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ABSTRACT 
In this paper,  the  concept of a local fault  constraint  in 

system-level diagnosis for multiprocessor systems is introduced. 
Given local constraints.  distributed and  sequential  algorithms 
for a ring of processors as well as other  regular interconnected 
structures are presented. In all cases considered, the  maximum 
number  of faults t ha t  can be diagnosed in the local domain is 
determined. T h e  number  of faulty processors t ha t  can be diag- 
nosed when information about  local constraints is available is 
signiflcantly larger than  w h a t  is allowed by the  classical t- 
diagnosis theory.  In addition, t he  number  of permissible fault  
pa t te rns  is also signiflcantly higher. These  advantages  of diag- 
nosis under local constraints over the  classical t-diagnosis 
approach are striking when the  connectivity of the  system is 
much smaller than  the  total  number  of processors in the  sys- 
tem. 

I. INTRODUCTION 
T h e  concept of system-level fault  diagnosis originated by 

Prepara ta .  Metze and Chien [l] provides a potential  frame- 
work for diagnosis of multiprocessor systems . Here each pro- 
cessor tests some of the  o ther  processors and produces test 
results, which are unreliable if the testing processor is itself 
faulty. T h e  collection of all test results over the entire system 
is referred to  as a syndrome. 

T h e  classical constraint  used in the  s t u d y  of diagnosable 
systems is t o  assume tha t  the number  of faulty processors in 
the entire system is upper bounded by an integer t . T h e  
resulting t-diagnosis problem has been studied extensively in 
the l i terature [?.3,4]. T h e  fault  diagnosis of a given multipro- 
crssor system clearly depends  on  the  form of testing, the type  
of faults and  the  interpretation assigned t o  the  test results 
i5.6.71. We consider the  comparison form of testing proposed 
by C h w a  and Hakimi ;SI and we w u m e  tha t  only permanent 
faults are present in the  system. 

In the classical t -diagnosability theory the value of 1 ,  
and hence the largest number  of processors tha t  can be diag- 
nosed, is limited by the connectivity of the  processor intercon- 
nection graph of the  system. T h i s  theory is of little value 
when applied t o  regular interconnected multiprocessor systems 
realised on a single chip.  In these systems, it is expected tha t  
each processor can test only the  neighboring processors in the  
interconnection. For example, in a rectangular grid-wrapped 
system, each processor is connected to  exactly four processors. 
a.nd hence the  classical theory permits correct identiflcation of 
all processors. only as long as the number of faulty processors 
i n  the entire system is a t  most four ! 

Instead of a single global constraint ,  in this paper.  we 
consider local constraints on the  number  of faulty processors in 
the neighborhood of each processor in the  multiprocessor sys- 
tem. T h e  basic model and deflnitions 3re introduced in Sec- 
tion ?. In Section 3, we analyze the  implication of local fault  
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constraints t o  system-level diagnosis on a ring of processors. 
In Section 4, we s t u d y  regular interconnected systems such as 
the  closed rectangular grid, hexagonal grid and  the  octagonal 
grid when fault  constraints are imposed on  every local domain 
consisting of a processor and  all i ts  adjacent processors. 

XI. PRELIMINARIES 
A multiprocessor system consists of n independent proces- 

sors, or  processors, ( I = { u , , u ,  ..__. U,,}. In the  comparison 
model of multiprocessor fault  d iagnoss ,  all processors in S are 
assigned to  perform the same task.  Upon completion, t he  out -  
p u t s  of some pairs of these processors are compared. T h e  
comparison assignment can be represented by an undirected 
graph G = ( ( I , E )  where a n  edge eij belongs t o  E if and  only if 
the o u t p u t s  of vi and uj are  compared. 

