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Synthesis of (n + 2)-Node Resistive 
n-Port Networks 

P. SUBBARAMI REDDY AND K. THULASIRAMAN 

Abstract-Certain properties of the network of departure Ns and the 

padding network NP of an (n + I&node resistive n-port network con- 

taining no negative conductances are established. Based on these prop- 

eriies, some necessary conditions and a sufficient condition for the 

realizability of the Y matrices of (n + 2J-node resistive n-port nehvorks 

ore obtained. A new proof for the supremacy condition is given. Also, 

Q necessary and sufficient condition for the realization of (I-I + 2)-node 

n-port networks having specified Y and K matrices is given. 

I. INTRODUCTION 

T 

HE PROBLEM of realization of a real symmetric 
matrix Y, as the short-circuit conductance matrix of 
a resistive n-port network having more than @+I) 

nodes, has been a subject of research for more than a decade. 
Guillemin was the earliest to suggest a method of solution 
when the port configuration T of the required n-port network 
is specified [l]. His approach is based on the determination 
of 1) the unique network of departure Nd [5] with respect to 
the given matrix Y having the specified port configuration; 
and 2) a suitable padding n-port network Np so that the 
parallel combination of Nd and N, contains no negative con- 
ductances [s]. Later approaches [2]-[5] differ from Guille- 
min’s only in the procedure used to generate padding n-port 
networks. The procedures given in [l], [2], and [5] to gen- 
erate padding networks are general and applicable to the 
generation of all padding n-port ‘networks having more than 
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(n+l) nodes. The procedure given in [3] is applicable to 
(n+2)-node networks only and the one given in [4] can 
generate only a class of n-port networks whose potential 
factors are related in a special way. Frisch and Swaminathan 
[2] have also obtained a significant result, viz., the formula- 
tion of the supremacy condition, which is necessary for the 
realizability of the Y matrices of (n+2)-node n-port net- 
works. 

In this paper we consider the synthesis of (n+2)- 
node resistive n-port networks containing no negative con- 
ductances. Unless stated otherwise, we follow the notation 
used in [5]. In this section we restate certain results discussed 
in [5]. 

Consider an (n+2)-node resistive n-port network N con- 
taining no negative conductances. Permitting edges with zero 
conductances, the linear graph. of N may be assumed to be 
complete. Let the two connected parts Tl and T2 of the port 
configuration T of N be linear trees. Let the vertices of any 
linear tree To of N, of which Tl and Tz are subgraphs, be 
numbered consecutively starting from one end vertex of TO. 
Let the first (m+l) vertices be in Tl and the remaining ver- 
tices in T2. Let the set of vertices of T,(T,) be denoted by 
V,(V,>. Let Na and N, denote the network of departure and 
the padding network of N, respectively. For all iE V,( V,> and 
$5 vz(Vl), let Si= Cj (gij)p= Cj gij 

SiO = C 1 (gij)d 1 for all j’s for which (gij)d < 0 (1) 

and 

S= CSi= CSi 

iEV, iEV2 
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so = c s&l = c sio. 
iEV1 iEV2 

(2) 

The following expressions for the conductances of N, have 
been obtained in [5]. 

(gij)p = I$?! ) i, j E Vl(V2) 

Sisj 
(t7ij)p = 7 ' i E Vl, j E VP. (3) 

Denoting as in [5] the nonzero nonunity potential factors of 
N by kl, kz, . - - , k,,, let 

P = [(l -i h), (h - w, (kz - lb), * . * ) @m-l - hn), hn, 

(1 - k,+1), (k*+l - km+J, . . . ) (L, - kn), kal. (4) 

Let 

R = P’P = [Tij]. 

It has been shown in [5] that 

(5) 

(gij)p = - rijS7 i, j E Vl(V2) (f-3) 

(Sij>p = rijS, iEV1, jEV2. (7) 

We note that (3), (6), and (7) have been obtained assuming 
that Tl and Tz are linear. Also, the (gij)p obtained by assum- 
ing arbitrary values for the & and rij define the padding net-. 
work Np of some n-port network N containing no negative 
conductances, provided the Si are nonnegative and the ki 
satisfy the conditions of [S, Theorem 31. It follows from the 
results on padding networks obtained in [6] that (3), (6), and 
(7) can be used to generate (n+2) padding n-ports having 
any arbitrary connected port configurations. However, the 
synthesis of a matrix Y is a “cut-and-try” procedure because 
of the assumed values of the [rij]. 

