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This paper presents a novel parallel architecture based on a multistage interconnection
network (MIN) for reconfigurable binary de Bruijn structures. The proposed architecture
is able to assume distinct binary de Bruijn configurations (BDCs), where each config-
uration has the geometric pattern or structure as that of a binary de Bruijn graph. A
system with N nodes or processing elements can generate N2 /4 distinct BDCs. The
novelty of the architecture is in the design of the switching network for interconnecting
the nodes. The switching network adopted is an augmented shuffle-exchange MIN. The
favorable features of the architecture include fast reconfiguration, simplified hardware
in the MIN, absence of the need for reconfiguration hardware in the nodes, and simple
" routine control. '

The generation of BDCs is derived from an equation, called the Reconfiguration
Equation, which is based on simple logical operations and defines the necessary inter-
connections among the nodes. It is shown that the architecture assumes interconnections
according to this equation and consequently the proof of reconfiguration is given. The
important properties of the reconfigurable de Bruijn structure are outlined. Finally, two
features which are useful in enhancing the reconfigurability of the architecture are dis-
cussed. First, it is proved that the architecture can be augmented to generate partitioned
de Bruijn configurations. Second, it is shown that the architecture can assume distinct
binary tree configurations by a simple modification.
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1. Introduction

The de Bruijn network architecture, which is based on the de Bruijn graph,! has
received much interest of late as a versatile architecture for parallel processing.
In particular, the binary de Bruijn structure has been advocated as an effective
network architecture for a wide range of applications.? The versatility of the binary
de Bruijn structure arises from its ability to solve a large class of problems since
it can admit important topologies such as the ring, the linear array, the complete

¢ binary tree, the tree machine, and the shuffle-exchange network. It also has the
; - advantages of ease in implementation compared to the hypercube since the number
‘ of interconnections per node does not grow with the network size. Furthermore,

*Present address: Division of Computing, Department of Mathematics, Statistics, and Computing
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it exhibits fairly good fault-tolerance properties. Many fault-tolerance strategies
and routing algorithms for de Bruijn networks in general, and binary de Bruijn
networks in particular, have been proposed.?® NASA’s Galileo project (cited in
Ref. 2), which aims at building a massively parallel de Bruijn network architecture,
indicates the importance of the network in the industrial sector.

One of the important strategies in the design of high-performance systems is
the use of reconfigurable parallel architectures. Such an architecture can speed
up algorithm execution, minimize interprocessor communication delays, improve
resource utilization, and provide for enhanced fault-tolerance. Many reconfigurable
parallel systems of a different philosophy, reconfiguration technique, and application
scope have been proposed.®-16

The work on de Bruijn networks reported thus far considers the network to be
static. The main ¢contribution of this paper is to propose a novel architecture for
reconfigurable binary de Bruijn structures. The architecture is capable of assuming
distinct binary de Bruijn configurations (BDCs) among its nodes or processing
elements, where each configuration has the same geometric pattern of the binary
de Bruijn graph. The number of distinct BDCs possible is N 2/4, where N is the
number of nodes in the system.

The novelty of the architecture is in the design of the switching network for
interconnecting the nodes. The switching network adopted is an augmented shuffle-
exchange multistage interconnection network (MIN). The favorable features of the
architecture include fast reconfiguration, simplified hardware in the MIN, absence
of the need for reconfiguration hardware in the nodes, and simple routing control.

The idea proposed in this paper has its basis in the work of Biswas and Srinivas,8
which reports a reconfigurable architecture for binary tree structures. The archi-
tecture with N nodes is capable of assuming N distinct binary tree configurations
(BTCs). As mentioned earlier, we define a binary de Bruijn configuration as hav-
ing the geometric pattern of a binary de Bruijn graph. Based on this definition,
we utilize the idea that a BDC can be obtained by a concatenation of two edge-
disjoint binary tree configurations. In the light of this, we augment the binary tree
architecture to generate distinct BDCs.