An outcome qj  is associated with each pair  of processors 
whose o u t p u t s  are compared, where aij=O(l) if the  o u t p u t s  
compared agree(disagree). Since only permanent faults are 
considered and we assume tha t  the o u t p u t s  of a fault-free and  
a faulty processor always disagree, it follows tha t  ai j  =o when- 
ever both U; and u j  are fault-free; a i j = l  if one of ui and uj is 
fault-free and  the o ther  faulty;  aij is unreliable if both ui and 
uj are faulty.  N(ui)  denotes  the  set  of neighbors of ui i.e. the  
set of all processors adjacent to ui. An edge tha t  has  a 0(1) 
outcome associated with it is referred to  as a @Iink(l-link). 
N,(ui) and N,(u;) denote the set  of processors adjacent to ui 
which are  connected with U; by a @link and  a 1-link respec- 
tively. 

(I is a permissible fault  set  for a set  of 
fault  constraints if F satisfles the  requirements of the fault  
Constraints. Given a syndrome,  F is an allowable fault  set if 
and  only if F is a permissible fault  set ,  and the assumption 
tha t  the  processors in F are faulty and  the  processors in U - F  
are fault-free is consistent with the given syndrome. 

A processor U, is said to belong t o  the  local domain 
Lk (ui) if and  if u j  lies within a distance k of U;. 

In this paper we s t u d y  the  faul t  diagnosis properties of 
regular interconnected sys tems such as the  closed rectangular 
grid, the hexagonal grid and  the  closed octagonal grid when 
fault  constraints are imposed on  L,, (U ) for every processor U in 
the system. A system S is deflned t o  be f - in-L,  diagnosable if 
given a syndrome, all faulty processors can be uniquely 
identifled provided tha t  there are a t  most t faulty processors 
in L , ( u )  for every processor U in S .  

A faul t  set  F 

III. DIAGNOSIS OF A RING OF PROCESSORS 
WITH LOCAL FAULT CONSTRAINTS 

In this section, we analyze the implication of imposing 
local fault  constraints on a ring of processors. Speciflcally, we 
wish to  determine i f ,  given a syndrome,  we can uniquely deter- 
mine the set  of faulty processors as long xj a t  most p o u t  of 
any q consecutive processors 3re faulty.  We also wish to 
develop diagnosis algorithms for these systems. 
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Theorem 1. Let  S be a ring of N processors where N is 
even. Given t h a t  at most  p processors are faulty o u t  of any q 
consecutive processors t he  values for p and q which admit  the 
maximum number of faul t  s e t s  which can be uniquely diag- 
nosed are p=2 and  q=5. 

Proof: Let { U  ,.U , ..... U, } be the  ring of processors. 
case 1: 3 5 p 5 n .  
W e  show t h a t  in th i s  case, t he  se t  of permissible fault 

sets cannot  be uniquely diagnosed. Consider the following 
syndrome: aNI=l. a12=1. o,=l. a,=l and  all ott ier out-  
comes have value 0. Both F,= { u , . u , , u ~ }  and  F,= {uI ,u3}  
are allowable fault s e t s  for this syndrome.  

case 2: p=?. q 2 3 .  
case 2.1: p=?. q=3 . 
Consider t he  following syndrome:  aN,=l .  a 12=1. a,=l. 

03,=l .  u r a = l  a n d  all other  outcomes are  0. T h e  fault sets  
F,= { u , . u 3 . u , }  and  F,= {u,.u,,u,},two permissible fault sets  
under the  given fault constraint, are  allowable faults for this 
syndrome. 

case .> '). -.-. p=2, q=4 . 
Since N is even, let F be a fault se t  containing alternate 

processors in S .  T h e n  the  fault sets  F and F' are  allowable 
fault sets  for t he  syndrome in which all outcomes are  1 

case '2.3: p=2. q 2 5 

\\'e note tha t  if there are  a t  most 2 faulty processors in 
any consecutive 5 processors then for any processor U ,  L , ( u )  
which consists of 5 processors contains at most  2 faulty proces- 
sors. Thus .  given a permissible syndrome,  t he  local diagnosis 
algorithm developed in [Q] can be used to  identify all proces- 
sors correctly. Since the  constraint p=? and  q=5 permits all 
fault sets  which are  valid when p=? and  q 2 5 ,  these values 
for p and q admit  the maximum number of fault sets which 
can be uniquely diagnosed. // 

If a fault constraint permits a fault set F and its  comple- 
ment  U-F  t o  be permissible fault sets.  then given a valid syn- 
drome. the faulty processors may not be correctly identified; 
the fault sets  F and  U - F  generate a common syndrome. W e  
note tha t  if initially one processor U is correctly determined t o  
be fault-free o r  less t han  half t he  total  number of processors in 
the system are  faulty then for any subset  F of U ,  a t  most one 
of the subsets  F and  U - F  can be a n  allowable fault se t  for a 
given syndrome. 