II. NECESSARYCONDITIONSFORTHERE.+IZATION 
OF YMATFUCES OF(TZ+~)-NODE 

FZ-PORTNETWORKS 

In this section we establish certain properties of the net- 
work of departure Nd and the padding network Np of a given 
(n+2)-node n-port network N containing no negative con- 
ductances. Some of these properties serve as necessary 
conditions for the realizability of the Y matrices of (n+2)- 
node n-port networks. We also give a simpler proof of the 
supremacy condition given in [2]. Proofs of some of the 
properties are not given here. 

Property 1 

1) (gij)p> 0, for all iE VI, jE vz. 
2) (gij)p 5 0, for all i, jE vl( VZ). 
3) (&j)d> 0, for all i, jE Vl(V,>. 

Property 2 

1) If (g&> 0 for any iE VI and jE VZ, then (gij)p> 0. 
2) If SK,> 0, then &> So. 

Property 3 

For any pair of vertices i and jE V1( VZ): 
1) if (gij)d = 0, then either & = 0 or Sjo= 0 or both; 
2) if (gij)d=O with SjoZO, then Si= 0. 

Let VP be a subset of V1 such that for every iE VI”, &, = 0, 
and (gij)d=O for some jE VI, with Sjo#O. It is evident from 
Property 3-2) that for every iE VI”, Si = 0. 

Let the complement of VP in V1 be denoted by VI=. Let V,a 
be a subset of Vlc so that for every jE Via, SjoZO, and there 
exists a kE VP such that 

Sj&kQ 
7 2 bjk)d. 

0 

Since for all jE Vl”Sjo# 0, we have Sj> 0 for all jE VP. There- 
fore, for all j, kE VP, (gjk)d> 0. Similarly, Vzo, Vza, and Vzc are 
defined. 

Property 4 

For an (n+2)-node n-port network containing no negative 
conductances Vf# Vlc and VzO# Vzc (i.e., Vf and Vz4 are 
proper subsets of Vf and V#, respectively). 

Proof: Let Si=Sjo+~j, where Xj>O for all j= 1, 2, * * * , 
n+2, and let 

9n+1 n+2 

A = C Xj = C Xi. 

j=l j=mf 2 

For every jc Vf there exists a kc Via so that 

sjC8kO 
- 2 (gjk)d. 

SO 

Since N contains no negative conductances, (gjk)d> sjsk/s. 

Therefore, 

SjSk SjOSkO 
-<---- 

s so 

i.e., 

(xi0 + xj> (Sk0 + xk) SjOskO 

So + A 
s----- 

SO 

i.e., 

xjxk + sj@k + Sk&j 5 Skh’jO(A/S,). 

Each term on the left-hand side of the above equation is 
positive, since for every jE VP, xj> 0 [Property 2-2)]. There- 
fore, 

Sjdkd 
___ > Sk&j and 

SjBkd 
SO 

___ > sjC$k. 

80 

Therefore, 

Sk0 
$?,; and s>T. 

0 0 
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Thus we have for all jE VP, 

$>T. 
0 

Also, we have S’jo= Sj = 0 for all je VP. Therefore, 

Xj = 0, for every j E VI’. 

Let (contrary to the theorem) 

v1a = VlC 

(8) 

(9) 

Mi(‘) 2 : . 

We note that if M$) = 0, then Si = 0. Thus we have 

M(l) 
m+1 

= c Mill) 1 ms $ = 1. 
i=l i=l 

Therefore 44(l) 2 1; similarly, M@) 2 1. 

i.e., 

Vl”U Vl” = Vl. 

Property 6 (Supremacy Condition) 

For an n-port network N containing no negative conduc- 
tances, let there exist some vertices i and jE Vl and some 
vertices k and IE Vz so that 

Then (Sjo/So)>(Xj/A) if Sjo>O [from (S)], and xi=0 if 
Sjo= 0 [from (9)]. Hence it follows that 

c $> jglz’ i.e., 1 > 1. 
jEVl 0 

Thus we observe that the assumption VI== Vlc leads to an 
absurdity. Therefore Vp# VI c; similarly V2a# V2c. Hence the 
theorem. 