The generation of BDCs is derived from an equation, which we call the Recon-
figuration Equation, which is based on simple logical operations and defines the
interconnections among the nodes. We show that the architecture assumes inter-
connections according to this equation and consequently prove that it is capable
of reconfiguration. We enumerate the important properties of the reconfigurable
binary de Bruijn structure. Finally, we discuss two features which are useful in
enhancing the reconfigurability of the proposed architecture. First, we prove that
the architecture can be augmented to generate partitioned binary de Bruijn con-
figurations. Specifically, the architecture can assume distinct pairs of independent
binary de Bruijn configurations. Second, we show that by a simple modification, the
architecture can function as the reconfigurable binary tree architecture of Biswas
and Srinivas.!®
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The rest of the paper is outlined as follows. In the next section, the concept of
a reconfigurable binary de Bruijn structure is introduced. Section 3 briefly outlines
the important features of the binary tree architecture in Ref. 18. Section 4 describes
the proposed reconfigurable architecture, gives the proof for reconfiguration, and
enumerates the properties of the reconfigurable de Bruijn structure. In Sec. 5,
the architecture is augmented to generate partitioned de Bruijn configurations. In
Sec. 6, we show that a simple modification enables the architecture to generate
distinct binary tree configurations. Section 7 provides concluding remarks and
enumerates the advantages of the proposed architecture.

2. The Reconfigurable Binary de Bruijn Structure

‘Generally, a node in a parallel architecture refers to a processing element, which
consists of a processor unit and a memory unit. We use the term structure of a
parallel architecture to refer to its topology or the geometric pattern formed by the
nodes and their interconnecting links. The term configuration refers to the structure
in which the location of each node has been specified. For instance, we may have
different configurations of the binary tree structure, each with a different root node.
Reconfiguration refers to the process of altering the configuration of an architecture
by rearranging the interconnecting paths. A reconfigurable structure is one that
can assume distinct configurations. The proposed architecture for reconfigurable de
Bruijn structures is capable of assuming distinct binary de Bruijn configurations.

The number of nodes N in the architecture is assumed to be 2F, where k is a
positive integer. Each node is denoted as P(i),i =0,1,...,N —1, and can be
represented as a k-bit (binary) number i _1ix_5 - - - i which gives the binary value
of the index ¢ of P(%). For the sake of simplicity, we shall often refer to P(i) by its
decimal index ¢ only.

Definition 1: A binary tree structure (BTS) with 2% nodes is that having k + 1
levels (Lo, Ly, ... ,L;) of nodes with the root at Ly and the leaves at L. Each node
at an intermediate level L, z = 1,2,... ,k — 1, connects to two nodes at Loy,
while the root connects to one node at L and has one connection with itself.

~ Figure 1(a) shows the BTS with eight nodes. Figure 1(b) shows two possible
configurations of the structure that can be generated by the reconfigurable binary
tree architecture proposed in Ref, 18.

Definition 2: Consider a node P(l) at level L,, z=1,2,... .k — 1,in a BTS. Let
the two nodes to which it is connected at. L, 41 be P(m) and P(n). Then P(m) and
P(n) are the predecessors of P(1). P(l) is called the successor of P(m) (or P(n)).
P(m) (P(n)) is called the sibling of P(n) (P(m)). The pair of nodes (P(m), P(n))
forms a stbling pair.

Extending the above definition to the root, it can be easily seen that one of
the predecessors of the root is the node at Ly; the other predecessor is the root
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itself. Furthermore, the root and the node at L, form a sibling pair. As an example
to illustrate the above definition, consider the node 6 in the first configuration in
Fig. 1(b). Its predecessors are 7 and 5. The pair of nodes (7,5) forms a sibling pair.
Similarly, (3,1), (6,4), and (2,0) each forms a sibling pair.

Level Leaf Nodes

Lo Root Node

(a)

(®)

Fig. 1. (a) A binary tree structure with eight nodes, and (b) two configurations of the structure.

Definition 3: An undirected binary de Bruijn graph (BDG) is that in which
any node P(i) = 43_1iz_3- - iy has four neighbors given by® ix_gir_3- - 11808k —1,
totk—1%k—2" " - 21, Tk—28k—3 -+ t1808k—_1, and fpig_1dp_3 - -izf].

