
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-31, NO. lo, OCTOBER 1984 853

Complexity of Computation of a Spanning
Tree Enumeration Algorithm

R. JAYAKUMAR, K. THULASIRAMAN, AND M. N. S. SWAMY, FELLOW, IEEE

Absrracr -In l!X3, Char [4] presented an algorithm to enumerate all the
spanning trees of an undirected graph G. This algorithm starts with a
known initial spanning tree of G, and generates all the other spanning trees
along with certain spanning non-tree subgraphs of G. In this paper a
detailed complexity analysis of char’s algorithm and methods to speed up
the algorithm are discussed. Two heuristics for the selection of the initial
spanning tree are suggested. These heuristics result in a considerable
reduction in the number of spanning non-tree subgraphs generated. A
technique called path compression, aimed at reducing the actual number of
comparisons, is described. Computational results on several randomly
generated graphs are presented to illustrate the improvement achieved.

I. INTRODUCTION

E NUMERATING all the spanning trees of a graph
without duplication is one of the widely studied

graph problems in Electrical Engineering and Computer
Science literature. Since the number of spanning trees of a
graph increases rapidly with the size of the graph, a highly
efficient algorithm is desired to enumerate all the spanning
trees of a graph. Several algorithms of varying efficiency
have been proposed in the literature. One of the well-known
algorithms is due to Minty [l], which has been shown [2] to
be of complexity O(m + n + mt), where m and II are the
number of edges and the number of vertices of the graph,
respectively, and t is the number of spanning trees of the
graph. Another efficient algorithm of complexity O(m + n
+ nt) is due to Gabow and Myers [3].

In 1968, Char [4] had presented a conceptually simple
and elegant algorithm to enumerate all the spanning trees
of a graph. However, Char had not presented a complexity
analysis of his algorithm. The recent analysis of Char’s
algorithm presented in [5] suggests that this algorithm
might be the best of all the algorithms available so far for
the spanning tree enumeration problem. In this paper, we
not only present a more detailed complexity analysis of
Char’s algorithm but also discuss different methods to
further improve the speed of the algorithm.

In Section II we give a formal description of Char’s
algorithm and summarise some of its interesting properties
reported in [5]. In Section III we give a detailed complexity
analysis of this algorithm and present several of its quanti-
tative and qualitative properties. In Section IV we develop
two heuristic procedures which help speed up Char’s algo-

Manuscriot received March 31. 1983: revised Seotember 6. 1983 and
November 25 1983. This work was su’ ported by ihe Naturh Sciences
and Enzineer& Research Council of 8 anada under Grant A-7739 and
under &ant A-2680.

The authors are with the Facult
Concordia University, Montreal,

of En ‘neering and Computer Science,
S.Q., HTG lM8 Canada.

rithm by minimizing the number of non-tree subgraphs
generated by the algorithm. Finally, in Section V, we
discuss a general technique called path compression, which
can be used for an efficient implementation of Char’s
algorithm to reduce the actual number of comparisons
made by the algorithm.

For graph theory terms and notation not defined here,
see [6]. Without any loss of generality we also assume that
the graphs considered in this paper are simple biconnected
undirected graphs.

II. CHAR'SALGORITHMTO ENUMERATEALLTHE
SPANNINGTREES

Consider a connected undirected graph G = (V, E) with
IZ = JV] vertices and m =]E] edges. Let the vertices of G be
denoted as 1,2; . 0, n. Let h = (DIGIT(l), DIGIT(2); . .,
DIGIT(n - 1)) denote a (II - 1)-digit sequence of vertices
such that DIGIT is a vertex adjacent to vertex i in G.
With each such sequence A we can associate a subgraph
Gx = (V,, Eh) of G such that

and
E,= {(~,DIGIT(~)), (~,DIGIT(~)),...,

(n -l,DIGIT(n -1))).

Char’s algorithm first performs a Breadth-First Search
[6] on G and finds a spanning tree called the initial
spanning tree. During this search, the vertices of G are also
renumbered as n, n - 1,. . . , 1 in the order in which they are
visited. Let h, = (REF(l), REF(2), * . . , REF(n - 1)) be the
sequence corresponding to this spanning tree. Starting with
h,, the algorithm enumerates all the other spanning trees
of G by generating the sequences corresponding to the
spanning trees of G. During this enumeration, the algo-
rithm also generates certain sequences which correspond to
spanning non-tree subgraphs of G. The sequences corre-
sponding to spanning trees are referred to as tree sequences
and those corresponding to spanning non-tree subgraphs
are referred to as non-tree sequences. The sequence h, is
called the initial tree sequence.

Char’s algorithm classifies a generated sequence as a tree
sequence if it satisfies the following.

Tree Compatibility Property
The sequence (DIGIT(l), DIGIT(2), * . . , DIGIT(n - 1))

represents a spanning tree of graph G if and only if

0098-4094/84/1000-0853$01.00 01984 IEEE

854 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS,VOL. CAS-31,N0. 10, OCTOBER1984

for each j 6 n -1 there exists, in G, a sequence of
edges (chosen from among the edges (1, DIGIT(l)),
(2, DIGIT(2)); . . , (n - 1, DIGIT(n - 1))) with
(j, DIGIT(j)) as the starting edge, which leads to a vertex
k > j. 0

If a sequence does not have the above property, then it is
a non-tree sequence.

