On a Theorem in Graph Theory

An error in the proof of a theorem given in Ref. 1 is pointed out and a correct proof is provided.

Seshu and Reed 1 have proved the following theorem in their book 1;

If G is a connected graph of v vertices and G, is a subgraph of G with v-1 elements and containing no circuits, then G, is a tree of G.

In this correspondence, we first point out an error in the proof of the above theorem and then provide a correct proof.

This theorem will be true if it can be shown that:

(1) G, contains v vertices, and

(2) G, is connected.

In their proof, Seshu and Reed first state that G, contains all the v vertices of G and then establish (2). They then argue that since G is connected, contains v-1elements and no circuits, it is its own tree and hence contains v vertices. Thus they establish (2) assuming (1) to be true and then establish (1) assuming (2) to be true. Since (1) and (2) should be proved independently, the proof as given in Ref. 1 is not valid. The following comments are also in order:

(i) by definition [def. 1-4 in Ref. 1], a subgraph G_s of a connected graph G consists of a subset of edges (and hence also the vertices at which these edges are incident) of G. Thus according to this definition G, need not, in general, contain all the vertices of G. Hence equation (2-5) used in Ref. 1 is not correct.

(ii) Suppose we define that a subgraph G_s of a graph G consists of all the vertices of G and a subset of edges of G. Then equation (2-5) is correct. However, in such a case, the statements 'Now G_s is its own tree and contains v-1 elements. Hence G_s contains v vertices . , are not necessary. This latter definition of a subgraph is not the usual one. Such a definition, though convenient for the proof of this theorem, will lead to difficulties in the development of other results of graph theory.

Thus a correct proof of the theorem is called for. This is detailed as follows: Let G₂ consist of p maximal connected subgraphs. Let $s_1, s_2, s_3, \ldots, s_p$ be the number of vertices in s_i . Since s_i is connected and contains no circuits s_i is its own tree. Hence s, contains $v_r - 1$ elements. Thus G_n contains $v^* - p$ elements where

$$v^* = \sum_{i=1}^{p} v_i$$

Since, by hypothesis, G, contains v-1 elements, we get

(1) . $v^* - p = v - 1$

Hence

$v^* - v = p - 1$

However, $v^* \leq v$ and hence we get from (2)

1971

(2)

31

82	THE MATRIX AND TENS	DR QUARTERLY SEPTEMBER
45)	p* ≤ 1	. (3)
But		(4)
Hence from (Since $p = 1$	3) and (4) it follows that $p =$ we get from (1)	1. Thus G_s is connected.
	$v^* = v$	÷
Hence G, contains	all the v vertices. Thus fol	lows the proof of the theorem.
		K. Thulasiraman and M. N. S. Swamy. Department of Electrical Engineering, Sir George Williams University. Montreal, Canada.

Reference

2

١

1. S. Seshu and M. B. Reed Linear Graphs and Electrical Networks, p. 26, Addison Wesley Publishing Company, Reading, Massachusetts, U.S.A.