Figure 2(a) shows the undirected BDG with eight nodes. It can be easily
verified!” that the graph can be drawn as a concatenation of two BTCs (Fig. 2(b)).
The component BTCs of the graph are edge-disjoint and leaf-sel disjoint, that is,
the set of leaf nodes in the two BTCs are disjoint. For instance, in Fig. 2(b), one
of the component BTCs has 0 as the root and nodes 4, 5, 6, and 7 as leaves, while
the other has 7 as the root and 0,1, 2, and 3 as leaves.

We generalize the above concept and define a binary de Bruijn structure (BDS)
to be a concatenation of two binary tree structures. The BDS has the same topology

*a represents the complement of the binary variable a.
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as that of the undirected BDG. But the only difference is that the node locations
are not specified. The following is a formal definition.

011

001

(a) . - (b)

Fig. 2. (a} An undirected binary de Bruijn graph with eight nodes, and (b) its equivalent repre-
sentation.

Definition 4: A binary de Bruijn structure with 2% nodes is that formed by the
concatenation of two edge-disjoint and leaf-set disjoint (k + 1)-level binary tree
structures. A binary de Bruijn configuration refers to the BDS in which the location
of each node has been specified.

Figure 3 shows two possible configurations of the binary de Bruijn structure
with eight nodes that can be obtained by the architecture proposed in this paper.
Consider, for example, the first configuration of Fig. 3(a). It is composed of two
BTCs, one with 0 as the root and 7, 5, 3, and 1 as leaf nodes; while the second
BTC has 7 as the root and 6, 4, 2, and 0 as the leaf nodes.

3. The Reconfigurable Binary Tree Architecture

The reconfigurable binary tree architecture!® with N = 2* nodes is capable of
assuming N distinct BTCs and is implemented with a k-stage shuffle-exchange MIN.
The existing shuffle-exchange MIN'® does not have the capability of assuming a
BTC among the nodes. This capability has been imparted to the network by a sim-
ple augmentation. The reconfiguration in the architecture is based on the following
equation, which gives the relation between each node P(i) and the node P(j) to
which it gets connected for each value of a k-bit control code C = ¢x_1cp—2---cg
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controlling the switching in the MIN
P(j) = (CRS[P(i)]AB) & C (1)

where CRS[P(%)] is a one-bit circular right shift of the binary representation of
P(i), B is a k-bit number with value by_1bg—2---bybp = 11.--10, A is the bitwise
AND, and @ is the bitwise EXOR operator. It has been proved in Ref. 18 that an
architecture which establishes interconnections among its nodes according to (1) is
able to generate distinct BTCs, one for each value of C. Figure 4 shows the BTCs
in an eight-node architecture.

(a)

(b) -

Fig. 3. Two possible binary de Bruijn configurations with eight nodes.




An MIN-Based Architecture for Reconfigurable de Bruijn Structures 285
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Fig. 4. The eight distinct BTCs generated for different values of C in an 8node binary tree
architecture.

Notation 1: Let D be the decimal equivalent of the control code cx_1cp—g---co
generating a BTC. We shall denote the configuration as Tp or T.

k—1Ck—2"-"Co*

Property 1: The same pair of nodes form a sibling pair in all the BTCs.

For example, it can be observed in Fig. 4 that the nodes 2 and 0 form a sibling pair
in all the configurations. So do the pairs (1,3), (6,4), and (7,5).

Property 2: A node P(j) = jx_1jr_2-- - jo is a leaf node if and only if j, = &.
This gives an important result.

Lemma 1: If D is an even number (including zero), then Tp has odd-numbered
nodes as leaves; if D is odd, then Tp has even-numbered nodes as leaves.

For example, Ty, T, Ty, and Ts have 7, 5, 3, and 1 as leaf nodes. On the other
hand, Ty, T, Ts, and T have 0, 2, 4, and 6 as leaf nodes.

x a T
— [
y m—t —
i ] ] ]
Control bit 0 1 0 1
() (b)

Fig. 5. Switching states of (a) a basic switching element and (b) an augmented basic switching .
element.
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We now define two switching elements that are used in the MIN of the tree
architecture. Figure 5(a) depicts a basic switching element (BSE). It is a 2 x 2
switch with two switching states: straight (if the control bit = 0), and exchange
(if the control bit = 1). Figure 5(b) shows an augmented basic switching element
(ABSE). It is a 2 x 4 switch with two states: if the control bit = 0 (1), then the
inputs z and y connect to the upper (lower) outputs a and b (c and d), respectively.

