SYNTHESIS OF MULTIVARIABLE NETWORKS

M.N.S. Swamy and K. Thulasiraman* Department of Electrical Engineering
Sir George Williams University Montreal, Canada

Abstract

In this paper we consider the synthesis of certain classes of multivariable networks.

1. INTRODUCTION

In this paper we consider the following aspects of the problem of synthesis of multivariable networks:
(1) A graph-theoretic approach for the synthesis of driving-point functions of multivariable networks.
(2) Synthesis of a class of multivariabile n-port networks.
2. A GRAPH-THEORETIC APPROACH FOR THE SYNTHESIS OF MULTIVARIABLE NETWORKS

In this section we give a graph-theoretic approach for the synthesis of drivingprint functions of a class of moltivariable networks.

Consider a network N. Let G be the linear graph of N. Let there be n edges in N, Set the admittance of edge e be equal to $\mathrm{K}_{j} \mathrm{P}_{j}$. We assume that $\mathrm{p}_{j}{ }^{\prime} \mathrm{s}$ are distinct Let there be an edge in lw connecting vervices 1 and 2 , where the vertices 1 and 2 form the input-terminal-pair. Without any loss of generality we may denote the edge soy e_{1}. We further assume that there are to parallel edges in N.

The driving-point admittance Y of N across che terminal-pair $(1,2)$ is given by [1].

$$
\begin{equation*}
Y=\frac{V(Y)}{W_{1,2}(Y)} \tag{1}
\end{equation*}
$$

there

$$
V(Y)=\sum \text { tree -admittance products }
$$

(all trees)
'nd

$$
1,2^{(Y)=}=\left\{\begin{array}{l}
\text { admittance products of } 2-\text { trees } \\
\mathrm{T}_{2}, 2 .
\end{array}\right.
$$

We note that Y is a positive real function of the variables $p_{i}{ }^{\prime}$ s.
Let $N_{\text {g }}$ denote the network obtained after short -circuiting the edge e_{7} in N. Then a 2 -tree $\mathrm{T}_{2}{ }_{1,2}$ of N is also a tree of N_{3}. Since no tree of N_{s} will contain the edge ${ }^{e}{ }_{1}$ the variable $\mathrm{P}_{1}{ }^{5}$ will not be present $\mathrm{W}_{1,2}^{1}{ }^{(\mathrm{Y})}$.

Each term in $V(Y)$ corresponds to a tree in G and can be written as

$$
\mathrm{K}_{\mathrm{i}_{1} \mathrm{i}_{2} \ldots \mathrm{i}_{v-1} \quad \sum_{\mathrm{k}=1}^{\mathrm{v}-1} \mathrm{p}_{\mathrm{i}_{j}} .}
$$

where v is the number of vertices in N and

$$
k_{i_{1} i_{2}} \ldots i_{v-1}=\sum_{j=1}^{v-i} K_{i_{j}}
$$

The tree corresponding to this term will consist of the edges $e_{1_{1}}, e_{i_{2}}, \ldots e_{i_{V-1}}$.

Each term in W, (Y) corresponds to a $2-$ tree of N and cai be written as

$$
k_{i_{1} i_{2} \ldots i_{v-2}} \sum_{j=1}^{v-2} P_{i}
$$

The 2-tree corresponding to this term will consist of the edges $e_{i_{1}}, e_{i_{2}}, \ldots e_{i_{v-2}}$. We wish to obtain the graph G of the network N realizing Y and also the constants K.'s associated with the edges of G. Towards this end we proceed as follows.

Consider any term in $V(Y)$. Let the tree T corresponding to this term consist of the
edges $e_{i_{1}}, e_{\mathbf{i}_{2}}, \ldots e_{i_{V-1}}$. Let c_{f} be the fundamental cutset matrix of G with respect to T. Let the entry of C_{f} at the intersection of the row and column correspond${ }_{c}$ ing to the edges e_{i} and e_{j} be denoted by $c_{i j}$.

Consider any chord e_{x}. We wish to deter$\operatorname{ming} C_{i_{j}} \times$
If there exists a term in $V(Y)$ such that the tree T_{x} corresponding to this equal to

$$
\left(T-e_{i_{j}}\right) \cup e_{x}
$$

then $C_{i_{i} x}=1$, otherwise $C_{i, x}=0$. This result is a consequence of the fact that $c_{i, x}=I$ iffthe fundamental circuit correspording to the chord e_{x} contains the branch e_{i} of T. Thus, in this way all the columits of C_{f} corresponding to the chords of T can be determined. It is well known that the submatrix of C_{f} formed by the columns corresponding to the chords of Tis unit matrix, Thus following this procedure, the fundamental cutset matrix Cf of the graph G of the network N realizing Y can be determined. Using C_{f}, the graph G can be constructed. The terminals of edge e_{1} can be identified as the inputterminals of the required network N.

