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DIAGNOSIS OF tl(t+I)-DIAGNOSABLE SYSTEMS*

A. DASt, K. THULASIRAMAN*, AND V. K. AGARWAL

Abstract. A classic PMC (Preparata, Metze, and Chien) multiprocessor system [E E Preparata, G. Metze, and
R. T. Chien, IEEE Trans. Electr. Comput., EC-16 (1967), pp. 848-854] composed of n units is said to be t/(t + l)
diagnosable [A. D. Friedman, A new measure of digital system diagnosis, in Dig. 1975 Int. Symp. Fault-Tolerant
Comput., 1975, pp. 167-170] if, given a syndrome (complete collection of test results), the set of faulty units can
be isolated to within a set of at most + units, assuming that at most units in the system are faulty. This paper
presents a methodology for determining when a unit v can belong to an allowable fault set of cardinality at most t.
Based on this methodology, for a given syndrome in a t/(t + 1)-diagnosable system, the authors establish a necessary
and sufficient condition for a vertex v to belong to an allowable fault set of cardinality at most and certain properties
of t/(t + 1)-diagnosable systems. This condition leads to an o(na’5)t/(t + 1)-diagnosis algorithm. This t/(t + 1)-
diagnosis algorithm complements the /(t + 1)-diagnosability algorithm of Sullivan [The complexity ofsystem-level
fault diagnosis and diagnosability, Ph.D. thesis, Yale University, New Haven, CT, 1986].
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1. Introduction. Several models have been proposed in the literature for diagnosable
system design. Of these, the now well-known PMC model introduced by Preparata, Metze,
and Chien has been extensively studied. In this model, each processor tests some of the
other processors and produces test results, which are unreliable if the testing processor is itself
faulty. The collection of all test results over the entire system is referred to as a syndrome.
The classic constraint used in the study of diagnosable systems is to assume that the number
of faulty processors in the entire system is upper-bounded by an integer t. A system is then
said to be diagnosable if given a syndrome, all processors can be correctly identified as
faulty or fault free, provided that the number of faulty processors present in the system does
not exceed t. Three problems of interest in this context are the t-characterization problem
to determine the necessary and sufficient conditions for the system test assignment to be
diagnosable, the t-diagnosability problem to determine the largest value of for which a given
system is diagnosable, and finally the t-diagnosis problem to locate the faulty units present
in a t-diagnosable system, using a given syndrome.

Hakimi and Amin [2] gave a solution to the t-characterization problem. An O(IEIn3/2)
algorithm for the t-diagnosability problem was presented by Sullivan [3]. Subsequently,
Raghavan [4] improved on this result by presenting an algorithm that runs in O(nt25) time.
Dahbura and Masson [5] published an O(n2"5) algorithm for the t-diagnosis problem; a

t-diagnosis algorithm with complexity O(IEI / 3) was presented by Sullivan [6].
The requirement that all the faulty processors in a multiprocessor system be identified

exactly is rather restrictive. Friedman [7] introduced the concept of t/s-diagnosability. A
multiprocessor system S is said to be t/s diagnosable if, given a syndrome, the set of faulty
processors can be isolated to within a set of at most s processors provided that the number
of faulty processors does not exceed t. Allowing some fault-free processors to be possi-
bly identified as faulty permits the system to have far fewer tests. It has been shown that
t/t-diagnosable systems with n*l(t + 1)/2] tests can be constructed [8]. t/t-diagnosable
systems have been studied extensively in the literature. Chwa and Hakimi [9] gave a char-
acterization of t/t-diagnosable systems, Sullivan [10] presented a polynomial time algorithm
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for the t/t-diagnosability problem, and Yang, Masson, and Leonetti [11 presented an O (n25)
algorithm for the t/t-diagnosis problem. Sullivan also presented in 10] a polynomial time
/ (t + 1)-diagnosability algorithm based on a characterization of / (t / 1)-diagnosable systems
also developed in [10].