4. The Proposed Architecture

The N = 2F nodes in the architecture are interconnected by an MIN of k stages,
which are numbered Sg—1, Sk-2, ... ; So in order, with Si_; being the leftmost stage.
Each stage Sp, p=k—1,k—2,...,0, consists of N/2 switching elements (SEs) and
is controlled by two controls ¢jpe2p. Sp, p=k—1,k—2,...,1, is connected to
Sp—1 by the perfect shuffle connection.

We now describe the switching states of the SEs. Each SE in any stage S,
p=k-1k—-2,...,1,is a 4 x 4 switch (Fig. 6(a)). Let us label its inputs as
IT1, IT2, IB1, and 1B2, and its outputs as OT1, OT2, OBIl, and OB2. In this
notation, I (O) represents input (output), T (B) denotes top (bottom) terminal,
and 1 or 2 its serial number. Figures 6(b) and (c) depict the switching states of
the SE for different values of the bits ¢ p¢g,. ‘It can be observed that the SE is
logically equivalent to a concatenation of two BSEs, namely, BSE1 composed of
lines (IT1, IB1, OT1, OB1) and BSE2 (IT2, IB2, OT2, OB2) and controlled by ¢, ,
and cyp, respectively. If ¢; , is 0 (1), then BSE1 is set to the straight (exchange)
state. Similarly, BSE2 is set to the straight (exchange) state when ¢y, is 0 (1).

m_ 0T —
m | [om2 | B T B
lBl_ £Bl i _ | |
L e I K LK) e i
c ¢ 00 01 10 11
1p 2p
(a) (b)
= o — _
1 B O DXE =
= — 5313 - N
_— — 353 = = = =
h - 1 R
cl.OCZ.O 01 1 0
(<) (4)

Fig. 6. (a) Structure and (b) switching states of an SE in stage Sp, p = k- 1,k - 2,...,1;
(c) structure and (d) switching states of an SE in Sp.




An MIN-Based Architecture for Reconfigurable de Bruijn Structures 287

The switching states of an SE in S, are different. Figure 6(c) shows the inputs,
outputs, and control lines of the SE. It is a 4 x 8 switch and is effectively a concate-
nation of two ABSEs, namely, ABSE1 composed of lines (IT1, IB1, OT11, OT12,
OBl1, OB12) and ABSE2 (IT2, IB2, OT21, OT22, OB21, OB22) and controlled
by ¢1,0 and ¢3¢, respectively. Figure 6(d) depicts the switching states. The bits ¢, 0
and ¢z are always complements of each other. If c1,0 = 0 and c29 = 1, then the
inputs IT1 and IB1 connect to OT11 and OT12, respectively, while IT2 and IB2
connect to OB21 and OB22, respectively. If c1,0 = 1 and ¢z = 0, then IT1 and
IB1 connect. to OB11 and OB12, respectively, while IT2 and IB2 connect to OT21
and OT22, respectively.

All the SEs of a particular stage receive the same control bits and hence switch
to the same state. Thus, the entire MIN is controlled by a 2k-bit conirol code
C = cpe-162k-1 €1,k—2C2k—2 -+€1,0¢2,0. The control code is issued by a central
Configuration Controller (CC).

Figure 7 illustrates the architecture for N = 8 with switching states shown for
C =10 10 01. An observation of the figure 1_nd1;ates the manner in which the nodes
are connected to the MIN. Each node has six terminals, namely, t13, t13, 13, ta1,
t22, and t23. Consider the node P(0). Its terminals are connected to the top SE
in Sp in the following manner: ¢;; — OTI1, ¢15 — OT12, ty; — 0T21, ty, — OT22.

