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SUMMARY

The continuously equivalent realizability of 3rd-order real symmetric paramount matrices is discussed.

1. INTRODUCTION

A necessary condition for an (n X ) real symmetric matrix to be realizable as the shortcircuit conductance
or open-circuit resistance matrix of a resistive n-port network is that the matrix be paramount. This
condition is not sufficient, in general. However, Tellegen' demonstrated the sufficiency of this condition by
giving a general network configuration capable of realizing any 3rd-order paramount matrix. Weinberg?
has reported the details of Tellegen’s procedure. Recently, a new. procedure based on an alternative
network -configuration was presented.’ Tellegen’s procedure, as well as the one given in Reference 3,
- leads to a unique realization for a given (3 X 3) paramount matrix. _

In this paper, we consider the question of the continuously equivalent realizability of 3rd-order
paramount matrices. S

A (3 X 3) symmetric matrix with positive diagonal entries can have any one of the following two distinct
patterns:

Pattern 1:
y12 and y,3 positive
¥13 negative

Pattern 2:
¥12 positive
y12 and y,3 negative

The results of this paper are based on the following theorems, proofs of which are avilable in Reference 4. |

Theorem 1-

Ina (3 X 3) real symmetric paramount matrix Y, whose off diagonal entries have the sign pattern 1, at least
two rows are dominant. -
Theorem 2

In a 3rd-order real symmetric paramount matrix Y having the sign pattern 1, y;; # y1,.

Theorem 3 _
Let a real symmetric paramount matrix satisfy the following conditions:
(i) It has sign pattern 2, :
@ii) |y1sl # y23l, |y23| <min {y1z, [ysal}.
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Then
Yi1#Yi12

Theorem 4

Let a real symmetric (3 X 3) paramount matrix y satisfy the following conditions: y,; is negative, y;, is
positive and y,; =0. Then

(a) rows 2 and 3 are dominant, -

(b) if one of these rows is marginally dominant, then row 1 is also dominant.

Theorem 5

Let a real symmetric (3 X 3) paramount matrix satisfy the following conditions:
(i) It has sign pattern 2, o
(i) y22=y12,
(iii) |y2s|<min{ys, lyssl}. -
Then the matrix Y can be bought to the uniformly tapered form.

Theorem 6

If, in a real symmetric (3 X 3) paramount matrix Y,

(i) y12, is positive, y13 and y,; are negative and are equal,

(i) lyss|=lyzs|<y1z. ' ,
Then the matrix Y can be brought to the uniformly tapered form. Theorem 7 follows from the results of
Reference 5. : :

Theo_rem 75

Let, in a real symmetric (3 X3) matrix Y,

Y22 = IY12| y33= |}'13|
[y12|>0 [yis]|>0 [y23]>0

- I Y i realizable as the Y matrix of a 3-port network containing more than four terminals, then one of the
following is true:
() y22=ys3=|y2sl

(ii) y22=|yas|

@iii) ys3=lysl.
The implication of the above theorem is that, if, in a (3 X 3) real symmetric matrix, ¥22=|y12] and y33 =y,
and, if all the off diagonal entries are distinct and nonzero, then the matrix cannot be realized by a 3-port
network having more than 4 terminals. '

- 2. CONTINUOUSLY EQUIVALENT REALIZATIONS OF
3RD-ORDER REAL SYMMETRIC PARAMOUNT MATRICES
HAVING NO ZERO ENTRIES

We give, in Section 2, a network configuration for realizing any 3rd-order real symmetric paramount matrix
Y, having no zero off diagonal entries, as a shortcircuit conductance matrix. This configuration enables us
to generate continuously equivalent realizations for a given matrix. Let the configuration of the 3-ports of
the network be as shown in Figure 1. The realization of the matrix Y having sign pattern 1 is discussed
under case 1, and that of the matrix having sign pattern 2 under case 2.
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Case 1