In the following we shall refer to those (n+2)-node n-port 
networks for which y<j = 0 for all iETl, jET2 as degenerate 
networks. 

In nondegenerate networks, for every iE VI there exists a 
jE VI, j#i SO that Sj,#O. For iE VI, let 

mij 
(1) = od, 

SjO 

for all j E VI where Sjo # 0. 

Let 

and 
m+1 

J/f(l) = c &fi(l)* ’ 

i=l 

Similarly, WZij @), Mi(‘), and b4c2) are defined. In a nondegen- 
erate network, at least two Mi”’ and at least two Mi(‘) are 
nonzero. 

Property 5 

For an (n+2)-node n-port network containing no negative 
conductances, M(l) 2 1 and Mc2) 2 1. 

Proof: For any i, jE Vl 

SiSj 
- 5 (gij)d. 

S 

Since Sj> Sjo, we have 

s;< (gij)d __ = mij, 

s - s. 
for all j E VI for which Sjo # 0. 

30 

Since Mi(l) = min (mij”’ ) , it follows from the above that 

Then 

Proof: 

bik)d 5 0 and (gjl)d 5 0. 

bij)d(gkl)d > ( (gik)d 1 1 (gjl)d 1. 

(gij)p(gkZ)p = (- T) (- F) 

= ($%)(I$%) 

= (gd &jl) p* 
Since N contains no negative conductances, 

(10) 

(gij)d 2 - (gij>p 

kndd 2 - k7kJp. 

Also, 

(gik)p 2 1 bik)d 1 

(gjdp 2 1 (qidd I* 

Therefore, from (10)-(12), we get 

(11) 

(12) 

(gij)d(gkl)d 2 ( (gik)d 1 1 (gjl)d (* 

Of the properties discussed so far in this section some re- 
late to the network of departure Nd and others relate to the 
padding n-port network N, of a given (n+2)-node n-port 
network N. Since the network of departure Nd with respect 
to a given real symmetric matrix Y is unique and can be 
easily determined when the port configuration T is specified, 
the properties of Nd (Properties 3-6) can be used as necessary 
conditions for the realizability of Y matrices of (n+2)-node 
n-port networks. 

III. A SUFFICIENT CONDITION FOR THE REALIZATION 
OF Y MATRICES OF (n+2)-NODE RE~ISITVE 

n-PORT NETWORKS 

In this section we give a sufficient condition for the realiza- 
tion of a real symmetric matrix Y as the short-circuit con- 
ductance matrix of an (n+2)-node resistive n-port network 
having a 2-tree port configuration T. 
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Following the notation introduced in Section 1,‘we define 
cl and u2 as follows: 

&nn{@+&l} 

for all i, jE VI or for all i, jE V2 such that (gij)d>O, &#O, 
Sjo#O, and 

) (gii)d I SO 
c2 = max -1 

SioSjO 
(13) 

for all iE VI and jE Vz such that (gij)d< 0. We note that if 
(gij)d<o for some iE VI and jE V2, then by (l), So>0 and 
Sj,> 0. This ensures the existence of u2. 

Theorem I 

A real symmetric matrix Y can be realized as the short- 
circuit conductance matrix of an (n+2)-node n-port network 
having a specified 2-tree port configuration T, if the following 
two conditions are met. 

1) For all i, jE VI or for all i, jE V2: 

a) @ij>d > Cl ; 

b) Si$jo/So=O, if (gij)d=O; 

C) for some i, jE VI( Vz), &>O, Sjo>O, and (gij)d>O; 

d) sdOsjO/sO< (gij)d, if@& > 0. 

2) u12uz. 

It can be shown that the following steps will lead to a 
proper realization of a matrix Y satisfying the conditions of 
Theorem 1. 

Step I: Obtain the unique network of departure Nd with 
respect to Y and having the specified port configuration T. 

