SYNTHESIS OF RATIONAL VOLTTAGE TRANSFER MATRICES USING,
 MINIMUM NUMBER OF CAPACITORS WITH OPERATIONAL AMPLIFIERS

Abstract

P.A Ramamoorthy, K. Thulasiraman and X. Sankara Rao Abstract

A simple and novel method of synthesizing any arbitrary non voltage transfer matrix $T(s)$ of real rational functions of the complex frequency variable s, using the techniques of reactance extraction is given. The unique feature of the method is that of utilization of minimum number of capacitors, p, equal to the degree of the transfer matrix (using at most $2(n+p)$ operational amplifiers) with ali the capacitors grounded.

I. INTRODUCTION

Even though much progress thas been made in developing synthesis techniques to realize any arbitrary non matrix $\gamma(s)$ of real rational functions of the complex frequency variable s, as the short circuit admittance matrix of a n-port active $R C$ network starting from Sandberg [1], [2] to Mann and Pike [6] and recently by Melvin and gickart [7], ifttle work has been done in developing systematic synthesis techniques to realize an arbitrary voltage transfer matrix barring a few to mention like that of Hilberman (5] and Xim and Su [B],
All the above coafigurations, except those of Mann and Pike's [6] and Melvin and Bickart's [7], [11], either to realize $Y(s)$ or $T(s)$ use a larger number of capacitors (with possibly sone of them floating) than the minimum number required, which is equal to the degree [9] p of the given matrix, with minimum number of active devices. But with the advent of integrated technology, it has become necessary to use minimum number of capacitcrs, with one end grounded, even at the cost of active devices, to make the network performance reliable. Mann and Pike, bearing this in mind, using the techniques of reactance extraction showed that any arbitrary matxix $Y(s)$ can be realized as the short circuit admittance of an n-port active $F C$ network. with an increase in the nunher of controlled sources. Recently Melvin and Bickart [7] have elaborated on this and given a structure to realize $Y(s)$.
The results of Mann s Pike [6] and Melvin and Bickart (7) suggest that a realization of $T(s)$ with minimum number of capacitors may be possible, with an increase in the number of amplifiers and it has been proved here that it is always possible using at most $2(n+p)$ operational amplifiers. The same configuration proposed by Helvin and Bickart (7) for the subnetwork of capacitors is taken, thus retaining the advantages of that method namely all the capacitors are grounded. Also all the 2 n-ports have the ground as a common terminal.

II. SYNTHESIS PROCEDURE

The main results established in the paper can be given ds a theorem as follows:

TIEOREM:

Any nxn matrix $T(s)$ of real rational functions of the complex frequency variable s can be realized as the voltage transfer matrix of a $2 n-f o r t$ active $R C$ network containing the theoretical minimum number of capacitors if requared, where p is the degree of $T(s)$, and at most $2(n+p)$ operational , mplifiers. All the capacitors wad the $2 n$-forts :ill have the ground as a cormon torminat.

Note: If $T(s)$ is a nom (or mon) matrix the number of operational amplifiers required will be a most $n+m+2$ p.
as a proof for the above theoren we present a step-bystep realization procedure for $T(s)$. We can take $T(s)$ to be a nxn matrix without any loss in generality, the same procedure being valid for rectangular transfer matrices.
First let us assume $T(s)$ is regular at infinity and consider the network block diagram given in Figure 1. If we denote the n vectors of input and output voltages as e_{1} and e_{3}, respectively, and e_{2}, a p-state vector, application of Ho-Kalman algorithen (10) yields the F, G, H $s J$ real constant matrices of a set of state equations.
where

$$
\begin{align*}
& e_{2}=F \cdot \dot{e}_{2}+G \cdot e_{1} \tag{1}\\
& e_{3}=H \cdot \dot{e}_{2}+J \cdot e_{1} \tag{2}\\
& \text { with } \\
& T(S)=J+H(S I-F)^{-1} G
\end{align*}
$$

We can identify e_{2} as the voltage vector of capacitor subnetwork N_{c}. Then this establishes that p-capacitor: are necessary and sufficient in any possible realization of $T(s)$. The relationship imposed by N_{c} on e_{2} anc i_{2} is

$$
\begin{equation*}
i_{2}=-C \dot{e}_{2} \tag{4}
\end{equation*}
$$

where C is a pxp matrix with positive diagonal entries only for our chosen configuration.