The objective of this work is to develop an efficient diagnosis algorithm for t/(t + 1)-
diagnosable systems. The paper is organised as follows. In 2, we present certain basic
definitions, notations, and results. With the objective of determining an effecient test for a
vertex v to be in an allowable fault set of cardinality at most t, we then establish in 3 several
properties of allowable fault sets and present a methodology for determining when a unit v
belongs to an allowable fault set of cardinality at most t. Using these properties and certain
properties of t/(t + 1)-diagnosable systems, we develop in 4 a necessary and sufficient
condition for a vertex v to belong to an allowable fault set of cardinality at most t. This leads
to an O(n3"5) algorithm for diagnosis of a t/(t + 1)-diagnosable system. The work presented
here is a revised version of our earlier paper 12].

2. Preliminaries. A multiprocessor system S consists of n units or processors, denoted
by the set U {u , u2 un }. Each unit is assigned a subset of other units for testing. Thus
the test interconnection can be modeled as a directed graph G (U, E). The test outcome

aij, which results when unit ui tests unit uj, has value (respectively, 0) if ui evaluates unit

uj to be faulty (respectively, fault free). Since all faults considered are permanent, the test
outcome aij is reliable if and only if unit ui is fault free. The collection of all test results over
the entire system is referred to as a syndrome. If aij 0 (respectively, 1) then ui is said to
have a 0-1ink (respectively, 1-1ink) to uj and uj is said to have a 0-1ink (respectively, 1-1ink)
from ui.

Given a syndrome, the disagreement set Al(ui) of ui U is defined as

Al(Ui)-- {uj[aij 1 or aji 1}.

For a subset W

___
U,

Given a syndrome, the set of O-descendents of ui is represented by the set

Do(ui) {uj there is a directed path of 0-1inks from u to Uj

and for a set W __C_ U, the O-ancestors of W denote the set

Ao(W) {ui Ztuj W such that uj Do(ui)}.

For U U, no(ui) corresponds to the set Ao(ui) 1.3 {ui}.
DEFINITION [5]. Given a system S and a syndrome, a subset F c_ U is an allowable

fault set (AFS) ifand only if
1. ui (U- F)and aij 0 imply uj (U- F), and
2. ui (U- F)andaij imply uj F.
In other words, F is an AFS for a given syndrome if and only if the assumption that the

units in F are faulty and the units in U- F are fault free is consistent with the given syndrome.
A minimum allowablefault set (MAFS) is an allowable fault set of minimum cardinality.

DEFINITION 2 [5]. Given a system S and a syndrome, the implied-fault set L(ui) ofui U
is the set of all units of S that may be deduced to be faulty under the assumption that u is

faultfree.
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It follows that

L(ui) Al(Do(ui)) UAo(Al(Do(ui))).
Note that if uj L(ui) then there exists a 1-1ink (uk, ut) or (ut, uk) such that there is

a directed path of 0-1inks from u to Uk and a directed path of 0-1inks from uj to ut. This
observation motivates the definition of an implied-fault path between u and uj.

DEFINITION 3. Given a system S and a syndrome, a path P between u and uj is an
implied-fault path if there exist units u and ut on P such that thefollowing are satisfied.

(i) All the links of P that lie between ui and u constitute a directed path of O-links

from u to Uk.

(ii) All the links of P that lie between uj and ut constitute a directed path of O-links

from Uj to ut.

(iii) Either (u, ut) or (ut, uk) is a 1-1ink on P.
Given two sets Xi and Xj, Xi Xj denotes the symmetric difference of Xi and Xj.

That is,

X [ Xj (X Xj)U(Xj Xi).

If ui L(u) then clearly the unit u is faulty. Such a unit will be in every AFS. Without
loss of generality, we assume in this paper that ui L(ui) for any ui U.

The following lemmas determine a few properties of AFSs and implied faulty sets.
LEMMA [5]. Given a system S and a syndrome, each ofthefollowing statements holds.
(1) For ui, uj U, ui L(uj) ifand only if uj L(ui).
(2) For Ui, Uj U, if aij 0 then L(uj) C_ L(ui).
(3) If F c_ U is an AFS, then Uu,eU-F L(ui) c_ F.
LEMMA 2 [10]. Given a system S and a syndrome, if F1 and F2 are AFSs then so is

(F, U F2).
LEMMA 3. Given a system S and a syndrome, let F c_ U be an AFS containing U - U.

