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Abstract

The problem of the r -identifying code of a cycle Cn has been solved totally when n is even. Recently,
S. Gravier et al. give the r -identifying code for the cycle Cn with the minimum cardinality for odd n, when
n ≥ 3r + 2 and gcd(2r + 1, n) 6= 1. In this paper, we deal with the r -identifying code of the cycle Cn for
odd n, when n ≥ 3r + 2 and gcd(2r + 1, n) = 1.
c© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Let G = (V (G), E(G)) be a simple, connected, undirected graph and r ≥ 1 be an integer.
Given a vertex x ∈ V , we define Br (x) = {y : d(x, y) ≤ r} where d(x, y) denotes the distance
of the shortest path between x and y in G. For a subset S of V , we say that S r -covers x if
Br (x) ∩ S 6= ∅. We say that a subset S r -separates two distinct vertices u and v if and only if
Br (u)∩ S 6= Br (v)∩ S. An r -identifying code of G is a set S ⊆ V which r -covers all the vertices
of G and r -separates any pair of distinct vertices of G.

If for any pair of distinct vertices u, v ∈ V , u 6= v, we have Br (u) 6= Br (v), then V itself
is an r -identifying code. Therefore, the associated optimization problem is to find the minimum
cardinality of such a code, which we denote by Mr (G).

The concept of identifying code was first introduced in [8]. An illustration comes from
fault diagnosis in multiprocessor systems. We want to find the faulty vertices correctly if at
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most one vertex is wrong. For this purpose, we select some vertices and use them to test their
r -neighborhoods (i.e., the vertices at distance at most r ). If there is something wrong within this
neighborhood, the testing vertex sends a signal about this malfunction. Our aim is to distinguish
the faulty vertex from others only by using the information that is obtained from the vertices
which we have selected.

Now, the optimization problem of determining an identifying code with minimum cardinality
in a graph has been proved to be NP-hard [3]. Many people have focused on the study of
identifying codes in some restricted classes of graphs, for example [1,2,4,5]. In this paper, we are
interested in finding the minimum cardinality of an identifying code in cycles which has already
been investigated in [1–7,9,10].

2. Previous results and lemmas

A cycle Cn for n ≥ 3 is a graph (V (Cn), E(Cn)) with V (Cn) = {vi : i ∈ Zn} and
E(Cn) = {vivi+1 : i ∈ Zn} where Zn = {0, 1, . . . , n − 1}. For n even, Bertrand et al. give
the following theorem in [2].

Theorem 1 (Bertrand et al. [2]). For all r ≥ 1, we have Mr (C2r+2) = 2r +1 and Mr (Cn) =
n
2

for n ≥ 2r + 4 even.

In [7], Gravier et al. define a graph C ′

(n,r) on the vertex set {vi : i ∈ Zn} such that, for all
i ∈ Zn , vi−rvi+r+1 is an edge of C ′

(n,r). By using such a graph, they proved Theorem 2.

Theorem 2 (Gravier et al. [7]). For all r ≥ 1 and n ≥ 2r + 3 odd, we have

n + 1
2

+
gcd(2r + 1, n) − 1

2
≤ Mr (Cn) ≤

n + 1
2

+ r.

For large n, Gravier et al. give the following result.

Lemma 3 (Gravier et al. [7]). Let r ≥ 1, n be an odd integer such that n ≥ 3r + 2, and S
be an edge cover set of C ′

(n,r) such that all the vertices of Cn are r-covered by S. Then S is an
r-identifying code of Cn .

By using the above lemma, they get the theorems below.

Theorem 4 (Gravier et al. [7]). Let r ≥ 1, n be an odd integer such that 3r + 2 ≤ n ≤ 4r + 1,
and S be an edge cover set of C ′

(n,r). Then S is an r-identifying code of Cn .

Theorem 5 (Gravier et al. [7]). Let r ≥ 1, n be an odd integer such that gcd(2r + 1, n) = 1,
and 4r + 5 ≤ n ≤ 8r + 1. Then any edge cover set of C ′

(n,r) is an r-identifying code of Cn .

Theorem 6 (Gravier et al. [7]). Let r ≥ 1, n be an odd integer such that n ≥ 3r + 2 and
gcd(2r +1, n) 6= 1. Then there exists an optimal edge cover set of C ′

(n,r) which is an r-identifying
code of Cn .

Proposition 7 (Daniel [4] and Gravier et al. [7]). M1(C5) = 3; M1(Cn) =
n+3

2 for all n ≥ 7,
n odd; Mr (C2r+3) = b

4r+6
3 c for all r ≥ 1; Mr (C4r+3) = 2r + 3.