The subnetwork N_{R} is assumed to be of the form shown in Figure 2 , where N_{R} is a $4 n+3 p+1$ port common terminal resistive network. Its current voltage relationshif being
$\left[\begin{array}{l}i_{2} \\ i_{2} \\ i_{3} \\ i_{4} \\ i_{5} \\ i_{6} \\ i_{7}\end{array}\right]=\left[\begin{array}{lllllll}g_{12} & g_{21}^{\prime} & g_{13} & g_{14} & g_{15} & g_{16} & g_{71}^{\prime} \\ g_{21} & g_{22} & g_{23} & g_{24} & g_{25} & g_{26} & g_{72}^{\prime} \\ g_{13}^{\prime} & g_{23}^{\prime} & g_{33} & g_{34} & g_{35} & g_{36} & g_{73}^{\prime} \\ g_{14}^{1} & g_{24}^{\prime} & g_{34}^{\prime} & g_{44} & g_{45} & g_{46} & g_{74}^{\prime} \\ g_{15}^{0} & g_{25}^{\prime} & g_{35}^{\prime} & g_{45}^{\prime} & g_{55} & g_{56} & g_{75}^{\prime} \\ g_{16} & g_{26}^{\prime} & g_{36}^{\prime} & g_{46}^{\prime} & g_{56}^{\prime} & g_{66} & g_{76}^{\prime} \\ g_{71} & g_{72} & g_{73} & g_{74} & g_{75} & g_{76} & g_{77}\end{array}\right]\left[\begin{array}{l}e_{2} \\ e_{2} \\ e_{3} \\ e_{4}\end{array}\right]\left[\begin{array}{l}e_{5} \\ e_{6} \\ e_{7}\end{array}\right]$

$$
\begin{array}{r}
{\left[\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3} \\
e_{4} \\
e_{6} \\
e_{7}
\end{array}\right]}
\end{array}
$$

where $i_{1}, i_{3}, i_{4}, i_{7}, e_{1}, e_{3}, e_{4}$ and e_{7} are n vectors, i_{2}, i_{5}, $1_{6}, e_{2}, e_{5}$ and e_{6} are p vectors and the $g ' s$ sub matrices, with primes denoting transposition. G, being the short circuit admittance matrix of comon ground resistive network, has to be hyperdominant.
The introduction of active devices as shown in Figure 2 mposes the following constraints.
$e_{7}=i_{7}=0, e_{6}=B_{1} A_{2} e_{2}, e_{5}=A_{1} e_{2}, e_{4}=-e_{1}$
$A_{1}=$ dia $\left(a_{1}, a_{2}, \ldots, a_{p}\right) a_{1} \geq+1$ or $=0$ for all i.
$B_{1}=$ dia $\quad\left(b_{1}, b_{2}, \ldots b_{p}\right) b_{1} \leq 0$ for all i.
From (4) and (6), $i_{7}=0$ leads to (assuming $g_{72}=0$) the expression
$e_{3}=-g_{73}{ }^{-1}\left(g_{75} A_{1}+g_{76} B_{1} A_{1}\right) e_{2}+g_{73}{ }^{-1}\left(g_{74} g_{71}\right) e_{1}$
and since $i_{2}=-C \dot{e}_{2}$ we get (with $g_{23}=0$)
$\dot{e}_{2}=-C^{-1}\left(g_{22}+g_{25} A_{1}+g_{26} A_{1} B_{2}\right) e_{2}-C^{-1}\left(g_{21}-g_{24}\right) e_{1}$
Thus the problem of realization of T(s) has been reduced to that of identifying various teras of g-sub matrices of N_{R} from (1), (7) and (8) subject to the condition that G is hyperdominant. (1), (7) and (8) lead to
$H=-g_{73}{ }^{-1}\left(g_{75} A_{1}+g_{76} B_{1} A_{1}\right) \ldots \ldots \ldots$. i

$F=-C^{-1}\left(g_{22}{ }^{+g_{25}}{ }^{A} 1^{+g_{26}} B_{1} A_{1}\right) \ldots \ldots . .$. iii
$G=\sim c^{-1}\left(g_{21}{ }^{-g_{24}}\right) \ldots \ldots$. iv
Now we give a step-by-step procedure to identify various terms.

Step 1: From (9) $1 v$, assuming suitable value for C find g_{21} and g_{24} such that they are sub matrices with nonpositve entries.