Char’s algorithm can be presented in ALGOL-like nota-
tion as follows.

Char’s Algorithm to Enumerate all the Spanning Trees
procedure CHAR;
comment The graph G is represented by the adjacency lists

of its vertices. SUCC(DIGIT(i)) is the entry next
to DIGIT(i) in the adjacency list of vertex i.

begin
find the initial spanning tree and obtain the initial tree
sequence X, = (REF(l), REF(2), . . . , REF(n - 1));
renumber the vertices of the graph using the initial
spanning tree;
initialize DIGIT(i):= REF(i), 1~ i G n - 1;
output the initial spanning tree;
k:=n -1;
while k f 0 do begin

if SUCC(DIGIT(k)) # nil
then begin

DIGIT(k): = SUCC(DIGIT(k));
if DIGIT(i), 1~ i 6 n - 1, is a tree sequence

then begin /
output the tree sequence;
k:=n -1

end
end
else begin

DIGIT(k): = REF(k);
k:=k -1

end
end

end CHAR;
Given any sequence A = (DIGIT(l), DIGIT(2), . . a,

DIGIT(n - l)), Char’s algorithm obtains the next sequence
by changing DIGIT(k) in X. In the new sequence
DIGIT(i) = REF(i) > i, k + 1~ i < n - 1, and DIGIT(l),
DIGIT(2), . . . , DIGIT(k - 1) have the same values as in
the previous sequence. Hence the new sequence is to be
tested for tree compatibility property only at position k
and this test, in the worst case, involves k - 1 comparisons.
Hence at most n computational steps are required to
generate and test a sequence. So, if to is the number of
non-tree sequences and t is the number of tree sequences
generated by Char’s algorithm, in the worst case n(t + to)
computational steps are required to enumerate all the
spanning trees of the given graph and hence, Char’s algo-
rithm is of time complexity 0(m + n + n(t + to)), which
also includes the complexity of finding the initial spanning
tree.

The following are two of the interesting properties of
Char’s algorithm. For other properties, see [5].

Theorem 1
For a complete graph, the number to of spanning non-tree

subgraphs generated by Char’s algorithm is independent of
the initial spanning tree. cl

Theorem 2
Let G(“-i) be the set of all connected n-vertex graphs

having at least one vertex of degree n - 1. For any graph
G E G(“-l), to 6 t, if the initial spanning tree is a star tree.

cl

A characterization of each spanning non-tree subgraph
generated by Char’s algorithm is also given in [5].

III. COMPUTATIONAL COMPLEXITY OF CHAR'S
ALGORITHM

Since the computational complexity of Char’s algorithm
is O(m + n + n(t + to)), any complexity analysis of this
algorithm would require a study of the number (t + to).
With this objective in view, we first obtain an expression
for (t + to).

Let
n-l

T= u q
I=0

be the set of all the tree sequences such that
(i) To = {A,,}, and
(ii) T., l<i<n - 1, is the set of all the tree sequences of

the form (DIGIT(l), DIGIT(2), * . . , DIGIT(i), REF(i + l),
REF(i +2); * ., REF(n - 1)) with DIGIT(i) # REF(i).
Also let

n-1
T’= u qr

i=l

be the set of all the non-tree sequences such that q’ is the
set of all the non-tree sequences of the form (DIGIT(l),
DIGIT(2), . . . , DIGIT(i), REF(i + l), REF(i + 2), * . . ,
REF(n-1)) with DIGIT(i)#REF(i) for l<i<n--1.
Note that JTI = t. Further, it follows from the characterisa-
tion of the non-tree subgraphs given in [5] that IT’1 = to.

Theorem 3
Let G be a connected n-vertex undirected graph with its

vertices numbered as in Char’s algorithm. Let Gp), 1~ k
< n - 1, be the graph obtained from G by coalescing the
vertices k, k +l; . ., n and let t(k) be the number of
spanning trees of Gp). If t is the number of tree sequences
and to is the number of non-tree sequences generated by
the algorithm, then

n-l
t + to =l+ c (deg(k)-l)t(k)

k=l

where deg(k), 1~ k < n, is the degree of vertex k in G.

Proof:
Consider a tree sequence A, = (DIGIT(~),

DIGIT(2), . . . , DIGIT(k - l), REF(k), REF(k + 1); . . ,

JAYAKUMAR et al. : SPANNING TREE ENUMERATION ALGORITHM 855

REF(n - 1)) generated by Char’s algorithm. Let G, =
(V,, Ek) be the spanning tree corresponding to X, and
G; = (V;, EL) be the spanning 2-tree obtained from G, by
deleting the edge (k, REF(k)). Since REF(i) > i, 1~ i <
n - 1, it follows that in G; the edges (k + 1, REF(k + l)),
(k+2,REF(k+2));.*, (n-l,REF(n-1)) are in one
component, say the component G;,, = (Vl,,, EL i), and the
vertex k is in the other component, say the component
G; 2 = V’,,,, EL,2). Note that in G;,, and in G;,2 there
exists an unique path between every pair of vertices.

