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written as 

X = TX’. (7) 

Utilizing the relation in (7) in the respective state model of the 
networks under consideration, we can obtain the following relations: 

AT = TA’ (8) 
ABz + B, = T(A’Bz’ + BI’) (9) 

CT = C’ (10) 

where A’, B,‘, Bs’, and C’ = C are the coefficient matl-ices in the state 
model of the network in Fig. l(b). 

The entries of the transformation matrix T, for continuously 
equivalent networks, however, are the function of the real parameter 
x and, if A(0) is the A matrix of the original network and A(x) is 
the A matrix of an equivalent network for a given parameter X, then 
the transformation matrix T(x) satisfies the relation [6], [13] 

A(O)T(x) = T(z)A(x:). (11) 

If x is increased by a small amount, say Ax, we may approximately 
take 

T(n- + Ax) ~2 T(x) 1, + KAxl (12 
lvhere K is assumed to be a square matrix of order n. Substituting 
(12) into (11) yields 

$ A(x) = A(x)K - KA(x) (13) 

and the solution, as given in [ll] and [13] is 

A(x) = ecKZA(0)eKZ (14) 

which is in similar form as the forms obtained by the equivalent net- 
works theories of Howitt and Schoeffler [3]. Comparing (14) with (11) 
we obtain 

T(x) = eK=. (1.9 

Hence, it is clear from the above discussion that for a fixed value of 
X, the transformation matrix T(x) =e Kz transforms the original net- 
work in Fig. l(a) into its equivalent network in Fig. l(b). 

From the relation in (10) it can be shown easily that the trans- 
formation T(X) is of the form 

Substituting (16) into (15) we obtain 

K = [“d’ “d”] 

tlz = .!f [&n’ - 11. 

Then substituting (17) into (13) we obtain 

(16) 

(17) 

(18) 

(19) 

The whDle problem now is to obtain the solution of (19) subject 
to initial conditions such that at x=0 the A(0) matrix of the circuit 
in Fig. l(a) results, and at 3c=xo the 11 (x0) matrix of the circuit in 
Fig. 1 (b) results. After obtaining the matrix A(xo) and utilizing the 
relations obtained in (8) and (9), all the element values of the net- 
work in Fig. 1 (b) can be determined. 

Example 

Let the element values of the network in Fig. 1 (a) be given as 

P, = + $1, L, = - 1 H, Lt=2H 

13 = 2 II, L? = 2 H, Cz=+F 

whereL=LI+Lp=lHandn=--L?/L=:-2. 
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Let kn=l and klz= -4. Then the solution of (19) at x0=1, 7/S 
yields au(%) = -3/S, a&o) =29/35, az1(x3 = -7/.5, and Use 
= -3/20. Also using the relations obtained from (8,) and (9), the 
element values of the equivalent network in Fig. l(b) can be deter- 
mined as 

Y,’ = 39/14 n, L,’ = - 15/7 H, La) = (j/7 H 

r3’ = - 2/7 n, Lz’ = - 10/7 H, Cz’ = .- 7/2 F 

L’ = - 25/7 H, 12’ = - 2/5 

where rl +r3 = rl’ +rs’ and ~3~2 = ra’cz’. 

Iv. CONCLUSION 

In general, a state model representation 

R = (A, @I, B?, . . . , Bn+d, C) 

where A, Bi, and C are, respectively, (nxn), (nxnt), and (mXn) 
matrices, can be transformed into a standard form R= (A^, 8, e) 
from which the minimality of the representation R can be deter- 
mined [lo]. 

If the representation R of any two networks is minimal, there 
exists a transformation matrix T between the state vectors of these 
networks that can be interpreted as the continuously equivalent 
network transformation between these networks [lo]. In this 
correspondence, the approach makes use of the above results, which 
are mentioned in detail in [lo]. 
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A Sufficient Condition for the Synthesis of the 
K-Matrix of n-Port Networks 

M. N. S. SWAMY AND K. THULASIRAMAN 

In a recent paper Lempel and Cederbaum [ 1 ] have discussed the 
analysis and synthesis of the K-matrix of n-port networks. The re- 
sults of Lempel and Cederbaum include procedures for the deter- 
mination of the port configuration pertinent to a given K-matrix and 
for the synthesis of a given K-matrix by a resistive n-port network 
having more than (n+l)-nodes. Subsequently, Reddy and Thulasi- 
raman [2] have presented an alternate approach for K-matrix syn- 
thesis. The procedures given in [l ] as well as in [2] require the solu- 
tion of a linear program. ln this correspondence we establish, using 
the results of [2], a simple sufficient condition for the synthesis of the 
K-matrix of an n-port network having more than (n-+l)-nodes and 
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having a specified port configuration. We first summarize briefly 
the results established in [2] and [3] that will be useful in later dis- 
cussions. 