Let the given Y matrix satisfy the following conditions:
(i) The offdiagonal entries have the sign pattern 1,
(ii) rows 2 and 3 are dominant,
(iii) |yisly22(y3s—y23 —y12)=0.
It can be shown that conditions (ii) and (iii) involve no loss of generality.
The edge conductances of the network of departure® N having Y as its shortcircuit conductance matrix
and having the port configuration of Figure 1 are given by the following equations:

(812)a = (V11— y12), (813)a =y12 (814)a=y13
(815)a = —|y13l (823)a =(y22—y12)
(824)a =—(|y 13|+ y23) (&%) = (ly13l+y23)
(834)a=y2s (835)a=—y23
and
(845)a =y33 ' )]

The edge conductances of a suitable padding 3-port network are to be obtzined from the following
expressions:

(8i)p = —si5; Lj=1,2,3 isf ori,j=4,5 i#j
8o =555 i=1,2,3 and j=4,5 @)
where '
. S1+82+83=54+55
We have to choose suitable nonnegative_values for s;’s such that
(8:)=(8)a +(g;), =0

foralli and j=1, 2, 3, 4, 5, i #]. Let us choose si’s such that g3, gis and g,; are zero. Then we can
eXpress s1, 52, 55 and s4 in terms of 55 as follows: ‘

S1 ='YI2/53 SS=(Iy13IS3)/y12
52=(y22—y12)/53
2
—|yus))+
54 =l 53(y12 l}’lsl) Y12Y22 7 3
§3 Y12

It can be seen from (1) and (2) that g3, g5 and g3, are nonnegative. The requirement that the remaining
conductances be nonnegative helps to establish the limits within which s3 should lie. These limits can be
obtained as follows:

Case 1(a)
[y13]> y12 ‘
and
_ Y12Y33>|y13]y22
max {C;, C3}<s3<C,
Case 1(b)

[y13]>y12
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and
[¥131y22 > y12y33
max {C;, G5, C}<s2<C,
Case 1(c)
y12>|y13
and y12y33 3y 1sly2
max {Ci, C3}s3§ =G
Case 1(d) |
Y12> |y
and
ly13ly22> y12y33
max{C}, Cs}<s3<C,
where

Ci1=y12(y22=-y12)/ Y11 ~¥12)

Y12Y22(y22—¥12)
yi2(y1sl+y23) = (22— y12)y12—y13])

Cs=y12y23/|y13l

C, = Y12(|Y13b’22 —¥12Y33)
"y =
(|Y13| - Y12)|}’13l

C2 =

4)

It must be pointed out that, in case 1d above, C;, C, and C; should be calculated using the matrix obtained

by first interchanging the rows and columns 2 and 3 of the given matrix Y, and then multiplying the entries
of row 1 and column 1 of the resulting matrix by —1. ‘ :

Once a choice of 53 is made satisfying the constraints given above, 1, s, 54 and s5 can be calculated using
(3), and the nonzero conductances of the required network can be calculated using (1) and (2).

While the above approach leads to continuously equivalent networks containing seven conductances, for
limiting values of the parameter s3, we obtain six conductance realizations also.

Case 2

Let the given paramount matrix Y satisfy the following constraints:
(i) The offdiagonal entries have the sign pattern 2,
(ii) lyzs|<miin {y12, |y1sl}, y13 # y23 and ysr # yss,

(ii)) lyisly22(vas—y23—Iy13) = y12y33(22 ~ y23 = y12)=0.
Proceeding as in case 1, we obtain the following limits on ss:

Case2a
lyisl>y12 and  yioyss>|ysslys, Cissi<C.
Case 2b }
lyisl>y12 and |yislyz2>yizyss, max {Cy, C}=s3<C,.

Case 2¢

yi2>lysl and  yipys> [Y1sly22,Cr<s3< C,.
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Case 2d - ‘
yi2>|ysl and |yislyze>yioyas, G <s53<GC,.

The discussions following (4) are applicable here too.