Consider any vertex u # REF(k), adjacent to vertex k.
Let ht = (DIGIT(l), DIGIT(2), . . . , DIGIT(k - l), u,
REF(k + l), REF(k + 2); . . , REF(n - 1)) and Gt =
(V/, EL u(k, u)) be the subgraph corresponding to A%.
Now the following two cases arise.

(i) If u E V/ 1, then Gz is a spanning tree of G. Thus the
sequence h$ with u E V/, is a tree sequence passing the
tree compatibility test at ‘position k.

(ii) If u E v/J, then in G,$ the edge (k, u), along with
the unique path in G;,2 between the vertices k and u,
forms a circuit passing through the vertex k, and so Gz is
a non-tree subgraph of G. Thus the sequence X% with
UEVL, is a non-tree sequence failing the tree compatibil-
ity test at position k.

Since vertex k is adjacent to deg(k)-1 vertices other
than REF(k), there are deg(k)- 1 distinct Xt’s which have
the same DIGIT(l), DIGIT(2), . . . , DIGIT(k - 1) as X,.
Each one of these sequences is either a tree sequence or a
non-tree sequence and so all these sequences belong to

w(i, j) denotes the weight of the edge (i, j). Let i be any
vertex of G(W) and let l?(i) be the set of vertices adjacent
to vertex i in G(w). Let

di= C w(i, j).
j E r(i)

By pivotal condensation at vertex i in G(w) we mean the
following operation: For each pair of vertices j,, j, E r(i),
if the edge (j,, j,) is already present in G(w), then increase
its weight by w(i, j,)w(i, j2)/di; otherwise add to G(w)
the edge (j,, j,) with the weight w(i, j,)w(i, j,)/di. After
all possible pairs of neighbors of the vertex i are consid-
ered, delete from G(w) the vertex i and all the edges
incident on it.

Let N be a resistive network consisting of one Siemens
admittances and G(N) be the graph of N in which all the
edges are of unit weight. Let A be a subset of the vertex set
v= {1,2;. *, n } of N. Let the networks NA and NAo be
defined as

NA the network that results after coalescing all the
vertices of N which do not belong to A,

Nj the network that results after suppressing all the
vertices of N which belong to A.

If T(N), T(N,), and T(Nj) denote the sum of tree-admit-
tance products of the networks N, NA, Ni, respectively,
then it has been shown in [7] that

T(N)=T(N,)T(N,O). (2)
T,UT,‘. Thus if t(k) is the number of all the tree sequences
of the form xk = (DIGIT(l), DIGIT(2); . ., DIGIT(k -l), Note that the graph G(Ni) of the network Ni can be

REF(k), REF(k + l), . * *, REF(n - l)), then obtained from the graph G(N) by performing pivotal
condensation, in G(N), at all the vertices in A. Let A =

IT,UT/‘(= (deg(k)-l)t(k). (1) {LZ- * -9 k - l}, G,(N) = G(N) and the graph Gi(N), 2 <

Since in the spanning tree corresponding to A,, the i < k - 1, be obtained from G,-i(N) by performing a

edges (k,REF(k)), (k + l,REF(k +l)); .., (n - l,REF(n pivotal condensation at vertex i -1 in G,-i(N). If d;,

- 1)) are present, it follows that t(k) is the number of 1~ i 6 k - 1, is the sum of admittances of all the edges .
spanning trees of G in which the edges (k, REF(k)), (k + incident on vertex k in G,(N), then as shown in [7]

l,REF(k +l)); * ., (n - 1, REF(n - 1)) are present. Thus
t(k) is the number of spanning trees of the graph obtained

T(N) = d,d, . * * d,-,T(N,o). (3)

from G by coalescing the vertices k, k + 1,. . ., n - 1, Comparing (2) and (3) we get
REF(k), REF(k + 1); . ., REF(n - 1). But {k, k +
1; * *, n - 1, REF(k), REF(k + 1); . a, REF(n - l)} = T(N,) = d,d, . . . &I

{k,k+l;.., n} becauseREF(i)>i, l<i<n-1, and so
t(k) is the number of spanning trees of Gp), the graph

when A= {1,2; * *, k-l}. Note that the graph of the

obtained from G by coalescing the vertices k, k + 1; . . , n.
network NA is obtained from G by coalescing the vertices
k k + I . . .

Also the total number of sequences generated by Char’s i .
, n and hence it is Gp). Since each element of

algorithm is
is of admittance one Siemens, the admittance product of

each spanning tree is one and so T(N,) is the number of
n-l n-l spanning trees of the graph GI;“. Thus we get the following

t + to = [ToI+ c IT,UT,‘I =l + c IT,JJT,‘J. theorem.
k=l k=l

From these observations and equation (1) the theorem
Theorem 4

follows.
The number of spanning trees t(k) of the graph Gp) is

’ given by
From Theorem 3 we can easily prove Theorem 1 stated

in Section II.
t(k) = d,d, . . . d,-,. Cl

Now we develop a systematic procedure to compute If A= {1,2;. ., n -l}, then the above theorem reduces
t(k). Let G(w) be a weighted undirected graph in which to the following corollary.