Step 2: Choose A so that Soa& AIulSo. 
Step 3: Obtain S’i so that Si= S~o(l+A/SO). 
Step 4: Obtain a padding n-port network NP so that 

S&j 
(gij)p = - 7 f for all i, j E VI or i, j E VZ, j # i 

SiSj 
(SG>p = S 7 for all i E V1 and j E V2. 

Step 5: The parallel combination of Nd and NP will repre- 
sent a proper realization N of the given Y, 

It is interesting to note that all n-port networks obtained 
using different values of A will have the same modified cut- 
set matrix [5]. This follows from the fact that 

ki = mz : = mg +, ilm 
j-i+1 i-i+1 0 

or 

ki = nf z = ng 5, ikm+l. 
j=i+2 j=i+2 SO 

We observe that the sufficient condition stated in Theorem 1 
is also necessary and sufficient for 2-port networks with 
4 terminals. 

Fig. 1. Port configuration used in Example 1. 

Example 1 

Let it be required to realize the matrix Y given by 

as the short-circuit conductance matrix of a resistive 5-port 
network having the port configuration shown in Fig. 1. 

The conductances of the network of departure Nd with 
respect to Y and having the prescribed port configuration are 
given by 

Gd = die {gu 913 914 gls gl6 917 923 g24 g26 928 

927 934 Q36 gse 931 946 946 947 966 f&7 g67)d 

= diag{O 32 4 -22 -2 20 48 0 0 0 0 

-4 22 2 -20 15 3 7 3 24 7). 

We observe that &=48. We obtain u1 and u2 as ul = 89/55, 
u2= 1. We must choose a value of A in the range 481 A 
<89/55X48. Choosing A=48, we get the Si as 

Sl = 48 sz = 0 S3 = 48 X4 = 8 

& = 44 Se = 4 is = 40 S = 96. 

The conductances of the required padding network NP hav- 
ing the above values of the Si are given by 

G,=diag {O -24 4 22 2 20 0 0 0 0 0 4 22 2 

20 -11/3 -l/3 -lo/3 -11/6 -110/6 -5/3}. 

The parallel combination of Nd and NP is a 5-port network 
realizing the given Y matrix. 

IV. SYNTHESIS OF (n-l--2)-NODE RE~~SI-IVE n-PORT 
NE-I-WORKS HAVING PRFWRIBED Y 

AND K MATRICES 

Given a real symmetric matrix 

em--m--f 

Y= 

L 

Yll Yl2 

y21 Y22 I 

with Yll and YZZ uniformly tapered and a K matrix [5] equal 
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to 

+m++n-m-+ Kn Kl2 [ 1 
t s ,K21 K22 t 

n-m 
1 

with KI1 and Kz2 having the forms 

em--, +-n-m+ 

r 1 I...1 1 

we obtain in this section a necessary and sufficient condition 
for the synthesis of an (n+2)-node resistive n-port network 
containing no negative conductances and having Y and K as 
its short-circuit conductance and potential factor matrices, 
respectively, and a linear 2-tree port configuration T, the 
connected parts TI and Tz of T being defined by KI1 and Kz2, 
respectively. Also, Yii and Yz2 correspond to KI1 and Kzz, 
respectively. 

Following the notation introduced in Section I, let 

h7dd 
L1 = min __ 

{ 1 rii 
(14) 

for all i, jEV, or for all i, jcV,, j#& provided (gij)d>O 
and rij>O and 

for all iEVl and jcV,, provided (gii)d<O. 

Theorem 2 

A necessary and sufficient condition for the synthesis of 
an (n+2)-node resistive n-port network N containing no 
negative conductances and having a linear 2-tree port con- 
figuration and Y and K as its short-circuit conductance and 
potential factor matrices, respectively, is the following: 

1 > k,+12 km+2 2 . ’ . 2 km 

1) If for any i, jE V,( V2), (g& = 0, then rij= 0. 
2) (g&&O for all i, jE V,( VZ) and there exists at least one 

pair of vertices i, jc ?‘,(I’,) such, that (gij)d>O and (rii)>O. 
3) if (g& <0 for any iE VI and jE V2, then rij> 0. 

Ll 2 L2. 

It can be shown that the following procedure will lead to 
an (n+2)-node n-port network containing no negative con- 
ductances if the conditions of Theorem 2 are satisfied. 