It now remains to determine the constants K_{i} 's associated with the edges of G. To determine these constants we proceed as follows.

We note that in any non-degenerate network for every edge e., there exists a path between the input terminals containing e_{i}. In view of this, we can conclude that for every edge e_{i} there exists a tree $T=e_{i_{1}} U e_{i_{2}}{ }_{j} \ldots e_{i_{j}} \ldots U e_{i_{v-1}}$ such that (T - e_{i}) is a 2 -tree. The term K_{a}^{k} of $V(V)$ corresponding to T is given by

$$
K_{a}^{*}=K_{i_{1} i_{2}} \ldots i_{v-1} \prod_{j=1}^{l_{i}^{1}} p_{i_{j}}
$$

and the term of $W,(Y)$ corresponding to ($T-e_{i}$) is givent by

$$
K_{b}^{*}=k_{i_{1} i_{2}} \ldots i_{j-I}^{i_{j+1}} \ldots i_{v-1}^{\substack{k=1 \\ k \neq j}} p_{i_{k}}^{v-1}
$$

since

$$
k_{i_{1} i_{2} \ldots i_{v-1}}=\prod_{j=1}^{v \rightarrow 1} K_{i_{j}}
$$

and
we get

$$
\frac{K_{a}^{*}}{k_{b}^{k}}=K_{i}{ }_{j} P_{i_{j}}
$$

Thus the constant K_{i}, associated with the edge e_{i} can be determined as described above. $\mathrm{j}_{\text {Thus }}$ all the constants K_{i} ' s can be determined.

This completes our discussion of the procedure to follow in realizing Y.

We summarize our discussions as follows:
i) a) Consider any term in $V(Y)$. Let the tree T corresponding to this term consigt of the edges $e_{i_{1}}, e_{i_{2}} \ldots e_{i_{V-1}}$. Let $e_{k} \neq T$.

$$
c_{i_{j}}=1 \text { if there exists a tree } T_{x}
$$ such that ${ }_{j}$

$$
T_{x}=\left(T-e_{i_{j}}\right) U e_{x}
$$

b) The submatrix of C_{f} formed by the coluns corresponding to the branches of T is a unit matrix,

Thus the fundamental cutset matrix C_{f} of G can be determined.
ii) Consider any term in $V(Y)$ corresponding to a tree T . Let this be equal to $\mathrm{K}_{\mathrm{a}}^{*}$. Let $e_{x} T$.

Let (T - e_{x}) be a 2 -tree. Let the term in $W_{1,2}(Y)$ colresponding to this 2 -tree be K_{B}^{*}. Then $\frac{K_{a}^{*}}{K_{b}^{k}}=K_{x} P_{x}$. Thus all the constants $K_{i} ' s$ can be determined.

We note that to determine graph G all the terms in $V(Y)$ will not be required. Hence one has to check, after obtaining G, whether all the trees and 2 -trees T_{2} of G are represented in $V(Y)$ and $W_{1,2}\left(\frac{1}{y}\right)^{2}$ respectively.

Extension of the above procedure to synthesize driving-point impedance functions is straightforward.

Further, if the admittances of some of the elements of N are known to be of the form $\frac{K_{i}}{p_{i}}$, then synthesis should be carried out using a modified function Y which is obtained from Y by making the substitition $p_{i}=$ $\stackrel{1}{\bar{P}_{i}^{T}}$.
3. Synthesis of a class of multivariable n-PORT NETWORKS

In this section, we give a simple sufficient condition for the synthesis of a class of multivariable n-port networks.

Consider an n-port network N. Let the entries of Y, the short-circuit admittance matrix of N be functions of the m-variables $p_{i}, i=1, \ldots, m$. Let Y be decomposable at follows

$$
Y=\sum_{i=1}^{m} \frac{k_{i} p_{i}}{p_{i}+\sigma_{i}} K_{i}
$$

Procedures are available to obtain such a decomposition if one exists [2].

We note that each K_{i} is a real symmetrix matrix. Let $K_{\text {j }}$ be tealizable as the shortcircuit conducEance matrix of an n-port network N_{i}^{*}. Let N_{i}^{*} contain no negative conductances.
The network N_{i} realizing $\frac{k_{i} p_{i}}{p_{i}+\sigma_{i}}$ can be obtained from N * by replacing each conductance g of $N_{i} b \hat{b}$ a series combination of an admittance $\frac{k_{i} g p_{i}}{\sigma_{i} g .}$ and a conductance
k_{i}
If all the networks $N_{\dot{j}}^{*}$ have the same modified cutset matrix, then the parallel combination of all N_{i} 's will realize the matrix Y.