856 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-31, NO. 10, OCTOBER 1984

Corollary 4. I
The number of spanning trees of G is given by

t = d,d, . . . d,-,. 0

Using the above corollary and Theorem 4 in Theorem 3,
we get the following.

Theorem 5
The number of sequences generated by Char’s algorithm

is

‘-* deg(k)-1
t+t,=l+t c

k-1 d,-14-2 * * * d, ’
q

Now we illustrate the above procedure to compute (t +
to) for the graph G in Fig. l(a). This graph has 8 spanning
trees and Char’s algorithm generates 11 sequences for the
vertex numbering shown. The graphs G,, G,, and G, are
shown in Fig. l(a)-(c), respectively. Note that d, = 2,
d, = 5/2, and d, = 8/5. Thus

and

t = d,d,d, = 8

t+t,=l+t $ deg(k)-1
k=l d,-,d,-, . . . d, =“’

Using Theorem 5 we can easily prove the following.

Theorem 6
For an n-vertex complete graph to = nnp2 - n”-’ [1 (n -iI’

0

Corollary 6.1
For a complete graph to < t, for any choice of the initial

spanning tree. rJ

The value of (t + to) given in Theorem 3 depends on the
number of spanning trees of Gf’, which is obtained from
G by coalescing the vertices k, k + 1; . . , n. So, for two
different initial spanning trees, the values of t(k) for a
given k will be the same if the set of vertices which receive
the numbers k, k + 1,. . . , n as given by Char’s algorithm is
identical in both cases. In other words, the value of t(k)
depends on the set of vertices which are assigned the
numbers k, k + 1, * . . , n and not on the edges connecting
these vertices. Since this statement is true for all values of
k, we get the following result which is more general than
Theorem 1.

Theorem 7
Let G be a connected undirected graph. Let the vertices

of G be numbered as ~‘1, u:, . . . , u: according to one initial
spanning tree and as u:, ui,. . . , u,” according to another
initial spanning tree. Let vi’ = { uf, ui+i,. . . , uk } and y2 =
{uf, u;+l,- * * ,u,‘}, for 2<i<n. If q1=v2 for all i, 2<i
4 n, then the number of non-tree sequences generated by
Char’s algorithm .will be the same for both initial spanning

3
1 1

4
1

0
2

1 1

1

(4

3
1 1

4 A 2

3%
(b)

3

%.

%i

4

(4

Fig. 1. (a) Graph G = G1. (b) Graph GZ. (c) Graph GJ.

trees. In other words, t + to will be the same for all choices
of initial spanning trees which have identical y1 and I$2
for every i, 2 < i < n. 0

Consider a graph G E G(“-‘) (defined in Theorem 2) in
which vertex x is of degree n - 1. Let G, be any arbitrary
spanning tree of G and G2 be a star tree having the vertex
x as the star vertex. Suppose we assign the number n to
vertex x and number the other vertices using G, and
satisfying the tree compatibility property; then an identical
numbering (satisfying Theorem 7) of the vertices of G
using G, and satisfying the tree compatibility property is
possible. Thus if to and t; are the numbers of non-tree
sequences generated with respect to G, and G,, then
to = t& By Theorem 2 t; < t, where t is the number of
spanning trees of G and so to < t. Since the above argu-
ments are valid for any arbitrary G, chosen as the initial
spanning tree, we get the following theorem which is more
general than Corollary 6.1.

Theorem 8
For an n-vertex connected graph with maximum degree

n - 1, to < t for any choice of the initial spanning tree in
which a vertex with degree n - 1 is assigned the number n.

0

Using Theorems 3 and 5 we can give simpler proofs of
the following two interesting results which have been re-
ported in [5].

JAYAKUMAR et al. : SPANNING TREE ENUMERATION ALGORITHM 857

Theorem 9 then
If L, is the number of spanning trees of an n-vertex n-l n-2

ladder’ and Li is the number of non-tree sequences gener- COSTl= c IT/&-k-l)= c ITkl(n-k-1).
ated by Char’s algorithm when a star tree is chosen as the k=l k=l
initial spanning tree, then But]Tk]=t(k+l)-t(k)forall k, liken-2. So

L; = L,-,

and

0

Theorem 10
If W, is the number of spanning trees of an n-vertex

wheel and W,” is the number of non-tree sequences gener-
ated by Char’s algorithm when a star tree is chosen as the
initial spanning tree, then

W,o=l+ L,

and

cl

Next we consider the question of computing the total
number of computational steps required in the execution of
Char’s algorithm. Consider a sequence A = (DIGIT(l),
DIGIT(2), . . . , DIGIT(k - l), x, REF(k + l), . . . , REF(12
- l)), with x # REF(k), generated by the algorithm. This
sequence belongs to T,UT,‘. To generate this sequence the
algorithm explicitly requires setting DIGIT(i) = REF(i)
for each i, k + 1 < i 6 n - 1, in addition to setting
DIGIT(k) = x. Then h is tested for the tree compatibility
property at position k. Thus generating and testing X
involves the following two types of computational steps.

