of vertices of G. Let row i of Q_i correspond to the cut-set q_i with respect to the branch b_i of T.

Consider the graph G_i^o obtained from G after coalescing the vertices of b_i and removing all the self loops formed due to the coalescing. G_i^o will contain v-1 vertices. Let the set of edges of G which form self loops when the vertices of b_i are coalesced be denoted by S. Then it is obvious that $b_i \in S$. Also, $b_j \notin S$, $j \neq i$, since b_j and b_i are not in parallel in G. Let the subgraph of G_i^o consisting of the edges of $(T - b_i)$ be denoted by T_i^o . T_i^o consists of v-2 edges. Further it contains no circuits since coalescing the vertices of any branch of a tree does not produce any circuit consisting of the remaining branches only. Hence T_i^o is a tree of G_i^o . (Theorem 2.10 of Ref. 1.)

Consider any cut-set q_j , $j \neq i$ of G. Let the removal of the edges of q_j from G partition the vertices of G into two sets A_i and B_i . Since $b_i \notin q_j$ for $j \neq i$, both the vertices of b_i will be either in A_i or in B_i . Hence the edges of q_j do not form self loops, when the vertices of b_i are coalesced. Hence $q_j \subseteq G_i^\circ$. Also q_j is a cut-set of G_i° since coalescing the vertices of any connected graph does not affect its connectivity. Thus the cut-sets $q_1, q_2, \ldots, q_{i-1}, q_{i+1}, \ldots, q_{v-1}$ of G are also cut-sets for G_i° . Each one of these cut-sets contains one and only one branch of T_i° and they together include all the branches of T_i° . Let the corresponding cut-set matrix be Q_i° .

1971

(3)

Let the subgraph Q_{f-i} obtained from Q_i after removing row *i*, be partitioned as $Q_{f-i} = [Q_{f-i}^o | X]$ where the columns of Q_{f-i}^o correspond to the edges in G_i^o . Since the cut-sets of G corresponding to the rows of Q_{f-i} are the same as those of G_i^o corresponding to the rows of Q_i^o , we can conclude that

$$Q_{f-i}^o = Q_i^o \tag{1}$$

Further, no column in Q_{f-i}° is zero since Q_i° covers the graph G_i° . The edge corresponding to any column in X is not present in any of the cut-sets $q_1, q_2, \ldots, q_{i-1}, q_{i+1}, \ldots, q_{n-1}$. Hence each column in X is zero. Thus X = 0. Hence the zero columns in Q_{f-i} are in one-to-one correspondence with the edges which form self loops when the vertices of b_i are coalesced. Hence in view of equation (1) the matrix Q_{f-i}° obtained from Q_f after (i) removing row *i*, and (ii) removing resultant zero columns, is a fundamental cut-set matrix of a connected graph.

The above arguments can be continued to show that the matrix $Q_{f-i-j_rk...}^{\sigma}$ obtained after removing rows i, j, k... of Q_j and also removing the resultant zero columns is a fundamental cut-set matrix of a connected graph.

Theorem: Q_f and B_f are unimodular.

Proof: Let Q_f be the fundamental cut-set matrix of a graph G with respect to a tree T and let A be a reduced incidence matrix of G. Let A and Q_f be partitioned as

$$Q_t \doteq \begin{bmatrix} u & Q_{ts} \end{bmatrix}$$
(2)

and

$$A = [A_T \mid A_C]$$

where the columns of u and A_{T} correspond to the branches of T.

Since any row in a cut-set matrix can be expressed as a linear combination of the rows of A, Q, can be written as

$$Q_{i} = DA \tag{4}$$

It then follows from (2), (3) and (4) that

$$D = A_T^{-1} (5)$$

Since A is unimodular¹, A_T and hence $A_T^{-1} = D$ are unimodular. Consider any nonsingular submatrix Q_{11} of Q_f and of order v-1. Let the corresponding submatrix of A be denoted by A_{11} . Then we have

$$Q_{11} = DA_{11}$$

Since D and A_{11} are both unimodular

$$det[Q_{11}] = +1 \text{ or } -1$$

Thus any $(v-1) \times (v-1)$ non-singular submatrix of Q_f has a determinant equal to 1 or -1.

1971

Consider any non-singular $(k \times k)$ submatrix Q^k of Q_j . Let Q^k be formed from the first k rows of Q_j . Since Q^k is non-singular, no column of Q^k is zero. Hence Q^k is a submatrix of $Q_{j-(k+1)-(k-2)}^o$. (v-1). But $Q_{j-(k+1)-(k+2)}^o$. (v-1) is a fundamental cut-set matrix of a connected graph with (k+1) vertices. Hence in view of the earlier arguments, Q^k has a determinant equal to 1 or -1.

Thus every non-singular submatrix of Q_f has a determinant equal to 1 or -1. Hence Q_f is unimodular.

Since Q_f is unimodular, Q_{fo} and hence Q_{fo}^T are also unimodular. But B_f , the fundamental circuit matrix of G with respect to T is given by

$$B_{f} = \left[-Q_{fa}^{t} \mid u\right]$$

Since any matrix $[E \mid u]$ is unimodular if E is unimodular, we conclude that B_f is also unimodular. Thus the fundamental cut-set and circuit matrices of a graph are unimodular.

K. Thulasiraman and M.N.S. Swamy, Department of Electrical Engineering, Sir George Williams University, Montreal, Canada,

References

1. S. Seshu and M. B. Reed Linear Graphs and Electrical Networks, Addison-Wesley, Reading, Massachusetts, U.S.A., 1961.

2. R. S. Wilkov A simple proof of the unimodular property for the basic loop matrix, Proc. J.E.E.E. (letters), Vol. 55, pp. 564-565, April 1967.

 V. V. Bapeswava Rao, K. Sankara Rao, P. Sankaran and V. G. K. Murti Unimedular matrices, Proc. I.E.E.E. (letters), Vol. 56, pp. 211-212, 3-bruary 1968.

* * * * * * * * * * * * * * * * *