Theorem 2. Let S be a ring of processors in which one 
of the following conditions is satisfled: (1) some processor is 
given t o  be fault-free 
( 2 )  less t han  half processors in the  system are faulty 
( 3 )  N is odd.  

T h e n  the  values for p and  q which permit the maximum 
number of fault s e t s  which can be uniquely diagnosed in S 
under the local constraint of a t  most p faulty processors in any 
q consecutive processors are p=l? and  q=4 respectively 

Proof: .issume p=2 and  q=4. We first show tha t  if one 
fault-free processor U is given o r  found t o  be fault-free. all 
o ther  processors can be identifled correctly W e  assume tha t  
the diagnosis procedure initiated a t  U proceeds clockwise. If a 
processor is fault-free then the adjacent  processor can he 
correctly identifled. If two  consecutive processors are  
identified as faulty then the  next processor can be correctly 
identifled as fault-free. T h u s  only the  situation shown below 
could pose a problem. 

A 
! 1 

B 

Since there are  a t  most  ? faul ty  processors in any 4 con- 
secutive processors, there are  a t  most  2 faulty processors in A. 
Hence B contains a t  most  ? faulty processors. T h e  processor 
w has at m a t  2 faulty processors in i ts  local neighborhood 
L 2 ( w ) .  T h u s  a local diagnosis algorithm can be carried o u t  
with respect to processor w to determine i ts  s ta tus .  T h u s  if 
one  processor is given to be fault-free o r  can be identifled 
correctly to be fault-free then all o the r  processors can be 
identifled correctly. 

W e  now show how one processor can be identified 
correctly if either (?) o r  (3) is true. W e  note t h a t  if a valid 
syndrome contains the  sequence of consecutive outcomes 00. 
011 o r  110 then the  processors adjacent  t o  the  &links are  
fault-free; for otherwise there is a sequence of 4 consecutive 
processors of which at least three are  faulty. 

W e  now claim t h a t  for a valid syndrome one  of t he  fol- 
lowing sequence of outcomes 00, 011 o r  110 occurs. Assume 
the  contrary. T h e n  the  following syndromes are  the only syn- 
dromes which d o  not  contain any of t he  sequences 00, 011 o r  
110: t he  syndrome 8 ,  in which all outcomes have value 1 and  
the  syndrome a 2  in which 0 and 1 outcomes alternate. 

case 1: Less than  half t he  processors are  faulty. 
In th i s  case, S contains  two  consecutive fault-free proces- 

sors. Hence there exists a t  least one &link and  the syndrome 
a ,  cannot  occur. Since a t  most  2 of any  4 consecutive proces- 
sors can be faulty, t he  syndrome s, corresponds to fault s e t s  in 
which two  faulty processors are  followed by two fault-free pro- 
cessors and  vice versa. B u t  th i s  contradicts the assumption 
tha t  t he  number of faulty processors is less t han  the number 
of fault-free processors. 

case 2: N is odd  
In this case, t he  syndrome U ,  cannot  be present. Since a t  

most 2 o u t  of any 4 consecutive processors can be faulty, the 
syndrome 8 ,  corresponds t o  fault s e t s  in which faulty and  
fault-free processors alternate; th i s  is not possible since N is 
odd  and S is a ring of processors. 

T h i s  shows tha t  one  fault-free processor can be deter- 
mined if either (?) o r  ( 3 )  is true. 

W e  observe t h a t  the diagnosis algorithm outlined in the 
proof of Theorem ? can be designed t o  run sequentially on a 
host processor o r  in a distributed manner  on the ring of p r e  
cessors. 