Type 2: (n - k - 1) steps to set DIGIT(i) = REF(i),
k+l<i<n--1.

Type 2: C, steps to set DIGIT(k) = x and to test h
for the tree compatibility property.

Suppose h is a tree sequence. Then the cost of Type 1
computation required to generate A can be associated with
X. If, on the other hand, A is a non-tree sequence, then the
algorithm generates a new sequence X by setting DIGIT(k)
to the vertex next to x in the adjacency list of k. Note that
generating A’ does not require Type 1 computation. If X
also fails the test, the algorithm continues to generate
sequences (without using Type 1 computation) until a tree
sequence X’ is generated. The cost of the Type 1 computa-
tion required in generating A” can therefore be charged to
the tree sequence h. Thus the cost of each Type 1 computa-
tion can be charged to a tree sequence. Clearly the cost of
Type 1 computations (in terms of computational steps) for
generating all the tree sequences in Tk is given by ITkl(n -
k - 1). If we denote by’ COST1 the total cost of Type 1
computations required in generating all the tree sequences,

n-1

COSTl= c [t(k+l)-t(k)](n-k-l)
k=l

n-1

=t c
[

1
kc2 dn-ldn-20ea dk I

-(?r -2). (4)

As regards Type 2 computation, it is required for each
sequence in T,UT,‘, 1~ k < n - 1. If Cr denotes the maxi-
mum number of computational steps required to perform
Type 2 computation for any sequence in TkuTL’, and
COST2 denotes the cost of performing all the Type 2
computations, then

n-l

COST2 < c crlTkuT;l = t
k-l

(5)
From (4) and (5), it is clear that COST1 4 nt and COST2

< n3t. So the total cost of execution of Char’s algorithm is
O(n3t). A better bound for COST2 does not appear to be
possible, even though it has been found in a large number
of cases that COST2 6 nt. For example, for all the graphs
in G(“-‘) COST2 is
O(d) in such cases.

O(nt) and hence the total cost is

IV. HEURISTICS FOR CHOICE OF INITIAL
SPANNING TREE

Since to and the complexity of Char’s algorithm depends
on the initial spanning tree, we now consider the problem
of choosing the initial spanning tree which leads to a
minimum to. The initial spanning tree can be obtained by
performing a Breadth-First Search (BFS) or a Depth-First
Search (DFS) on the given graph. The implementation
given in [5] selects the initial spanning tree by performing a
BFS starting at a vertex of maximum degree. In this
section we consider the question of using DFS for selecting
the initial spanning tree, with the objective of minimizing
to. For results relating to DFS, see [6].

Let TDFs denote a DFS tree of the given graph G.
Starting at the root of TDFS, let the vertices of G be
numbered as n, IZ - 1; . . ,l, in the order in which they are
visited during the DFS. With such a numbering, TDFs will
clearly satisfy the tree compatibility property. It should be
noted that each ancestor of k in TDFs will have a number
greater than k and each descendant of k will have a
number less than k. Furthermore, there are no cross edges
in G 161. In other words, if x and y are two vertices such
that neither of them is a descendant of the other in TDFS,
then the edge (x, y) is not in G. Using these observations,
we can prove the following.

‘A ladder is also known as a fan [8].
Theorem 11
If vertex k is a leaf m TDFS, then IT/l = 0. 0

858 IEEE TRANSACTIONSON CIRCUITSAND SYSTEMS,VOL. CAS-31,N0. 10,OCTOBERl984

Theorem 12
If 6, is the number of descendants of vertex k in TDFS,

then

From Theorem 5, it is clear that if the vertices of the
graph G could be numbered in such a way that deg(n -
l),deg(n -2);. ., deg(1) are in the ascending order and
d,-l,dn-2,- . ., d, are in the descending order, then (t + to)
will be reduced considerably. Since deg(n) does not appear
in the expression for (t + to), we can number the vertex
having the maximum degree in G as n. In other words, we
can start the DFS to find the initial spanning tree at a
vertex of maximum degree.

Let l?‘(i) be the set of ancestors of vertex i in TDFs
which are adjacent to i in G and let dl= Ir’(i)j. To find
the numbers d,, d,, . . . , dnel, we start with the graph G,
obtained from G by assigning unit weight to each edge of
G. Recall that d, is the sum of the weights of the edges
incident on i in the graph Gi which is obtained from G, by
performing pivotal condensation at the vertices 1,2,. . . ,
i - 1. Since pivotal condensation does not reduce the weight
of any edge connecting i to any vertex in r’(i), and since
each such edge has a weight of value at least one, it follows
that

d, b d;, ldi<n-1.

It is evident from Theorems 11 and 12 and the above
discussions that to could be reduced considerably if we do
the following.