;1/22

¢l

~}

X
% 4%
e

,_f f 3
A A B 1423='
10 ‘ , 10 01
| =0
RS >IN DXE;
rA [ A4
10 10 01
N . §6)
— §7=
) Y [}
10 . 10 01

Fig. 7. The proposed architecture for reconfigurable binary de Bruijn structures.
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The connections from ¢;3 and ¢33 are brought out to the front of the MIN and
connected to IT1 and IT2, respectively, of the top SE in S;_;. The terminals of
P(1) are similarly connected to the bottom four outputs of the top SE in S; and
the bottom two terminals of the top SE in Si_;. Note that even (odd) numbered
nodes are connected to the top (bottom) terminals of an SE.

With this architecture, we show that it is possible to obtain distinct binary
de Bruijn configurations among the nodes. The configurations are stage-controlled
and synchronous. For each value of the control code issued by the CC, a BDC is
obtained. This property follows from an equation given below.

4.1. Reconfiguration equation for binary de Bruijn structures

Theorem 1: Let C1 = ¢g_1¢k—3---c1coand C2=c}_;6_o° - c’lcf,_be two distinct

k-bit variables such that ¢p,c, € {0,1} forp=k—1,k—2,...,0, and ¢o = . Let

each node P(i) establish connection with two nodes P(51) and P(32) such that
P(j1)
P(52)

@

(CRS[P(i)JAB) ® C1
(CRS[P(i)JAB) ® C2 }

where CRS[P(i)] represents a one-bit circular right shift of P(i) and B =
br—1bg—2---b1bg = 11.--10. Then a binary de Bruijn configuration is established
among the nodes for any arbitrary value of C1 and C2.

Proof: It is known from Sec. 3 that if the nodes are interconnected é.ccording to
(1), then a BTC is obtained. In the present case, the configuration is determined by
(2), which consists of two equations for P(j1) and P(j2), each of which is identical
to (1). Hence the configuration is logically equal to two BTCs, say, T, and Ty,
generated by the control codes C1 and C2, respectively. Since ¢y = &), hence it
follows from Lemma 1 that T; and Ty are leaf-set disjoint.

Now draw T3 and Ty in concatenation. First draw T, and then add the edges of
Ty. Since T and T} are leaf-set disjoint, hence the root of Ty is a leaf node of T.
This node is connected to its sibling. Every other leaf node of T, is connected to two
nodes, which form a sibling pair. From Property 1 in Sec. 3, it follows that every
leaf node of T is connected to a distinct sibling pair. Hence the concatenation of
T: and T, is a binary de Bruijn configuration. '

Example 1: Consider an -architecture with eight nodes and let the nodes estab-
lish connections according to Theorem 1 with C1 = 000 and C2 = 001. We can
determine the various interconnections among the nodes using (2) as follows:

PG 0123 4567
P(Gl) 0 4 0 4 2 6 2 6
PG2) 1 515 3737

It is seen that this corresponds to the BDC of Fig. 3(a).
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Equation (2) is called the Reconfiguration Equation for binary de Bruijn struc-
tures. It is significant in that it forms the basis for the proof that. the architecture
generates distinct BDCs. In the next section, we show that the proposed architec-
ture establishes interconnections according to this equation, and consequently prove
that it is capable of reconfiguration.

4.2. Proof of reconfiguration

Theorem 2: For each value of C' = ¢1 3162 k—101,k—202,k—2 €1,0¢2,0, the ¢;3 and
23 terminals of each node P(i) establish connection through the MIN with two
nodes P(j1) and P(52), which are given by (2), where

Cl=cyp-1€616-2-"-C1,0 3)

C2=cyr-102k-2"""C20 . _ 4

Proof: Can be obtained by starting at the ¢,3 and t53 terminals of an arbitrary
node P(7) and tracing the paths through the MIN to the nodes to which they are
connected.

Example 2: In Fig. 7, C1 = 110 and C2 = 001. Consider the node P(0) = 000.
Its terminals ?13 and ¢33 are connected, respectively, to (CRS[000JA110) & 110 =
110(P(6)) and (CRS[000]A110) & 001 = 001(P(1)). This can be verified by tracing
the paths from P(0) through the MIN.

Theorem 3: A binary de Bruijn configuration is established for each value of C.

Proof: Follows from Theorem 1 and Theorem 2.