Step 2: Since g_{21} and g_{24} are Eixed, each diagonal entry in the sub matrix g_{22} should be such that it is much greater than the modulus of sum of elements in the corresponding rows of g_{21} and g_{24}. Thus we can assume g_{22} to be a matrix of positive diagonal entries only, subject to the above condition.
Step 3: Then (9) iii yields
$-\mathrm{CF}-\mathrm{g}_{22}=\mathrm{g}_{25} \mathrm{~A}_{1}+\mathrm{g}_{26} \mathrm{~B}_{1} \mathrm{~A}_{1}=\mathrm{P}+\mathrm{M}$ where P contains all nonnegative elements and M contains all non-positive ele* ments. Hence, we get
$G_{25^{A}}=M$
$\mathrm{G}_{26} \mathrm{~B}_{1} \mathrm{~A}_{1}=\mathrm{P}$
Suitable values for B_{1} and A_{1} are assumed and g_{25} and 9_{26} are found.

Step 4: From (9) i and ii other terms are found by suitable assignment.

Step 5: Having found out the terms that have come into picture, we can complete the remaining entires in the G matrix arbitrarily taking care to see that it is hyperdominant.

The above mentioned steps demonstrate clearly that a decomposition is always possible, hence the validity of the theorem.

Example:
Let us take the example given by Melvin and Bickart for $Y(s)$ and realize it as a voltage transfer matrix of a 2n-port network.

$$
T(s)=\left[\begin{array}{cc}
\frac{2 s+1}{s+1} & \frac{s}{s+1} \\
\frac{s+1}{s+1} & \frac{2 s-1}{s+1}
\end{array}\right]
$$

A set of (F, G, H, J) matrices of State Equations are

$$
\begin{aligned}
& F=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array} \quad G=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right. \\
& H=\left[\begin{array}{ll}
-1 & -1 \\
-1 / 2 & -3
\end{array}\right] \text { and } J=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
\end{aligned}
$$

Let us assume

$$
c=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { and } g_{73}=\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

Then from (9) iv we get

$$
g_{21}=\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right) \text { and } g_{24}=0
$$

Let us fix $\left.g_{22}=r_{10}^{10} \begin{array}{rl}0 \\ 0 & 20\end{array}\right]$
(9) iii then gives

$$
g_{25} A_{1}=\left[\begin{array}{rr}
-9 & 0 \\
0 & -9
\end{array}\right] \text { and } g_{26} B_{1} A_{1}=0
$$

Hence we can take

$$
g_{25}=\left[\begin{array}{rr}
-3 & 0 \\
0 & -3
\end{array}\right] ; A_{1}=\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right] \text { and } g_{26}=0
$$

Now (9) ii gives

$$
g_{74}=\left\{\begin{array}{ll}
-2 & -1 \\
-1 & -2
\end{array}\right] \text { and } g_{71}=0
$$

and (9) i gives

$$
g_{76} B_{1} A_{1}=0 \quad \text { and } g_{75} A_{1}=\left[\begin{array}{ll}
-1 & -1 \\
-1 / 2 & -3
\end{array}\right]
$$

Now we can complete the G matrix, taking care to see that it is hyperdominant. The G matrix arrived at being
$\left[\begin{array}{rrrrrrrrrrrrrr}1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 10 & 0 & 0 & 0 & 0 & 0 & -3 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 10 & 0 & 0 & 0 & 0 & 0 & -3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & -2 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & -1 & -2 \\ 0 & 0 & -3 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & -1 / 3 & -1 / 6 \\ 0 & 0 & 0 & -3 & 0 & 0 & 0 & 0 & 0 & 5 & 0 & 0 & -1 / 3 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & -2 & -1 & -1 / 3 & -1 / 3 & 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & -1 & -2 & -1 / 6 & -1 & 0 & 0 & 0 & 6\end{array}\right]$

Having found the G matrix of N_{R} the network can easily be constructed.
Note: The number of operational amplifiers used is 6 , less than $2(n+p)$ since we have got one matrix B_{1} to be zero.

III. CONCLUSICNS

We have given above a systematic synthesis procedure for realizing any arbitrary voltage transfer matrix of real rational functions of the complex frequency variable s. The unique features of the method are;
(i) all the capacitances are grounded, an attractive thing from the point of view of integrated cixcuit realization, and
(ii) all the ports have one terminal as the common ground. Even though the reduction of number of capacitors is effected by an increase in the num ber of active devices, this solution will be attractive for realizing matrices of higher order and lower degree.