1) Maximize the number of leaves in TDFS.
2) Maximize the number of ancestors of each vertex

during the DFS.
3) Minimize the number of descendants 6k, for each k.

To achieve the above objectives, we suggest the following
two heuristics for selecting the initial spanning tree using
DFS.

Heuristic 1: Start the DFS at a vertex of maximum
degree. During the search, when we are at vertex i, choose,
from among the neighbors of i, the one having the maxi-
mum number of ancestors in the tree developed so far. If
more than one vertex has this property, then choose, from
among these vertices, the one having minimum degree in G.

Heuristic 2: Start the DFS at a vertex of maximum
degree. During the search, when we are at vertex i, choose,
from among the neighbors of i, the one having minimum
degree in G. If more than one vertex has this property, then
choose, from among these vertices, the one having the
maximum number of ancestors in the tree developed so far.

We have implemented Char’s algorithm using each one
of the above two heuristics as well as. BFS. In Table I we
give the number of non-tree sequences generated in these
cases for ten randomly generated graphs. From Table I it is
clear that the heuristics considerably reduce the number of
non-tree sequences generated by the algorithm and that the
two heuristics result in approximately the same number of
non-tree sequences.

Graph

9
Gz
G3
G4
G5
G6
G7
GE
G9
GlO

TABLE1
NUMBEROFNON-TREESEQUENCESGENERATED

Number of
Number of Non-Tree Sequences

Spanning

Trees

24672
13931

151662
151719

1360710
12897990

1592512
1820488

14689650
26520950

I BFS

20738 14412 14438
8778 5308 5310

120259 66079 67036
90831 65657 65950

1112223 504279 481506
7559568 7136979 6971221

871944 528193 528128
1151321 634183 635357

11998877 6179924 6207721
20921468 9096476 8941338

Heuristic 1 Heuristic 2

V. PATHCOMPRESSION

The heuristics for the selection of the initial spanning
tree discussed in the previous section are aimed at reducing
both COST1 and COST2 (defined in Section III). Though
the number of comparisons required in a straightforward
implementation is influenced by the initial spanning tree
chosen, the actual number of comparisons done during the
execution of the algorithm can be reduced considerably by
an appropriate choice of a data structure for maintaining
the information relating to a tree sequence. In this section
we discuss a method to achieve this.

Consider a sequence A = (DIGIT(l), DIGIT(2), . . . ,
DIGIT(k - l), x, REF(k + l), . * . , REF(n - l)), x #
REF(k), generated by Char’s algorithm. Let Gh be the
corresponding subgraph of the given graph G. Let G’ be
the subgraph obtained by removing from G, the edge
(k, x). To test whether h is a tree sequence or not, Char’s
algorithm traverses the sequence of vertices k, x,
DIGIT(x), DIGIT(DIGIT(x)), . . . until the vertex k or a
vertex j > k is encountered. In the latter case, X is a tree
sequence. Suppose A is a tree sequence. Let P denote the
path k, x, DIGIT(x), DIGIT(DIGIT(x)); * *, j.

After generating and identifying the tree sequence h, the
algorithm proceeds to generate sequences in which
DIGIT(l), DIGIT(2), . * . , DIGIT(k - l), and DIGIT(k)
are the same as in X. So the path P will be present in all
the subgraphs corresponding to such sequences. Consider
now one -such sequence X which is to be tested for the tree
compatibility property at position i. Clearly i > k. Let
DIGIT(i) = (Y in A’. Then to test A’ for the tree compatibil-
ity property, we need to traverse the sequence P’ of vertices
i, OL, DIGIT(DIGIT(DIGIT(a)), . . . until vertex i or
a vertex greater than i is encountered. If k lies on P’,
then the sequence of vertices k, x, DIGIT(x),
DIGIT(DIGIT(x)), . . . , j representing P will be a subse-
quence of P’. Thus while traversing P’, we can proceed to
j directly from k using the path P. In other words, we can
effectively compress P’ if we keep track of the information
relating to the path P. This technique, called path com-
pression [9], will considerably reduce the actual number of

Graph

Gl
G2
G3
G4
G5
G6
G7
G8
G9
GlO

TABLE11 TABLE III
NUMIIEROFCOMPARISONSMADE EXECUTIONTIME

Number of

Spanning

Trees

Number of Number of C parisons Number of

Non-Tree
Heuristic 1

Sequences

Heuristic 1
With

Path Compr.

24672 14412 110374 83342
13931 5308 40711 33811

151662 66079 593753 442127
151719 65657 565449 434929

1360710 504279 5323910 3841745
12897990 7136979 64931380 48970813

1592512 528193 5599546 4080411
1820488 634183 6749935 4808779

14689650 6179924 66484647 45516982
26520950 9096476 102984126 69897903

comparisons made during the execution of Char’s algo-
rithm.