We now illustrate the results by two examples.

Example l. It is required to realize the function Y given below as the driving point admittance of a 5 -variable network.

$$
\begin{aligned}
Y & =2 p_{2} p_{5} p_{1}+2 p_{2} P_{3} P_{1}+2 p_{3} P_{4} P_{1}+p_{3} p_{5} p_{1} \\
& +4 p_{2} p_{3} p_{4}+4 p_{2} p_{4} p_{5}+2 p_{3} p_{4} p_{5}+4 p_{2} p_{4} p_{1} \\
& 4 p_{2} p_{4}+2 p_{2} p_{5}+2 p_{2} p_{3}+2 p_{3} p_{4}+p_{3} p_{5} \\
& =\frac{V(Y)}{W_{1,2}(Y)}
\end{aligned}
$$

Consider the term $2 \mathrm{p}_{2} \mathrm{P}_{5} \mathrm{p}_{1}$. The tree corresponding to this term will consist of the edges e_{2}, e_{5} and $e_{\text {. }}$ The fundamental cutset matrix C_{f} of the required network N is given below.

$$
c_{f}=\begin{aligned}
& e_{2} \\
& e_{5} \\
& e_{1}
\end{aligned}\left[\begin{array}{lllll}
e_{2} & e_{5} & e_{1} & e_{3} & e_{4} \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1
\end{array}\right]
$$

For example, the column corresponding to e_{3} is obtained as follows.

We first form ($T-e_{2}$) $u e_{3}=\left(e_{5}, e_{1}, e_{3}\right)$. There is a term in $V(Y)$ corresponding Eo $\left(e_{5}, e_{1}, e_{3}\right)$ namely, $P_{3} P_{5} P_{1}$. Hence C_{23}, i, e_{57}

$$
\mathrm{K}_{1}=1 \quad \mathrm{~K}_{3}=1 \quad \mathrm{~K}_{5}=1
$$

The network N realizing Y is shown in Fig. 1.

Example 2. It is reguired to realize the matrix Y given below as the short-circuit admittance matrix of a multivariable retwork.

$$
\begin{aligned}
& Y=\frac{p_{1}}{P_{1}+1}\left[\begin{array}{rrr}
3 & -1 & 1 \\
-1 & 3 & 0 \\
1 & 0 & 4
\end{array}\right]+\frac{P_{2}}{p_{2}+2}\left[\begin{array}{rrr}
4 & -2 & 0 \\
-2 & 3 & 1 \\
0 & 1 & 4
\end{array}\right] \\
& =\frac{P_{1}}{p_{1}+1} K_{1}+\frac{P_{2}}{P_{2}+2} K_{2}
\end{aligned}
$$

It can be noted that K and K_{2} are dominant. Hence they can be easily realized by 3 -port resistive networks [3], [4], having the same modified cutset matrix.

The 3-port networks N_{1}^{*} and N_{2}^{*} are shown in Fig. 2. The networks ${ }^{1} \mathrm{~N}_{1}$ and ${ }^{2} \mathrm{~N}_{2}$ realizing $\frac{p_{1}}{p_{1}+1} k_{1}$ and $\frac{p_{2}}{p_{2}+2}$ are shown in Fig. 3. The parallel combination of N_{1} and N_{2} realizes the matrix Y.

Since a number of equivalent networks can be obtained for N_{1}^{*} and N_{2}^{*} such that they ; have the same modified catset matrix [4] it is possible to obtain a number of equivalent networks realizing Y.

References
i. S. Seshu and M.B. Reed, "Linear graphs and electrical networks" Addison Xesley Book Company, 1961.
2. A.M.A. Soliman, "Theory of multivariable positive real functions and their applocations in distributed network synthesis," Ph.D. Thesis, University of Pittsburg, 1970.
3. V.G.K. Marti and K. Thulasiraman, "Synthesis of a class of n-port networks," IEEE Trans. on Circuit Theory, March 1968.
4. K. Thulasiraman and V.G.K. Murti, "Synthesis applications of the modified cutset matrix," Proc. IEE, (London), Sept. 1968.

Acknowledgment. This work is supported by the National Research Council of Canada under grant No. A-7789.

* K. Thulasiraman is presently a Post-Doctoral Fellow at Sir George Williams University for 1970-1972, on leave of absence from the Indian Institute of Technology, Madras, India.

Fig. 1

Fig. 3