We see from the above discussion that the BDC-generated with N = 2¥ nodes
is a concatenation of two BTCs, T; and Ty, such that z,y € {0,1,...,N — 1} and
that if  is odd, y is even, and if y is odd, then z is even. We denote the BDC as
T:1,.

Theorem 4: The architecture can generate N2/4 distinct BDCs. -

Proof: C is a 2k-bit string with the constraint that ¢; o = 626 Hence, it can

take 22~ values. Therefore, the total number of BDCs is 22¥-1 = N2/2. A BDC
T:Ty is identical to the BDC TyT:. Hence, the total number of distinct BDCs is
(N2/2)/2 = N?%/4.

Example 3: With N = 8, the architecture can generate sixteen BDCs, namely,
Tohh, ToTs, ToTs, ToTr, TiTe, ThTy, TvTs, ToTs, ToTs, T Ty, TsTy, TsTs, TuTs,
TsT7, TsTs, and TsT5. Figure 8 shows all the sixteen configurations. The BDC
that is generated corresponding to the switching states of Fig. 7 is T} Ts. Note that
T Ts is same as TgT; and the control code generating the BDC is 10 10 01 where
C1 =110 and C2 = 001. The control code C' = 01 01 10 would also have generated
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the same BDC. Similarly, another BDC TyT5 (for instance) is generated by any of
the two control codes 01 00 01 or 10 00 10.

4.3. Properties of the reconfigurable de Bruijn structure

In what follows, we derive some useful properties of the reconfigurable binary de
Bruijn structure.

Theorem 5: (Neighbors of a node) Given a control code C and a node P(3), the
four neighbors of P(i) in the BDC T, T} that is generated can be determined as
follows: If 49 = cy,0, then the neighbors of P(i) are P(jl1), P(j2), P(ml), and
P(nl); if i = ca,0, then the neighbors of P(i) are P(j1), P(j2), P(m2), and P(n2),
where '

P(j1) = dpig1dg—2 - i20 ® c1,k-1€1,6—2 - - €1,1€1,0 ®)
P(52) = dotp_1dx_2- 320 D cap—1Co k-2 C2,1C20 ' (6)

_ P(T.T'fi'l) =dg_gik-3- - 410;k_1 @ €1 k—2€1 k-3 - - €1,10¢1, k-1 (M
P(nl) = idp_sig_3---i116—1 ® €1 —201,5-3 - 01,1061,1;-1 )
P(m2) = d;_sig_3- 410031 o k202 13" "02,106_2,k—1 9)
P(m2) = i_piz_3---i11lir_1 D cap_202k-3 - ca10c2,k-1 . (10)

Proof: The successors and predecessors of P(i) in T, and Ty are its neighbors.
From (1), the successor P(j1) of P(i) in the BTC T; is given by (5). If i = ¢; 0,
then P(i) has two predecessors P(ml) and P(nl) in T,. Again, from (1), these two
nodes are given by (7) and (8), respectively. If io = &;,0 = co9, then P(i) has no
predecessors (it is a leaf node in T;). Similarly, the successor P(j2) of P(i) and its
predecessors P(m2) and P(n2) (if they exist) in T, are given by (6), (9), and (10),
respectively.

Example 4: Determine the neighbors of the node 100 in the BDC generated
by the control code 01 10 10: In this case, ip = C2,0. Hence the neighbors are
(010 ® 011) = 001, (010 & 100) = 110, (001 & 001) = 000, and (011 & 001) = 010.
This can be verified in Fig. 8.

Theorem 6: (Coutrol codes for adjacency) Given any two nodes P(i) =
k-18k-2 4o and P(J) = jr_1jk—2 - jo, determine the control bits given by the
following

Ck—1Ck—2 " €1C0 = lolk—19k—2 - 120 ® je_1Jk-2" - Jo (11)

Cho1Ck_2 " €1Ch = Jodk—1Jk—2 - 20 ® fk—1ik—2 -+ 10 . (12)
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Then any control code of the form c;_jd ci_od- - cyd eoy, dep_y de_o -+ dey Egeg,
Cp1d¢t_od - cidcyy, or de_, dey_, -+ - dcy Tycg, where d € {0,1}, will generate
a BDC in which P(i) and P(j) are adjacent to each other.