To implement Char’s algorithm with path compression,
we use a new array NEXTVERTEX. Whereas the DIGIT
array keeps the adjacency information of each sequence,
the NEXTVERTEX array, for a tree, is defined as
NEXTVERTEX = j, where j > i is the first vertex
reachable from vertex i as we traverse the tree from vertex
i to vertex n. We create and maintain the NEXTVERTEX
array as follows. Since for the initial tree sequence,
DIGIT(i) = REF(i) > i, 1 6 i < n - 1, we initialize
NEXTVERTEX = REF(i), 1~ i 6 n - 1. Whenever a
tree sequence X = (DIGIT(l), DIGIT(2), . . . , DIGIT(k -
l), x, REF(k + 1); . a, REF(n - 1)) is generated by chang-
ing the value of DIGIT(k) of the previous tree sequence,
the NEXTVERTEX array is updated as follows.

Updute I: NEXTVERTEX = REF(i), k + 1~ i G n
-1.

Update 2: NEXTVERTEX = j, where j > k is the
first vertex reachable from vertex k in the
tree path from vertex k to vertex n.

Note that j will be known when the tree compatibility test
for A is completed.

We have implemented Char’s algorithm with path com-
pression using NEXTVERTEX array. In Table II we give
the total number of comparisons made by the implementa-
tion of Char’s algorithm with Heuristic 1 and the imple-
mentation with Heuristic 1 and path compression. From
Table II it is clear that the use of path compression
considerably reduces the total number of comparisons.

Next we compute the number of computational steps
required to create and update the NEXTVERTEX array.
Note that initially NEXTVERTEX(n - 1) = REF(n - 1) =
n. Since Update 2 sets NEXTVERTEX(n - 1) to the first
vertex greater than 12 - 1 in the tree path from vertex n - 1
to vertex n, NEXTVERTEX(n - 1) is always equal to n
and so we need to update only NEXTVERTEX(16 i 6
n - 2. For each tree sequence of the form A, = (DIGIT(l),
DIGIT(2), * * . , DIGIT(k - l), x, REF(k + l), . . . , REF(II
- 1)) with x # REF(k), Update 1 requires (n - k - 1) as-
signments and Update 2 requires exactly one assignment.

Graph

Gl
G2
G3
G4
G5
G6
G7
G8
G9
GlO

Spanning

Trees

24672
13931

151662
151719

1360710
12897990

1592512
1820488

14689650
26520950

859

Execution Time in Seconds

B/I
Heuristic 1

With
Path Compr.

1.924 1.767 2.037
0.970

12.495
10.661

102.660
994.735
113.124
129.747

1193.974
2264.015

I

0.944 0.928
10.167 9.462
10.489 10.205
87.835 81.612

966.608 894.635
105.868 99.491
124.721 115.582

1026.815 946.918
1822.345 1662.247

Thus Update 1 and 2 together require (n - k) computa-
tional steps for each tree sequence of the form A,. The
number of tree sequences of the form A, is given by
t(k + 1)- t(k), where t(i), 16 i < n - 2, is the number of
spanning trees of the graph Gf) defined in Section III.
Thus the total number of computational steps required to
create and update the NEXTVERTEX array is given by

n-2

n-l+ c [t(k+l)-t(k)]@-k)
k=l

n-2

=2t(n-1)-t c t(k), since t(1) =l.
k=2

which is of order O(nt). Thus employing path compression
in the implementation of Char’s algorithm does not change
the complexity of the algorithm.

Since the total number of comparisons are reduced when
Char’s algorithm is implemented with path compression,
the execution time of the algorithm with path compression
should also be less than the execution time of the algorithm
without path compression. This can be verified from Table
III where we have tabulated the execution times (on a
CDC Cyber 835 computer) for three implementations of
Char’s algorithm-Char’s implementation where Breadth-
First Search (BFS) is used to select the initial spanning
tree, implementation using Heuristic 1, and implementa-
tion using Heuristic 1 and path compression.

VI. SUMMARYANDCONCLUSION

In this paper we have presented a detailed computa-
tional complexity analysis-both theoretical and experi-
mental-of Char’s algorithm to enumerate all the spanning
trees of a graph and have also presented several quantita-
tive and qualitative properties of the algorithm.

We have described methods to speed up the algorithm.
In particular, we have discussed two heuristics to choose
the initial spanning tree which lead to a minimum number
of spanning non-tree subgraphs. We have also described a

860 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-31, NO. 10, OCTOBER 1984

technique called path compression to reduce the number of
comparisons. Theoretical analysis and experimental results
presented in this paper establish the superiority of Char’s
algorithm when implemented using the heuristics and path
compression.

ACKNOWLEDGMENT

The authors thank the reviewers for their suggestions
which have resulted in considerable improvement in the
presentation of the paper.