Then Ho(ui) F.
Proof Suppose that uj Ho(ui) is not a member of F. Since uj Ho(ui) there exists a

directed path of 0-1inks from uj to ui. Since uj U F and u F, there exists an 0-1ink
from U F to F on this path, contradicting the assumption that F is an AFS. [3

For what follows, let G’ (U’, E’) denote a general, undirected graph.
DEFINITION 4. A subset K c U’ is called a vertex cover set (VCS) [13] of G’ if every

edge in G’ is incident on at least one vertex in K. A minimum vertex cover set (MVCS) is a
VCS ofminimum cardinality in Gt.

DEFINITION 5. A subset M c__ E’ is called a matching [13] if no vertex in U’ is incident
on more than one edge in M. A maximum matching is a matching of maximum cardinality
in G.

A bipartite graph, with bipartition (X, Y), is one whose vertex set can be partitioned into
two subsets Xand Y such that every edge is incident to a vertex in Xand a vertex in Y. Finally,
for ui U’, N(ui) denotes the set of all vertices that are adjacent to ui.

3. Basic properties of allowable fault sets. In this section we establish certain proper-
ties of allowable fault sets with respect to a given syndrome. Our study is directed toward
investigating conditions for a vertex v to be in an allowable fault set of cardinality at most t.

For this purpose we use the notion of implied-fault set and the implied-fault graph used by
Dahbura and Masson [5] in their study.

Given a syndrome for a system S, define the implied-fault graph G* (U*, E*) to be
an undirected graph such that U* U and E* {(ui, uj) ui L(uj)}. For u a U, let G
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denote the subgraph of G* obtained after all units in Ho(u) and all edges incident on these
units have been removed from G*. Let Ku represent an MVCS of Gu* and let G Ho(u)
denote the subgraph of G where all vertices in Ho(u) along with all edges incident on these
vertices have been removed from G. Finally, we define G*(F) to be the subgraph of G* such
that all edges that connect vertices entirely inside F have been deleted.

Recall that we have assumed that ui L(ui) for any ui U. This means that G* has no
self-loops.

The results of the following lemma can be found in [5]. We present this lemma for the
sake of completeness.

LEMMA 4. Given a syndromefor a system S, we have thefollowing.
(i) Every AFS ofG is a VCS of G*.
(ii) If F

_
U is a minimal VCS of G*, then F is an AFS of G.

(iii) F U is an MAFS ofG ifand only if F is an MVCS of G*.
Proof. (i) Let F be an AFS of G for the given syndrome. Assume F is not a VCS

of G*. Then there exist ui, uj U F such that (ui, uj) is an edge in G*. Since all edges
from U F into F in G are 1-1inks (F is an AFS of G) and an implied-fault path between
ui and uj can contain only one 1-1ink, all vertices that lie on an implied-fault path between ui
and uj must belong to U F. But this implies that there is a 1-1ink between two vertices in
U F, contradicting the assumption that F is an AFS of G. This shows that (i) holds.

(ii) Let F be a minimal VCS of G*. Assume (ii) does not hold. Then at least one of the
following conditions is satisfied.

(a) There exist ui, uj U F with aij 1.
(b) There exist uj F, ui U F with aij O.

Assume (a) holds. Then the edge (ui, uj) is in G*. But this contradicts the fact that F is
a VCS of G* since neither ui nor uj is a member of F.

Now assume (b) holds and (a) does not hold. Since F is a minimal VCS of G* there
exists a unit uk in U F such that (uj, uk) is an edge in G*; otherwise F- {uj} will be a
VCS, contradicting the minimality of F. Hence uj L(u). Since aij 0, it follows that
ui L(u) and so (ui, u) is an edge in G*. Since neither ui nor u is a member of F, this
contradicts the fact that F is a VCS of G*.

(iii) Statement (iii) follows from (i) and (ii).
LEMMA 5. F is an AFS in G of minimum cardinality containing unit v if and only if

H F Ho(v) is an MAFS ofG Ho(v).
Proof. We first prove necessity. We first show that H is an AFS of G Ho(v). Since

U F (U Ho(v)) H and F is an AFS of G, all edges within (U Ho(v)) H
are 0-1inks and all edges from (U Ho(v)) H into H are 1-1inks. Hence H is an AFS of
G Ho(v). To show that H is an MAFS of G Ho(v), assume H is an AFS of G Ho(v).
Clearly all edges with both vertices incident on vertices in (U- Ho(v)) H are 0-1inks and all
edges from U- Ho(v) H into H are 1-1inks. Now consider edges from (U Ho(v)) H
into Ho(v). These edges must all be 1-1inks, otherwise the vertices incident on these edges
would all belong to Ho(v). This shows that the set H Ho(v) is an AFS of G. Hence if

IHI < IHI then H Ho(v) is an AFS of smaller cardinality than F, contradicting the fact
that F is an AFS of minimum cardinality containing v. Hence HI >_ HI and H is an MAFS
of G Ho(v).