Fig. 8. The sixteen distinct BDCs obtained with the architecture of Fig. 7.

Proof: Without loss of generality, consider the architecture with eight nodes. If
P(i) and P(j) are adjacent in a BDC T, Ty, then they are adjacent in either T or
Ty. In any BTG, P(%) and P(j) are adjacent if P(3) is the successor of P(j) or if
P(j) is the successor of P(i). Let C = ¢3¢ c be the control code generating the
BTC which makes P(j) the successor of P(i). Hence, from (1),

cacrco = (CRS[P@)AB) @ P(j) . (13)

Similarly, let C’ = cjc}cj be the control code generating the BTC which makes P(3)
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the successor of P(j). Again, from (1),
cyeico = (CRS[P(j)AB) & P(i) . (14)

Hence the two nodes are adjacent in the set of BDCs {TesercoTadeyy TaazoTeseyco,
Te clcond% Taqe, Teterer }- The theorem generalizes this result.

Example 5: Find the control codes which generate BDCs in which the nodes 001
and 011 are adjacent to each other: In this case, cac;co = (100 @ 011) = 111 and
cheico = (100 @ 001) = 101. Then the required set of control codes is {1d1d10,
d1d101, 1d0d10, d1d001 : d € {0,1}}.

It can be inferred from the above discussion that, given any pair of nodes, we
can always generate a BDC in which these two nodes are adjacent to each other.
This property is useful in that any two nodes between which message traffic is
heavy can be brought adjacent to each other. Furthermore, fault-tolerance of the
system can be obtained. Suppose that in a BDC, two nodes P(m) and P(n) are
communicating with each other along a path which contains one intermediate node,
say P(l). Suppose that P(l) goes faulty: Now we can reconfigure the system into
another BDC in’ which P(m) and P(n) are adjacent to each other, and the faulty
node is bypassed. .

Embedding other networks: Samatham and Pradhan? have demonstrated that
‘the binary de Bruijn graph admits many computationally important networks such
as the ring, the linear array, complete binary trees, tree machines, and shuffle-
exchange networks. Since the reconfigurable de Bruijn structure proposed in this
paper has the same topology as the binary de Bruijn graph, it is intuitive that
“each BDC generated by the architecture can admit all of the above networks. For
instance, the binary de Bruijn graph with N nodes can admit at least four complete
binary trees of height log, N2 (Note that here the complete binary tree has the usual
graph-theoretic definition.) Hence, in our case, each BDC can admit at least four
such trees. Hence the total number of possible complete binary trees is N?/4 x
4 = N2, Similarly, many distinct configurations of different networks enhances the
message-routing efficiency and the fault-tolerance capabilities of the architecture.

5. Augmentation of the Architecture for Partitioning

We now show that a simple augmentation to the proposed architecture enable it
to generate partitioned binary de Bruijn configurations. Specifically, we show that
distinct pairs of partitioned BDCs can be obtained by augmenting the last stage
So. Suppose that another control line cp is added to the last stage Sp. Normally,
cp = 0, and all the SEs in Sp have the same switching state. If cp = 1, then the
switching in Sy is designed such that the SEs in the upper half of Sp is controlled
by ¢1,0¢2,0, while the SEs in the lower half are controlled by €1,0€2,0- The followmg
interesting result was observed with this augmentation.
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Theorem 7: A control code C in which ¢; ;1621 = 01,0.02,0 = aa for any
a € {0,1} generates two independent BDCs.

Proof: Without loss of generality, let N = 8. Traé¢ing the paths through the MIN
from ;3 of an arbitrary node P() to its connecting node P(j1), we get

. . (ioGBa)(iz@cl,l)a fig®a=0
P@G1) =4 . . .
(lo®a)(iz®cip)a fio@a=1
which can be rewritten as

P(]l) = (10 [4) a)(iz &) 61'1)(1'0) . . » (15)

The above equation defines a pair of BTCs since the set of nodes with i; = 0
are configured by the control code ¢y 2¢5,10, while the set of nodes with ip =1 are
configured by the control code ¢;,2¢1,11. Similarly, 23 of P(7) is connected to