1 2 3 4 5 6 

~Podi 2-p& q p Pod 3 -&%-~4 -q 

Fig. 2. Port configuration used in Example 2. 

Step 1: Obtain the unique network of departure Nd with 
respect to the given matrix Y and having the prescribed port 
configuration. 

Step 2: Calculate the rij and L1 and L2. 
Step 3: Choose an S in the interval L25S<L1. 
Step 4: Use the value of S obtained in Step 3 to obtain an 

NP whose conductances are obtained, using (6) and (7). 
Step 5: The parallel combination N of NP and Nd will 

contain no negative conductances and will be a realization 
of Y and K. 

Example 2 

Let it be required to synthesize a 4-port resistive network 
having the matrices Y and K as its short-circuit conductance 
and potential factor matrices, respectively: 

, r 67 45 -6 2l 

rl 1 0.6 0.61 

Following the procedure given in [7], it can be shown that 
the port configuration corresponding to the given K matrix 
will be as shown in Fig. 2. 

We note that kl=0.6, kz=0.5, k3=0.4, and kq=0.3. The 
conductances of the required network of departure Nd are 
obtained as 

Gd = diag (912 g13 g14 Q16 QlfJ Q23 g24 Q26 gns g34 

Q36 936 Q46 Q46 dd 

= diag { 22 45 6 -8 2 17 -11 -2 13 5 

10 -15 20 40 15). 

We obtain R= [rii] as follows: I 

0.24 0.04 0.12 

We next obtain L, and Lz, as L, = 2000/9 and Lz = 200. We 
must choose a value of S in the range 2001 S<2000/9. 
Choosing S= 200, and using (6) and (7), the conductances of 
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the required padding network N, are obtained as 

G, = diag (-8 -40 48 8 24 -10 12 2 6 60 

.lO 30 -12 -36 -6). 

The parallel combination of N, and Nd realizes the matrices 
Y and K. 

V. CONCLUSIONS 

The approach adopted by Guillemin [I] toward the n-port 
synthesis problem suggests that a greater insight into the 
nature of the problem can be obtained from a study of the 
networks of departure and padding networks of resistive 
n-port networks containing no negative conductances. The 
conductances of the networks of departure being linear func- 
tions of the elements of the Y matrix, it is possible to estab- 
lish from the properties of these networks conditions for the 
realizability of Y matrices of n-port networks. Frisch and 
Swaminathan [2] were the first to work in this direction and 
they formulated the supremacy condition. The necessary 
conditions and the sufficient condition obtained in this paper 
for the aealization of Y matrices of (n+2)-node resistive 
n-port networks further underline the importance and useful- 
ness of Guillemin’s approach to the n-port synthesis prob- 
lem. 

Whereas synthesis of n-port networks having specified Y 
matrices involves solution of nonlinear equations, synthesis 
of networks having specified Y and also K matrices is, as 

25 

shown in [6], straightforward requiring the solution of linear 
programs. Theorem 2 of this paper provides a simple solu- 
tion of the latter problem for the special case of (n+2)-node 
n-port networks. 
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Some New Configurations for Active Filters 
T. ALLAN HAMILTON, STUDENT MEMBER, 

Abstract-Some new active-filter configurations based on the pole-zero 

cancellation technique are introduced. First, for the range Q 5 50 a single- 

amplifier circuit is suggested. For higher selectivity 150 < Q _< 500) o two- 

amplifier circuit is proposed. Another easily coscadable two-amplifier cir- 

cuit with o reduced number of capacitors is discussed. In the latter case the 
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filter function is determined by certain resistive ratios. All the configurations 

proposed.employ integrated circuit operational amplifiers (OAs). The sen- 

sitivity problem is discussed in detail. Effects of the finite OA frequency re- 

sponse are also investigated. 

I. INTRODUCTION 

T 

0 DATE all general active-filter synthesis methods, 
with a few notable exceptions, have the drawback of 
increasing element sensitivities as the Q of the transfer- 

function poles and zeros increase. This fact is primarily due 
to the dependence upon differences~of polynomials to syn- 
thesize denominators and/or numerators of the required 
transfer function [ l]-[3]. In fact, it has been shown that some 