We will now prove sufficiency. If F- Ho(v) is an MAFS of G Ho(v) then, as we have
shown in the proof of necessity, F is an AFS of G. If F is not an AFS in G of minimum
cardinality containing v, then let F be an AFS of G containing v with FI < FI. But then

F Ho(v), from the necessity part, would be an AFS of G Ho(v) of smaller cardinality
than F- Ho(v), which is a contradiction. ]

LEMMA 6. For v U, (G Ho(v))* G.
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Proof Since the vertex sets of both graphs are the same, we need only show that the edge
sets are identical. Clearly every edge in (G Ho(v))* is in G. Now assume that there is an
edge (ui, uj) in G that is not in (G Ho(v))*. Then every implied-fault path in G between
ui and uj must contain at least one vertex from Ho(v). But this implies that either ui or uj is a
member of Ho(v), contradicting the assumption that both vertices are members of G Ho(v).
Hence the two edge sets are also identical.

LEMMA 7. Given a syndrome for a system S, let F c_ U be an AFS containing v U.
Then F- Ho(v) is a VCS ofG.

Proof. Let F F Ho(v). From Lemma 3 and the proof of Lemma 5, it follows that
F is an AFS of G Ho(v). Then from Lemma 4, F is a VCS of (G Ho(v))*. Thus, by
Lemma 6, F is a FCS of G.

THEOREM 1. Given a syndrome for a system S, F is an AFS of minimum cardinality
among all allowable fault sets that contain unit v U ifand only if F Ho(v) is a MVCS
of6.

Proof. The proof follows from Lemmas 4, 5 and 6.
The condition given in the above theorem can be used to test whether a unit belongs

to an AFS of cardinality at most for a given syndrome. However, this condition requires
determining an MVCS for a general undirected graph, a problem known to be NP complete.
Therefore we would like to develop a test that requires determining an MVCS of a bipartite
graph. With this objective in mind, we first define a bipartite graph for each vertex v. This
bipartite graph is derived from G. We then relate an MVCS of this graph to an AFS containing
vertex v and establish certain properties of this AFS that will be used in the following section
to develop the appropriate diagnosis algorithm.

Given a system S and a syndrome, define B (U, Eo) to be the undirected bipartite
graph with bipartition (X, Y) where

X {Xl Xn }, Y {Y Yn

and

E {(xi, yj) ui L(uj) in S}.

For v 6 U, define the undirected bipartite graph By (Uv, Eo) with bipartition (Xo, Yv) to
be the vertex-induced subgraph of B such that

y {x’u U- Ho(v)}, Y, {y "u U- Ho(v)}.

For each vertex v in G, let

to Ino(v)l

and

uo u- Ho(v).

THEOREM 2. Given a syndromefor a system S, a unit v U does not belong to any AFS
ofcardinality at most if Bo has an MVCS ofcardinality greater than 2tv.

Proof Let the cardinality of an MVCS of Bo be greater than 2to. Assume v 6 U belongs
to an AFS F such that IF[ < t. Let H F Ho(v). Since, by Lemma 3, Ho(v) F, it
follows that Inl IFI In0(v)l _< In0(v)l t. Define Bx(H) (Ux, Ex) to be the
vertex-induced subgraph of By, where

UX {xi’u H} t_J {Yi "ui U- H}.
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Br(H) (Ur, Er) is defined to be the vertex-induced subgraph of Bo, where

Uy {X Ui E U- H} to {Yi ui H}.