P(j2) = (io ® @)(i2 ® c2,1)(%0) - (16)

The above equation again defines two independent BTCs, which are distinct from
the BTCs given by (15). Using the same reasoning as in the proof of Theo-
rem 1, we can prove that the two equations (15) and (16) together define a pair of
indep_efldeﬁt BDCs, in which the nodes with i = 0 are configured by the con-
trol code a@cy ica,1ad, while the set of nodes with ip = 1 are configured by t_hé
control code dacy,1c2,1aa. '

Example 6: With N = 8, let ¢; 2¢32 ¢1,1¢2,1 cpe1,0¢2,0 = 01 00 101. Then the two
independent BDCs that are generated are shown in Fig. 9.

Thus, the above augmentation enables partitioning, that is, the architecture can
generate distinct pairs of BDCs. The method can. be generalized to obtain a larger
number of partitions by augmenting other stages too.

Fig. 9. The partitioned BDCs obtained with the augmentation.
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6. Generation of BTCs

As mentioned earlier, the basis for the proposed architecture is the reconfigurable
binary tree architecture of Ref. 18. We can convert the proposed architecture to
function as the binary tree architecture by a simple modification. Suppose that a
control line ¢, ,, is added to each stage Sp, p=k—1,k~2,...,0. Normally, Cop=1
and the switching states of the SEs are unaltered. If ¢, , = 0 in any stage S,, then
each SE in that stage functions as a single BSE (single ABSE in Sp). The two
switching states can be obtained by using c1,p. It is intuitive to see that if ¢, , = 0
in all the stages, the architecture is equivalent to the binary tree architecture and
generates a distinct BTC for each value of €1,k—1€1,k~2 " C1,0.

Another interesting feature that can be noted is with regard to the generation
of partitioned binary tree configurations. By following a strategy similar to Sec. 5,
that is, by partitioning the last stage Sp in this modified architecture, distinct pairs
of partitioned BTCs can be generated. The proof for partitioning can be reasoned
in a manner similar to Theorem 7. '

7. Conclusions

The binary de Bruijn structure is an important computation topology for parallel
processing. The work on de Bruijn networks reported thus far considers the network
to be static. This paper proposed a novel parallel architecture for reconfigurable
binary de Bruijn structures. The architecture with N nodes is capable of assuming
N?/4 distinct binary de Bruijn configurations, where each configuration has the
geometric pattern of the binary de Bruijn graph.

The architecture is based on a multistage interconnection network. The novelty
of the architecture is in the design of the switching elements of the MIN. Reconfig-
uration is achieved by issuing a single control code to the MIN. In what follows, we
outline some of the advantages of the architecture.

The primary advantage of the proposed method is in the fast switching from one
configuration to another. Reconfiguration is achieved by controlling the MIN and
all the control code bits are broadcast simultaneously. Thus, the direct paths are
established in parallel rather than stage by stage. Furthermore, the CC establishes
conflict-free paths. These two factors make the system faster than existing methods
which employ sequential switching in the MIN.

The architecture does not require separate hardware in the nodes for achieving
reconfiguration. Furthermore, the hardware logic for generating control signals in
all the switching elements is eliminated. This results in a substantial reduction in
hardware in the nodes and the MIN.

No algorithm is required to achieve reconfiguration. Since each control code
establishes direct paths between the nodes, no conflict resolution mechanism is re-
quired. Furthermore, since the reconfiguration is stage-controlled and synchronous,
it results in simple routing and low synchronization overhead.
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The capability of having a number of distinct BDCs enhances the performance
of the system. For instance, it has been shown that given a pair of nodes, we can
always obtain a BDC such that these two nodes are adjacent to each other. This
can be used to advantage in decreasing the interprocessor communication delays in
the system. Furthermore, such a capability enhances the fault-tolerance inasmuch
as restoring the connectivity between two nodes in the event of a faulty node in the
path between the two nodes.

We have also shown that the architecture can be augmented to generate
partitioned de Bruijn configurations. Furthermore, a simple modification to the
architecture enables it to function as a reconfigurable binary tree architecture and
generate distinct BTCs. These two types of reconfiguration are useful in further
enhancing the performance of the system.
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