/ /  

N. t-in-L, DIAGNOSIS OF REGULAR 
INTERCONNECTED SYSTEMS 

T h e  following Lemma is useful in proving the  diagnosabil- 
ity results t h a t  appear  in th i s  section. 

Lemma 1. Given a system S and a syndrome,  let .Y, and 
9, be two distinct allowable fault sets  for t he  given syndrome 
such tha t  X, U X, # U and for  all processors U E U ,  
L ,(U and L , (U )-X2 are  both non-empty. T h e n  there exist 
processors r . y  E U such tha t  

(1) 

(3) 2 5 d ( z . y )  5 3 
Proof: Since -Y, U -Y, f U the set  U - (SI U S,) is 

non-empty. Furthermore.  since A?, and  ,U, are distinct, there 
exists a t  least one processor which belongs t o  one fault set  and 
is not contained in the other .  T h u s  there exist processors in U 
satisfying conditions (1) and (2). Now let I and  y be proces- 
sors  in U satisfying conditions (1) and (2) respectively such 
t h a t  the distance d ( I  .y  ) is minimum. 

.issume d ( r . y )  2 4. Consider a processor w such tha t  
w is a t  a distance of a t  most r d ( r  , y  ) "2  1 from both I and y .  
Since L l ( w  )-.Y, and L ,(w )--Ir, are both non-empty, there exists 
a processor J E L , ( w )  satisfying condition ( I )  or (?). 

E U - (XI U X,) 
('2) Y E (s, n -U: U (x, n s: ) 

If 
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satisfies condition (1). then d ( r , y )  5 d ( w . y )  + 1 < d ( r . y ) ;  if 
z satisfles condition (2), then d ( r . 2 )  5 d ( r . w )  + 1 < d ( z . y ) .  
In either case, t he  minimality of d ( z  , y )  is contradicted.  Hence 
d ( r . y )  5 3. 

To prove t h a t  d ( 2 . y )  2 2, we show tha t  the  assumption 
d ( r . y )  = 1 leads t o  a contradiction. Assume d ( 2 . y )  = 1.  
Then  the  link between L and y is a @link with respect t o  one  
fault  set  and a 1-link with respect t o  the  other ,  contradicting 
the assumption tha t  ?c, and X, share  a common syndrome. 

Theorem 3. T h e  maximum value of f which permits a 
closed rectangular grid S t o  be f-in-L, diagnosable given tha t  
less than  half the  processors in S are  faulty,  is 3. 

Proof: T h e  theorem is proved by contradiction. Assume 
there exist two permissible fault  sets  XI and X, sharing a com- 
mon syndrome a ,  such tha t  there are  a t  most 3 faulty p r o c e s  
sors in L , ( u )  for every processor U in S .  T h e n  there exist pro- 
cessors r and y satisfying the  conditions of Lemma 1 such 
tha t  the distance d (2  . y  ) is minimum. We arrive a t  a contrad- 
iction by showing t h a t  d ( z  . y )  must  have a value o ther  than 2 
or 3. 

We observe tha t  the  s t a t u s  of all processors in L , ( L )  
remain unchanged with respect t o  both X I  and X, since L is 
fault-free in the  presence of either fault  set. We also note tha t  
there cannot be a pa th  of fault-free processors between z and 
y with respect t o  either fault  set ,  otherwise XI  and  -Y, cannot 
share a common syndrome. 

// 

.:se 1: d ( z . y )  = 2. 
We divide this case into t w o  subcases, all others being 

symmetric t o  one  of these subcases. 

caSe 1.1: (See Fig. l . (a))  
Wi thout  loss of generality, we assume y t o  be fault-free 

with respect t o  XI  and  faulty with respect t o  X p .  From the  
arguments given earlier, both w ,  and w ,  are faulty with 
respect t o  both XI and -Yz. Since y is fault-free and L , ( y )  
contains a t  least one  o ther  fault-free processor in the  presence 
of SI. these processors must  be faulty in the  presence of X p .  
T h u s  L , ( y )  contains a t  least 4 faulty processors with respect 
to -Y,, contradicting the  assumption tha t  there are a t  most 3 
fauIt,y processors in L ,(U ) for every processor U in S. 