Clearly Fx {xi bli H} and Fr {yi ui H} are VCSs of Bx(H) and Br(H),
respectively. It follows that Fe Fx tO Fy is a VCS of Bx(H) tO Br(H). Since F is an AFS,
in G* there are no edges connecting vertices of U F. From this it follows that every edge in
Bo Bx(H) Br(H) connects vertices in Fe. Therefore Fe is a VCS of Bo, contradicting our
assumption that the cardinality of an MVCS of Bo is greater than to. Hence v is not contained
in any AFS of cardinality at most t.

In the following we use Fe(v) to denote an MVCS of Bo. For a given Fe(v) let

Fi {uilxi - FB(v) and Yi

and

Fv {uilxi - Fe(v) or Yi e Fe(v)}.

We now proceed to establish certain properties of Fo.
LEMMA 8. Fo tO Ho (v) is an AFS of G.
Proof Assume the contrary. Then at least one of the following conditions is satisfied.
(a) There exist ui, uj U Fo Ho(v) with aij 1.
(b) There exist uj Fo tO Ho(v) and ui U (Fo tO Ho(v)) with aij O.
Assume (a) holds. Then the edge (ui, uj) is in G. Hence (xi, yj) is an edge in Bo. But

this contradicts the fact that Fe(v) is a VCS of Bo since neither xi nor yj is a member of Fe(v).
Now assume (b) holds and (a) does not hold. Clearly uj ’ H0(v); otherwise ui would

also belong to Ho(v). Thus uj Fo. Hence either xj or yj is a member of Fe(v). Without
loss of generality, let xj Fe(v). Since Fe(v) is an MVCS of Bo, there exists y, in Bo with

Yk F(v) such that (xj, yk) is an edge in Bo. Hence uj L(uk). Since aij O, ui L(uk).
Hence (xi, yk) is an edge in Bo. Since neither xi nor y, is a member of Fe(v), this contradicts
the fact that Fe(v) is a VCS of Bo.

LEMMA 9. Given a syndromefor a system S, a unit v c:_ U, and an MVCS F(v) of Bo,
we have thefollowing.

(i) In G*, there is no edge (ui, uj) with ui U (Fo tO Ho(v)) and uj Fo FI.
(ii) In G, there is no edge (ui, uj) with ui U (Fo U Ho(v)) and uj Fo FI.

Proof (i) Assume the contrary. Let (ui, uj) be an edge from U (Fo U Ho(v)) into

Fo FI in G*. Then either xj or yj is not a member of Fe(v). Thus in Bo either the edge
(xi, yj) or the edge (xj, Yi) is not incident on any vertex in Fe(v), contradicting the fact that
F (v) is a VCS of

(ii) By Lemma 8, the set Fo tO Ho(v) is an AFS of G. Thus every edge from
U (Fo tO Ho(v)) into Fo FI in G must be a 1-1ink. So if such an edge (ui, uj) exists
in G, then (ui, uj) is an edge in G*. Thus from (i) it follows that there is no edge (ui, uj) in
G with U U (Fo U Ho(v)) and uj

LEMMA 10. Every AFS ofG contained in Fo to Ho(v) contains the subset FI.
Proof To show that every AFS of G contained in Fo to Ho(v) contains the subset Ft

it suffices to show that every VCS of G* contained in Fo tO Ho(v) contains FI. The above
assertion holds if every vertex in FI is incident on some vertex of U (Fo tO Ho(v)) in G*.
Assume the contrary. Let uk be a vertex in FI that is not incident on any vertex of the set
U-(Fo tO Ho(v)). Then let We(v)= {xilui Fo} tO {yilui Fi {uk}}. From Lemma 9(i)
and the construction of Bo it follows that in Bo, there is no edge (xi, yj) with u
Ho(v)) and uj Fo FI. So We(v) is a VCS of Bo. But IW(v)l IF(v)l- 1. This
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contradicts the assumption that FB(v) is an MVCS of By. Thus every vertex in FI is incident
on some vertex of U (Fv to Ho(v)) in G*. This implies that every VCS of G* contained in
Fo to Ho(v) contains the subset FI. By Lemma 4, it follows that every AFS of G contained in

Fo tO Ho(v) contains the subset FI. [-]

4. O(n3"5) algorithm for diagnosis of a tl(t+l)-diagnosable system. In this section we
present a necessary condition for a system S to be ! (t + 1) diagnosable. We then establish that
in the case of a t/(t + 1)-diagnosable system, the condition of Theorem 2 is both necessary
and sufficient for a vertex v to be in an AFS of cardinality at most t. This will lead to
an O(n3"5) diagnosis algorithm to isolate all faulty units to within at most + units in a

/ (t + 1)-diagnosable system.
Recall ( 1) that a system S is said to be t/(t + 1) diagnosable if, given a syndrome, the

set Of faulty processors can be isolated to within a set of at most + processors provided
that the number of faulty processors does not exceed t.