When compared to Su's [6] method of realizing voltage transfer matrices, chis method utilizes the minimum number of capacitors, all beirg grounded, with a slight increase in the number of resistors used. at the cost of active devices. With the advent of integrated circuits, it is rather welcame to reduce the number of passive elements even if it results in an increase in the number of active devices. Also when the transfer voltage matrix is rectangular one ($n \times m$), the method presented here requires a maximum of $m+n+2 p$ active devices whereas Su's (6) method requires $2 n$ or 2 m active devices whichever is greater. This means that the method may be utilizing a few number of active devices than su's method when used to realize a rectangular transfer matrix with the degree much lower tinan the order of the matrix in addition to the fact that the number of capacitors used are minimum. The saving in the number of active devices may be still moxe when sone entries in A_{1} or B_{1} becomes zero, as in the example given.

REFERENCES

[1] I.W. Sandberg, "Synthesis of n-port active RC Networks," Bell System Technical JournaL. Vol. 40 , pp. 329-347, 1961.
[2] 1.H. Sandberg, "Synthesis of Transformerless Active n-port Networks," Bell System Technical Journal, Vol. 40, pp. 761-783, 1961.
[3] R.K. Even, "Admittance Matrix Synthesis with PC Common Ground Networks and Grounded Finite Gain Phase Inverting Voltage Amplifiers." IEEE Trans. on Circuit Theory, vol. CT-17. pF. 344-351, 1970.
[4] N.is. Ccx and \because.L. Su, "An Investigacion on the Realizability of RC Operatianal Amplifier Networks," Proc. 12 th Micwest Symposium on Circult Theory, pp. XI 2.: - XI 2.5. 1969.
[5] D. Hzlberman, "synthesss of Rational Transfer and fidmattance Matrices with intive RC Common Ground : letwork Containing Urity Voltage Gain Amplifiers," IEEE Tyans, on Circuit thecry, vol. CT-LS. pF. 431-440, 1908.
[6] a.J. Marn and D.b. Pike, "Minimal Reactance Redi1zation of n-part Active RC Wetworks," $\because r a c$. IEEE Letter, Vol. 56, F. 10104,196 .
[7] D.W. Melvin and E. λ. Bickart, "t-utert Actave RC Networks, short Gircult Admattarce Matrix Synthesis with Minimum Number of Capacitors," IEEE Trans. on Circuit Theory, Vol. CT-18, pp. 587-592, 1971.
(8) C.D. Kim and K.L. Su, 'On the Sufficiency of $2 n$ Operational amplifiers to Realize an Arbitrary non Voltage Transfer Matrix," iEEE Trans. CT (Corresp.) Vol. CT-16, pp. 729-732, 1971.
[4] P.E. Kalmar, "Irreducebale Realizations and the Jegree of a Rational Matrix." SiNA. Sourndi of A: laed : Aathematice, Vol. 13, 1.2.52の-b24, 1965.

[ll] T.A. Bickart and D.W. Melvin, "Mijtiport Voltaqe gain functions: Synthesis wath Actave RC Mulitports,"

BIOGRAFHY

P.A. Ramamoorthy was born in Tindivanam. Tamilnadu, India on December 20,1949 . He received his B.E. degree in Electrical Engineering from the University of Madras in 1971. He joined the Indian Institute of Technology, Madras in 1971 and is working towards his M.S. degree at the Indian Institute of Technology, Madras, India.
K. Thulasiraman ($M^{\prime}-72$) was born in Anmayappan, Tamilnadu, India on June 9, 1942. He received the B.E. and M.Sc. degrees in Electrical Engineering from the * Universicy of Madeas, Madras. India in 1963 and 1965. respectively, and the Ph.D. degree in Electrical Engineering irom the Indian Institute of Technology, Madras, in 1968.
Since September 1965, he has been working in the Department of Elactrical Engineering at the Indian Institute of Technolosy, Madras where he is currently an Assistant Professor. During 1970-72 he was at Sir George Williams University, Montreal, Canata, as a Post-doctoral Fellcw in the Electrical Enginesring Department, on leave of absence from the Indian Institute of Technology, Madras. His current areas of interest include netowrks and systems theory.
K. Sankara Rao was born in Jagadapur. India on January 8, 1940. He received the B.E. degree from Andhra UnIversity, Walbair, India, the the m.Tech, degreg from the Indian Institute of Technology, Kharapur, the Ph.o. degree from the Indian Institute of Technology, Madras. all in Electrical Engineering in 1960, 1902 and 1972 respectively.
In August 1963, he joined the Indian Institute of Technology, Madras where he is presently an Assistant Professor in Electrical Engineering. Since 1972, he is working as a Post-doctoral Fellow with the Electrical Engineering Department, Sir George williams Unversity, Montreal, Canada. His current areas of interest inclwi network and systems theory.

Figi Network Block Diagram

Fiq 2 Subnelwork N_{R}