case 1.2: (See Fig. l.(b)) 
T h e  processor i must  be faulty with respect t o  both fault  

sets, otherwise there is a path of fault-free processors between 
r and y .  If either (U, or  w p  is fault-free with respect t o  -Y, or  
.Y,, then case 1.1. occurs and  we arrive a t  a contradiction. If 
both w ,  and w 2  are faulty with respect t o  XI and  X,, then 
since y is faulty in the  presence of one of these fault  sets ,  
L , ( L )  contains more than  3 faulty processors with respect t o  
,Y, or  S,; a contradiction. 

case 2: d ( 2  .y  ) = 3. 
We consider two subcases,  all o thers  being symmetric t o  

case 2.1: (See Fig. l . (c))  
T h e  processors w , ,  U), and w 3  are all faulty with respect 

to both XI and otherwise the  minimality of d ( r . y )  is con- 
traaicted.  Since y is faulty with respect t o  either X, or  X,, 
L , ( w , )  contains more than  3 faulty processors in the  presence 
of one of these fault  sets, a contradiction. 

one of these subcases. 

case 2.2: (See Fig. l . (d))  
If any of the  processors w , ,  w z  and w 3  is fault-free with 

respect t o  either .Y, or X,, then one  of the cases discussed ear- 
lier occurs. Hence we assume w , ,  w ,  and w 3  to be faulty wlth 
respect t o  .Y, and -Yp. Since y is faulty in the presence of one 
of I.hese faul t  sets, L , ( w , )  contains a t  least 4 faulty processors 
with respect t o  either .Y, or  -Y,, a contradiction. 
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I t  follows tha t  the  system S is 3-in-L, diagnosable given 
tha t  less than  half t he  processors in S are faulty.  Fig. 2 shows 
a closed rectangular grid in which two fault  sets  having a t  
most 4 faulty processors in L ,(U ) for every processor U ,  share  
a common syndrome. T h i s  proves tha t  t he  maximum value for 
t is 3. // 

T h e  proof of the  following result is similar t o  the  proof of 
Theorem 3. 

Theorem 4. T h e  maximum values of f which permit a 
closed hexagonal grid and  a closed octagonal grid to  be f -in-L I 
diagnosable given tha t  less than  half the  processors in S are 
faulty,  are 4 and 5 respectively. 

T h e  following L e m m a  provides a method for developing 
diagnosis algorithms for regular interconnected structure8 with 
local constraints.  

Lemma 2. Given a sys tem S and a syndrome, let U be a 
processor in S such tha t  L , ( u )  has a t  most k + 1 faulty pro- 
cessors, IL,(u)l  = 2k + 1 and a t  least 2 processors in N ( u )  
have been correctly identifled. T h e n  U can be correctly 
identifled. 

Proof: Let F denote the  set  of processors in N ( u )  which 
have been correctly identifled. If any member of F is fault-free 
then the  s t a tus  of U can be determined correctly. W e  now con- 
sider the  case when all processors in F have been identifled t o  
be faulty.  Let Fa and F, represent the set  of processors in 
N ( u )  - F which have 0-links and  1-links repectively with U .  

We observe tha t  IF, U F,I = 2k - IFI. If 

then n can be declared faulty;  U can be declared fault-free if 
...( ii) 

IF1 + IFl[ > k + 1 

IF I + lFol + 1 > K + 1 

... (i) 

Both (i) and  (ii) cannot  be satisfled simultaneously; for 
otherwise the  aSSumption tha t  there a re  a tmost  k + 1 faults in 
L , ( u )  is violated or the  processors in F have been identifled 
incorrectly. A t  least one of the  conditions (i) and  (ii) is 
satisfled if we ensure tha t  

IF1 + max{F, + 1. F,} > k + 1 ...( iii) 
Since IF1 2 2 and  max{Fa t 1 ,  F,} 1 1 (2k - l F l ) / 2 ]  + 

1, condition (iii) is satisfled for all permissible values of F ,  and 

Theorem 5. Let S be a rectangular grid in which there 
are a t  most 3 faulty processors in L , ( u )  for every processor U 

in S. Given a syndrome and  a fault-free processor U in S. all 
processors in S can be correctly identifled. 