It should be observed that a system is trivially / (t + 1) diagnosable if n + 1. Thus it
is required that 0 < < n 1. It should be noted that under these conditions n > 2t +
for / (t + 1)-diagnosable systems.

THEOREM 3. If S, a multiprocessor system with test interconnection G (U, E), is

t/(t + 1) diagnosable thenforall Xi, Xj U with IXil > t, Xj Xi, and IXil -t- IXjI _< 2t,
there exists a testfrom U Xi Xj into Xi Xj.

Proof. Assume S is t/(t + 1) diagnosable but the condition does not hold. Then there
exist Xi, Xj

_
U with Sl > t, Xj Si, Xil / Sjl <_ 2t such that there is no test from

U- Xi Xj into Xi 3 Xj.
Since IXl > and Xj : Xi, IXi tO Xjl > + 1, we construct two sets F and F2 from

Xi and Xj by moving elements from Xi Xj into Xj Xi until F and F2 have cardinality
at most t. Thus we obtain two sets F and F2 with levi _< t, Fzl _< such that there is no test
from U F F2 into F F2. Now consider the following syndrome (see Fig. 1) where for
each edge (uk, ut) E the outcome is defined as follows.

Case 1. ut U- (F to F2); then set akt O.
Case 2. ut . F to F2.

2.1. ut F fq F2; then set akt 1.
2.2. uk, ut F1 F2; then set akt O.
2.3. uk, ut F2 F then set akt O.
2.4. u, 6 FIN Fz; then set akt 1.
2.5. uk 6 F F2 and ut F2- F; then set akt 1.
2.6. u, 6 F2- F and ut F F2; then set akt 1.

Both F and F2 are allowable fault sets of cardinality at most for the given syndrome
and IF to F21 > + 1. This contradicts the assumption that S is t/(t + 1) diagnosable. [3

Recall from the previous section that FB(v) is an MVCS of Bo and Fv and FI are sets
derived from F (v).

THEOREM 4. Given a syndrome for a t/(t + 1)-diagnosable system S, a unit v
_
U

belongs to an AFS ofcardinality at most ifand only if lF(v)l <_ 2tv.
Proof If IF(v)l > 2tv then, by Theorem 2, G does not contain an AFS of cardinality at

most containing the unit v.
Now assume IF(v)l _< 2to. If Fo to Ho(v) contains an AFS of G of cardinality at most

containing the unit v then we are through. So assume IF(v)l _< 2to and Fv to Ho(v) does
not contain any AFS of G of cardinality at most containing the unit v. From Lemma 8,
Fo tO Ho(v) is an AFS of G containing the unit v. If Fv FI then IFo to H0(v)l < since

IF(v)l _< 2to. So we further assume that Fv FI. Since G* does not contain any units with
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0 1 1

0

FIG. 1. Two allowablefault sets generating a common syndrome.

self-loops and Fv :/: FI, the subset IFv FII > 2. Let F be an AFS of smallest cardinality
containing unit v such that F Fv to Ho(v). Clearly levi > t.

By Lemma 10 every AFS of G contained in F to Ho(v) contains the subset Ft, and since
v 6 F,, it follows that F1 to Ho(v)

_
Fa.