Table 1 shows all of the results concerning the r -identifying code of cycle Cn with odd n.
In this paper, we will deal with the r -identifying code with odd n such that n > 8r + 1 and

gcd(2r + 1, n) = 1.
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Table 1
The value of Mr (Cn)

odd n n >

8r + 1
4r + 5 ≤ n ≤

8r + 1
n = 4r + 3 3r + 2 ≤ n ≤

4r + 1
2r + 5 ≤ n <

3r + 2, r ≥ 4
n = 2r + 3

gcd (2r +1, n) 6= 1 n+1
2 +

gcd(2r+1,n)−1
2 2r + 3 n+1

2 +

gcd(2r+1,n)−1
2

? b
2n
3 c

gcd (2r +1, n) = 1 ? n+1
2

3. Main results

In this section, we will state and give the proof of our main results.

Theorem 8. Let r ≥ 1, n be an odd integer such that n ≥ 3r + 2, and gcd(2r + 1, n) = 1.
If n = 2m(2r + 1) + 1 or n = (2m + 1)(2r + 1) + 2r for m ≥ 1, then Mr (Cn) =

n+1
2 + 1;

otherwise Mr (Cn) =
n+1

2 .

Proof. We will prove the result according to the following cases:

Case 1: If n = 2m(2r + 1) + x with m ≥ 1 and 3 ≤ x ≤ 2r − 1, then Mr (Cn) =
n+1

2 .
We set V (C ′

(n,r)) = {wi = vi(2r+1) : i ∈ Zn} and E(C ′

(n,r)) = {(wi , wi+1) : i ∈ Zn}. Let

S = w0 ∪ {wi : i is odd}. Obviously, S is an edge cover set of C ′

(n,r) with order n+1
2 . Choose

{vi , vi+1, . . . , vi+2r } to be any arbitrary 2r + 1 consecutive vertices. Since 0 ≤ i ≤ n − 1, we
set i = j (2r + 1) + k where 0 ≤ j ≤ 2m − 1 and 0 ≤ k ≤ 2r or j = 2m, 0 ≤ k ≤ x − 1. Let
l = b

x
2r+1−x c. Next, we will show that S r -covers all the vertices of Cn with the following two

subcases:

Subcase 1.1 l ≥ 1. In this subcase, if l =
x

2r+1−x , then 2r + 1 − x |x , 2r + 1 − x |2r + 1 and
2r + 1 − x |n, which contradict gcd(2r + 1, n) = 1 for 3 ≤ x ≤ 2r − 1. So, we have l < x

2r+1−x .
And we have l(2r + 1 − x) < x < (l + 1)(2r + 1 − x).

If j is even with 0 ≤ j ≤ 2m − 2, then vi+(2r+1−k) = v( j+1)(2r+1) = w j+1 ∈ S for
k > 0 and vi+(2r+1−x) = v( j+(2m+1))(2r+1) = w j+(2m+1) ∈ S for k = 0. If j = 2m, then
vi+(x−k) = v0 = w0 ∈ S.

If j is odd with 1 ≤ j ≤ 2m−1, then vi+2(2r+1−x)−k = v( j+2(2m+1))(2r+1) = w j+2(2m+1) ∈ S
for k ≤ 2(2r + 1 − x) and vi+(2r+1)−k+(2r+1−x) = v( j+(2m+2))(2r+1) = w j+(2m+2) ∈ S for
k > (2r + 1 − x).

Subcase 1.2 l = 0. Let l ′ = b
2r+1−x

x c; then l ′ ≥ 1 and l ′x < 2r + 1 − x < (l ′ + 1)x since
gcd(2r + 1, n) = 1.

If j is even with 0 ≤ j ≤ 2m − 2, then vi+(2r+1−k) = v( j+1)(2r+1) = w j+1 ∈ S for
k > 0 and vi+(2r+1−x) = v( j+(2m+1))(2r+1) = w j+(2m+1) ∈ S for k = 0. If j = 2m, then
vi+(x−k) = v0 = w0 ∈ S.

If j is odd with 1 ≤ j ≤ 2m − 1, then vi+2(2r+1)−(l ′+2)x−k = v( j+2m(l ′+2)+2)(2r+1) =

w j+2m(l ′+2)+2 ∈ S for k ≤ 2(2r + 1) − (l ′ + 2)x and vi+4(2r+1)−k−(2l ′+3)x =

v( j+2m(2l ′+3)+4)(2r+1) = w j+2m(2l ′+3)+4 ∈ S for k > 2(2r + 1) − (l ′ + 2)x .
According to the above discussion, we have Mr (Cn) =

n+1
2 by Lemma 3.

Case 2: If n = 2m(2r + 1) + 1 for m ≥ 1, then Mr (Cn) =
n+3

2 .
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Case 3: If n = (2m + 1)(2r + 1) + x for m ≥ 1 and 2 ≤ x ≤ 2r − 2 or m = 0 and
r + 1 ≤ x ≤ 2r − 1, then Mr (Cn) =

n+1
2 .

Case 4: If n = (2m + 1)(2r + 1) + 2r , then Mr (Cn) =
n+3

2 .
The proofs of Case 2, Case 3 and Case 4 are similar and are not detailed here.
Owing to the above discussion, we get the theorem. �
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