Proof: Given a fault-free processor U ,  all processors in 
L , ( u )  can be correctly identifled. Consider the  processors r , .  
r 2 ,  z3, and I, in Fig. 3 . (a) .  Since each of these is adjacent t o  2 
processors in L , ( u )  and there are a t  most 3 faulty processors 
in L , ( u )  for every processor U in S, the  processors r , ,  zz, z3, 
and r ,  can be correctly identifled. Now assuming all proces- 
sors within a rectangle with sides containing a t  least 3 proces- 
sors have been correctly identifled, we show tha t  the proces- 
sors in the  enclosing rectangle can be correctly identifled. 

Let R be the rectangle in which all processors have been 
correctly identifled (Fig. 3.(b)). Let z, be a processor in R 
which is adjacent t o  the  unidentifled processor r ,  on A such 
tha t  I ,  does not lie on  a corner of R . If r , or  one of its adja- 
cent processors which lie on  the  same column as r ,  is fault-free 
then one of the  processors on  A can be identifled correctlv If 
all three are faulty then z, can be identifled as fault-free since 
there are already three faulty processors in L , ( r I ) .  Once one  
processor on A h a s  been correctly identifled. the  s t a tus  of an 
adjacent processor on ..I can be determined since two of its 
neighboring processors have been correctly identifled: one  of 
the identifled neighboring processors is in R and the o ther  lies 
on A .  Applying this technique repeatedly.  all processors lying 
on A can be identifled. T h e  processors lying on E ,  C ,  and D 

Fi.  / /  
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can be identifled similarly. T h e  s t a tus  of the processors lying 
on the corners of the  enclosing rectangle can be determined 
correctly since each of these is adjacent t o  two processors 
which have been identifled correctly. 

BY induction, all processors in the system can be 
correctly identifled. / /  

T h e  procedure used in the  proof of the  above theorem 
can be used t o  develop a diagnosis algorithm for a 3-in-L, 
closed rectangular grid where less than  half the processors are 
faulty.  To begin with.  we assume a proccssor U to be fault- 
free and apply the  procedure outlined above with tlie following 
modiflcation. Each t ime a processor is labeled faulty or fault- 
free. i t  selects one of its adjacent processors which h a s  been 
labeled earlier t o  be i ts  parent.  IVhen a11 processors have been 
labeled. a backward phase is initiated in which a leaf processor 
sends a value -1(1) to i ts  parent if it is labeled faulty(fault- 
free). . i n  internal processor waits unti l  it has the  values from 
all its children, adds  these values, and  sends the total  t o  its 
parent after incrementing or  decrementing tlie total  by 1 
depending on its own fault-free or faulty label. If a t  any stage 
of this backward phase, a processor flnds it has more than  3 
faulty processors within i ts  immediate neighborhood. a failure 
message is propagated u p  the  tree. IT U receives a failure mes- 
sage or the sum of all the  values received is negative then U is 
identifled correctly to  be faulty and the same procedure is ini- 
riated at  a processor w ac a distance 2 from U .  If both proces- 
sors are found to  be faulty then a fault-free processor can 
easily be identifled within the  immediate neighborhood of the 
processor lying between r and y .  One more sweep of the 
basic procedure identifles all the  processors. If either U or sub- 
sequently U' does not receive a failure message or the  sum of 
all the values received is non-negative then all processors have 
been correctly identifled dur ing  the cur ren t  sweep. 

T h e  algorithm can be run sequentially on a host processor 
where the syndrome has been collected or in a distributed 
manner on the  rectangular grid itself. In the latter case it is 
assumed that  each processor has  a non-faulty core on which 
the algorithm can be run.  T h e  complexity of the sequential 
algorithm is 0 ( n  + E )  and the  distributed algorithm h a s  time 
complexity 0 ( n  ) and message complexity 0 ( E ) .  

Similar algorithms can be developed to  diagnose 4-in-L , 
hexagonal grid systems and  5-in-L, octagonal grid systems 
where either one  fault-free processor is given or less than half 
the  processors in the system are faulty.  
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