We next show that F :/: F to Ho(v). Let ui e_ Fo F1. Then W Fv {ui} is a VCS
of G because, by Lemma 9(i), in G there is no edge (ui, uj) with ui U (F to Ho(v))
and uj a_ Fu FI. Hence by Lemma 6, W is a VCS of (G Ho(v))*. This means that, by
Lemma 4(ii), W contains an AFS of G Ho(v). Thus W to Ho(v) has an AFS of G containing
unit v and of cardinality less than that of Fo to Ho(v). Now let Fa F (Ho(v) to FI), Fb
(F to Ho(v)) F), and Ft Fb to Ho(v) to FI. Since F is an AFS of smallest cardinality
containing v such that F c_ Fv to Ho(v), it follows that IFbl I(Fo to Ho(v)) Fl > 0 and

Ft Fa (see Fig. 2).
Now

-4-IFI 21Fzl + 21Ho(v)l + IFI + FI
--IF,(v)l + 21Ho(v)l

< 2tu + 21H0(v)l < 2t

(see also Fig. 2).
Since U F F U- (F to Ho(v)) and F Fu Fv FI, it follows from

Lemma 9(ii) that in G there is no edge (ui, uj) with ui - U (Fv tO Ho(v) and uj Fv Ft.
Thus we have FaI > t, F# Fa, [FuI + [Ft[ _< 2t, and there is no test from U

into Fu Ft. This, by Theorem 3, contradicts our assumption that the system S is t/(t + 1)
diagnosable.

Given a valid syndrome for a t/(t + 1)-diagnosable system S and a unit v in S, we have
shown that the bipartite graph Bo has an MVCS of cardinality at most 2to if and only if G has
an AFS of cardinality at most containing the unit v. Since an MVCS of a bipartite graph has
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FIG. 2. Illustration forproofofTheorem 4.

the same cardinality as a maximum matching of the bipartite graph [13], it follows that Bo
has a maximum matching of cardinality at most 2to if and only if G has an AFS of cardinality
at most containing the unit v. Thus Theorem 4 can be stated in an equivalent manner
as follows.

THEOREM 5. Given a syndrome for a t/(t + 1)-diagnosable system S, a unit v U
belongs to an AFS of cardinality at most if and only if Bo has a maximum matching of
cardinality at most 2to.

The above theorem suggests the following t/(t + 1)-diagnosis algorithm.

ALGORITHM. Diagnosis of a t/(t + 1)-diagnosable system
Step 1. Given a t/(t + 1)-diagnosable system S and a valid syndrome, construct the

bipartite graph B (U, E) with bipartition (X, Y).
Step 2. Set F b; for all v U, label v unmarked.
Step 3. While there exists an unmarked v U

begin
3.1. Label v marked.
3.2. Set to -In0()l.
3.3. Construct Bo from B.
3.4. Compute a maximum matching Ko of Bo using the Hopcroft/Karp al-

gorithm 14].
3.5. If lKol < 2to then add v to F.
end

Step 4. F is the required set.
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The proof of correctness of the above algorithm is as follows.
Essentially the algorithm proceeds as follows. Given a syndrome, for each unit v U

the algorithm tests if the cardinality of a maximum matching of By is at most 2tv. If unit
v satisfies this requirement, then v is added to the set F. When the algorithm terminates
we have

F {v v U and Bo has a maximum matching of cardinality at most 2to }.

Given a valid syndrome, in t/(t + 1)-diagnosis we are required to isolate all faulty units to
within a set of cardinality at most + 1. In other words, we need to determine the set of all
units that are likely to be faulty under the given syndrome. By the definition of a ! (t + 1)-
diagnosable system, a unit v is likely to be faulty if and only if it belongs to an AFS of
cardinality at most t. It then follows from Theorem 5 that a unit v is likely to be faulty if and
only if Bo has a maximum matching of cardinality at most 2tv. The set F determined by the
algorithm is therefore the required set consisting of all units that are likely to be faulty. By the
definition of a t/(t + 1)-diagnosable system, this set has cardinality at most + 1. Thus F is
the required set isolating all the faulty units to within a set of cardinality at most + 1. This
completes the proof of correctness of our t/(t / 1)-diagnosis algorithm.

The bipartite graph in step can be constructed in O(n2"5) operations [5]. Step 2 requires
O (n) operations. The computation within step 3 is dominated by the computation of a maxi-
mum matching that requires O(n25) operations [14]. Since step 3 is performed for each unit
in U, the complexity of the entire algorithm is O(n35).

5. Conclusions. In this paper we have studied the problem of diagnosing t/(t + 1)-
diagnosable systems. We presented a diagnosis for t/(t + 1)-diagnosable systems that runs
in O(n3"5) time. This algorithm is based on the structure of allowable fault sets (3) and on
certain properties of t/(t + 1)-diagnosable systems (4).
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