Definition l-Network of Departure 
An n-port network with more than (n+l)-nodes is called a net- 

work of departure Nd, with respect to a real syinmetric matrix Y, if 
its cutset admittance matrix is equ’al to 

where the rows of Y correspond to the port edges. 

Dejinition Z-Padding n-Port Network 
An n-port network is called a padding n-port network N, if its 

short-circuit admittance matrix is equai to zero. 
It can be shown that any n-port network N can be considered as 

the parallel combination of a network of departure Nd and a padding 
n-port network N, and that Nd and NP foi- a given n-port network N 
are unique. [3] 

Consider a resistive n-port network N. Let the port configuration 
T of N be in p parts: r,, TZ . T,. It may be assumed, without any 
loss of generality, that each Ti ‘is a Lagrangian tree. The set of ver- 
tices of Ti will be denoted by io, ;I, i2, . . . , i,+. The mth port of r; 
will be denoted by Pi; io and i, are the negative and positive 
reference terminals of Pi,. Denoting by g,,j, the conductance con- 
necting vertices ik and j,%, we then define SC,? and S,, as follows: 

si,j = 2 g,kj,, jzi 
m-0 

Subscripts d and p will be used to refer to the quantities of the net- 
work of departure N,t and the padding n-port network NP of N. It 
can be shown that (Sij)p = Sif and (5’ikj)p = Sckl. 

The potential factor matrix K = [kij] of an n-port network N is 
defined as.the nXn matrix where k,j, called the potential factor of 
port j with respect port i, is the potential of the positive reference 
terminal of port j with respect to the negative reference terminal of 
port i when port i is excited with unit voltage and all the other ports 
are short circuited. After rearranging its rows and columns, the matrix 
K can be partitioned as follows: 

Kll Kn . . KI, 

KU Kzz . . Kzp 
K= . . . . . . . 

i I 

. . . . . . . . 

f&l Kp2 . . K,, 

where a) each submatrix K,i, i = 1, 2, . , p, has entries comprising 
1 and 0 only and is uniquely fixed by T,; b) each entry in a submatrix 
K,j,j#i, is less than unity and greater than zero except in degenerate 
cases; c) all entries in any row of each K,j,j#i, are equal. 

Let a typical column of Ktj, j#$ be denoted by Kii. Let k,,, 
denote the voltage of the set of ports in rj when port P,, is excited 
with a source of unit voltage and all the other ports are short cir- 
cuited. \Ve note that k,,j is equal to some element of the kth row of 
Kij, j #i. 

The following equations have been obtained in [2]: 

+1-J; f/-L-/ +Iz--I 
Fig. 1 

The following results form the basis of the procedure given in 
[2] for K-matrix synthesis. 

1) The potential factor matrix of N, is the same as that of N. 
2) NP is the padding network of some n-port network N contain- 

ing no negative conductances if and only if all (S<kj)p are nonnegative. 
Thus synthesis of the K-matrix reduces to the determination of 
nonnegative S<j so that Sz,j, as obtained by (l), are nonnegative. 

‘We now prove the following Theorem. 

Theorem 

A real matrix K = [k;j] can be realized as the potential factor 
matrix of a resistive n-port network having a port configuration 
T=TllJT,U. ’ . T,, with each Ti a Lagrangian tree, if a) each Kii 
contains O’s and l’s only and is realizable by Ti; b) all columns of 
each Kij, j#i, are identical;-c) K,j=Ktm, l<i$jp-1, l<j, m<p, 
j, nl fi; d) the sum of all entries of each K<j, .j #z, is less than unity. 

Proof: We prove the Theorem by establishing the existence of a 
set of nonnegative values for S,j which result in nonnegative S;,j. 
Condition a) of the theorem ensures that the required network will 
have the port configuration T and condition b), as stated earlier, 
is a property of the K-matrix. 

From condition C) it follows that ki,j =k<km, 1 lisp- 1; 
1 <j, m<p. Hence, from (1) we get 

Si,j = Sijki,j, l<i<p-1; l<jCp 

(3) 

In yiew of condition d), we can conclude from the above equation 
that any set of nonnegative values for Scj, l<i, j<p, will result in 
nonnegative Si,j for all l<;<p-1, l<j<p,.i#i. 

Consider next the following equation: 

Sp;j = Spjkp$ + 5 S+n[kpd - kp,mI; l<j<p-1; l<l:<nP 
n-1 

7nfp.i 

&,i = SC - 2 &ki, l<j<p-1: (4) 
k-1 

Since each S,ij should be greater than zero, we can get from the above 
a lower bound for S,j in terms of the remaining Sij. I*et such a lower 
bound be denoted by Lj. 