3. REALIZATION OF DEGENERATE PARAMOUNT MATRICES

The synthesis procedures of Section 2 are applicable to the class of matrices having no zero entries.
Realization of matrices having two zero entries can be achieved by inspection, and the networks so realized
will be in two connected parts. _

If y12 or y13 is equal to zero, then the approach adopted in Section 2 requires, as can be seen from (1) and
(2), that one more y; be equal to zero. On the other hand, if y23 =0, then the techniques of Section 2 will be
applicable, except when y,, = y1,. Under case 3, we give a synthesis procedure for matrices in which only
one of the y;s is equal to zero. '

In case 2, it was assumed that y,3 # y,3 and y,; # y;,. Realization of matrices in which such conditions are
not satisfied will be dealt with under case 4. .

Case 3
Let the matrix Y satisfy the following conditions:
(i) Y23 = 0, ’ -

- (i) y22=y12,
(iii) yis is negative. -

- 23 4
| .L:POftIlPort2tJ | IIv-:Por'tB.-—I

J»U'll .

+

Figure 1_. Port configuration for cases 1, 2 and 3

For this case, we assume the port configuration of Figure 1. Once again, we first obtain the conductances of
the network of departure N, and choose suitable nonnegative s;’s so that the final conductances of the
réquired network will be nonnegative. For this purpose, we choose s,’s as follows: " * o

51=(n =y12)/512

=|)’13| '.
§2

1
s3=0 | Sa Ss=;[}’.11—}’12—|)'13|+5'%1
2

where s, has to be chosen such that
' 52= (Y11~ Y12~ |y1a)/ (733 —y13)
In the final network obtained, we find
824=0 8237 834=835=812=0

The above approach does not pose any problem, except when row 3 is also marginally dominant. This case is
discussed in Reference 4. ’

Case 4

Let the matrix Y satisfy the following conditions:

(i) The offdiagonal entries have the sign pattern 2,
(ii) y22=yi; 0r Y13 =Y23 OI y22=Y¥)3 and y,3 =y;3,
(iii) y237#0, y33# |Y131,
(iv) |y2s]=<min {y,2, |y}
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Figure 2. Port configuration for case 4

We assume, for this case, the port conﬁguration of Figure 2. We choose g13 =4 =g25s=0. 51, 3, 54 and Ss
are obtained as

s1=& ‘ s4=()’12"|}’23|)
S3 Sa

S5 = [yl S3=85,
§2

where

532 (y12— |}’23|)|(st)|_/()’33 - I}’13_|)

The above approach is applicable even when y;3 =|y;3|, provided that ¥12 = y23].For, in such a case, any
arbitrary value may be chosen for s3. If, instead, y;3=y,s, the procedure can still be applied after
interchanging the rows and columns 2 and 3 of the given matrix Y and multiplying the entries of row 1 and
* column 1 of the resulting matrix by —1. Thus the approach of case 4 is also applicable to all the (3 x3)
paramount matrices satisfying the following conditions:
(i) The offdiagonal entries have the sign pattern 2,

(i) y22=y12,y33= [y13ls

(ii)) |y2sl=y12=<|y1sl or |y2s| = |yis|<y1a. :
The only case that is yet to be considered is that of a matrix in which y,5 and y,; are nonnegatives, | yi3l, |y23l
and |y;.] are distinct and nonzero and y33=|y;3| and ya, = yy,.

By Theorem 7, for such a matrix, a 5-node realization does not exist, and hence continuously equivalent |

realizations are not possible. However, it can be realized by a 4-node network after converting it to the
uniformly tapered form. :

4. CONCLUSIONS

It has been shown, in this paper, that continuously equivalent realizations are possible in the case of all
3rd-order paramount Y matrices except those in which y,; =y12, y33 =|y13}, [y13], ly23] and | ¥12| are distinct
and nonzero. However for these matrices, no 5-node realization exists, and hence no continuously
equivalent realizations are possible. '
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