Then any set of nonnegative values for Sij, l<;, j<p-1, and 
a nonnegative value for S,j such that S,j>Lj will result in nonnega- 
tive values for all S,,j. Hence, the Theorem. 

Example 
Let it be required to realize the following matrix as the K-matrix 

of a 3-port resistive network: 

k’= [;i$ 1;; :;:I. 

It can be shown that the port structure of the required 3-port 
network is as shown in Fig. 1. 

Using (3) and the given matrix K, the following relations are 
obtained: 

s1,2 = fS12 S,,e = 4s,, 

Sl,S = 3s13 S,$ = +s13 

sz,, = ;s,, szol = $*z 

s2+ = $s-23 s2,a = $23. (9 

The above relations indicate that any set of nonnegative values for 
S,,, l<i, j53, will result in nonnegative S<,j for all l<i<2 and 
l<.j<3,jfi. 

The following relations are then obtained using (4): 

sq, = +s,, + -:S,? Sa,, = $s,, - is,, 

s3,2 = is23 - g-,2 S3$ = Y&Y23 + :s,,. (6) 



380 IEEE TRANSACTIONS ON CIRCUIT THEORY, JULY 1972 

PORT. 3. 

+ 

FORT.1. PORT.2. 

Fig. 2. A sufficient condition for the synthesis of the K-matrix 
of n-port networks. 

From the above equation it can be seen that .‘?a+ S+,1, S+ and 
SzD2 will be nonnegative if 

s13 2 4s12 

and 

s23 2 s12. (7) 

One set of nonnegative values for Sij satisfying (7) is as follows: 

SlZ = 30 s13 = 20 s23 = 30. 

Using the above values of Sij and (5) and (6), all Si,j are then evalu- 
ated. Using these .Sid and (14) of [3]. the conductances of a 3-port 
network N having the K-matrix can be obtained. The network N is 
shown in Fig. 2. 

In conclusion, we wish to point out that no necessary and suffi- 
cient conditions, besides the procedtires given in [l] and [2], are 
available for testing the realizability of K-matrices of resistive n- 
port networks having more than (n + l)-nodes. However, such condi- 
tions are available in the special cases of (n+2)-node and (n+3)- 
node z-port networks [3], [4]. The sufficient condition given in 
Theorem 1 is applicable for any resistive n-port network with p > 1. 
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On the Synthesis of the Two-Port in Bode’s 
Variable Equalizer with: Pivots 

EUGEN SUH;\REANU AND MARIA SUH;\REANU 

for 

or 

I. INTRODUCTION where 
Bode’s variable equalizer was studied in a recent correspondence 

[l] under the particular condition ~l--or~>O at all real frequencies 
for O<p< 1. The effect of this condition on the variable equalizer is 
that it cannot provide a prescribed curve oi --010 with pivots.’ 

Under the general condition cz-&O with the insertion loss 
a>0 for either O<p< 1 or -1 <p<O, Bode’s variable equalizer has 
pivots, because at some frequencies (Y -czyo becomes zero. For 

for 

Since B may be deduced from 8, by a translation and a multiplica- 
tion, we studs B with the help of 8,. 

Manurcril,t received September 2, 1971; revised February 7, 1972. 
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1 The frequencies for which a-a0 =O at p 10 are named pivots [2]. 

Fig. 1. (a) Strip P having the branch cut along the negative real axis. (b) Image 
of strip P in Fig. l(a) under (1). 

this reason it is often named equalizer with pivots. It can be obtained, 
under certain conditions on the curve C, with a minimum phase two- 
port Q, and under other conditions on the curve C, with a nonmin- 
imum phase two-port Q. 

The purpose of this correspondence is to find, in the case of the 
variable equalizer with pivots, the set of necessary and sufficient con- 
ditions on the curve C under which Q results in a minimum phase 
two-port. This set of necessary and sufficient conditions is deduced 
with the help of the conformal mapping of the domain in which the 
variable equalizer with pivots is defined. 

The significance of the notations used is found in [l]. 

II. CONFORMAL MAPPING OF STRIP P OF THE 
+-a0 PLANE ONTOTHE~ PLANE 

We rewrite the relation (4) of [l]: 

1 e+-ao + 1 
8= A+jB=~lnpa+;ln~-= &W+;O1 

&no - 1 2 (1) 

where 

-l<p<O. 

The funcbons (1) and (2) are mllltiple-valued, having the critical 
points +-w=jk~(k=O, +l, +2, . . .) and +-olo= m. Let there be 
the inlinite strip -?r<p<*, designated P, in the $--a~ plane. Each 