PI
PI

[31

[41

VI

161

[71

181

[91

REFERBNCBS
G. J. Minty, “A simple algorithm for listing all the spanning trees of
a graph,” IEEE Trans. Circuit Theory, vol. CT-12, p. 120, 1965.
R. C. Read and R. E. Tarjan, “Bounds on backtrack algorithms for
listing cycles, paths and spanning trees,” Networks, vol. 5, pp.
237-252,1975.
H. N. Gabow and E. W. Myers, “Finding all spanning trees of
directed and undirected graphs,” SIAM J. Comput., vol. 7, pp.
280-287, 1978.
J. P. Char, “Generation of trees, two-trees and storage of master
forests,” IEEE Trans. Circuit Theory, vol. 15, pp. 128-138, 1968.
R. Jayakumar, “Analysis and study of a spanmng tree enumeration
algorithm,” MS. thesis, Dep. of Computer Science, Indian Inst. of
Technol., Madras, India, 1980. Also reported in “Combinatorics and
graph theory,” Springer-Verlag Lecture Notes on Mathematics, (S. B.
Rao, Ed.) no. 885,1981, p. 284-289.
M. N. S. Swamy and l?. Thulasiraman, Graphs, Networks, and
Algorithms. New York: Wiley-Interscience, 1981.
M. N. S. Swamy and K. Thulasiraman, “A Theorem in the Theory of
Determinants and the Number of Spanning Trees of a Graph,”
Canadian Elect. Eng. J. vol. 8, no. 4, pp. 147-152, 1983.
A. J. W. Hilton, “The number of spanmn

3
trees of labelled wheels,

fans, and baskets,” in Combinatorics, pubhs ed by Inst. Math. Appl.,
1972, fp. 203;206.
R. E. aqan, Applications of path compression on balanced trees,”
J. Ass. Comput. Mach., vol. 26, pp. 690-715, 1979.

+

R. Jayakumar was born in Tamilnadu, India, on
February 10, 1955. He received the Bachelor’s
degree in electrical engineering from the Univer-
sity of Madras, Madras, India, in 1977, and the
MS. degree in computer science from the Indian
Institute of Technology, Madras, India, in 1980.
He is now working towards his Ph.D. degree at
Concordia University, Montreal, P.Q., Canada.
His research interests are in graph theory, analy-
sis of algorithms, VLSI layout, and data struc-
tures.

K. Thulasiraman was born in Ammayappan,
Tamilnadu, India, on June 9, 1942. He received
the Bachelor’s and Master’s degrees in electrical
engineering from the University of Madras,
Madras. India. in 1963 and 1965. resuectivelv.
and the Ph.D: degree in electrical e&ineering
from the Indian Institute of Technology, Madras,
in 1968.

He joined the Indian Institute of Technology,
Madras, in 1965, where he was associated with
the Department of Electrical Engineering from

the Department of Computer Science from 1973 to
1981. He was promoted to the rank of Professor in January 1977. After
servine for a vear (1981-1982) at the Deoartment of Electrical Eneineer-
ing, T;chni&l University of ‘Nova Scoiia, Halifax, Canada, he joined
Concordia University, Montreal, as Professor at the Department of
Mechanical Engineering where he is now involved in the development of
programs in Industrial Engineering at the undergraduate and graduate
levels. Earlier, he had held visiting positions at Concordia University
during the periods of 1970-1972, 1975-1976, and 1979-1980. He has
published over 50 technical papers on different aspects of Electrical
Network Theory, Graph Theory and Design and Analysis of Graph
Algorithms. He has also coauthored the book Graphs, Networks and
Algorithms (New York: Wiley-Interscience, 1981). His current research
interests are in Network Theory, Analysis of Algorithms, Computer
Networks and VLSI Layout.

Dr. Thulasiraman is a Fellow of the Institution of Telecommunication
Engineers, India.

+

: 7. : M. N. S. Swamy (S’59-M’62-SM’74-F’SO) was
born on April 7, 1935. He received the B.Sc.

; ,_ ,I (honors) degree in mathematics from Mysore
University, Mysore, India, in 1954, the Diploma
in electrical communication engineering from the
Indian Institute of Science, Bangalore, India, in
1957, and the M.Sc and Ph.D. degrees in electri-
cal engineering from the University of
Saskatchewan, Saskatoon, Sask., Canada, in 1960

, and 1963, respectively.
He worked as a Senior Research Assistant at

the Indian Institute of Science until 1959, when he began graduate study
at the University of Saskatchewan. In 1963 he returned to India to work
at the Indian Institute of Technology, Madras. From 1964 to 1965 he was
an Assistant Professor of Mathmematics at the University of Saskatche-
wan. He has also taught as a Professor of Electrical Engineering at the
Technical University of Nova Scotia, Halifax, N.S., Canada, and the
Universitv of Calaarv. Calgarv, Aha., Canada. He was chairman of the
Department of El&t&l Engineering, Concordia University (formerly Sir
Georee Williams Universitv). Montreal. P.O.. Canada, From Julv 1970
until August 1977, when he became the Dean of Engineering and Com-
puter Science of the same university. He has published a number of
papers on number theory, semiconductor circuits, control systems, and
network theory. He is a coauthor of the book Graphs, Networks and
Algorithms (New York: Wiley-Interscience, 1981).

Dr. Swamy is a Fellow of several professional societies including the
Engineering Institute of Canada, the Institution of Engineers (India), the
Institution of Electrical Engineers (U.K.), and the Institution of Electron-
ics and Telecommunications Engineering (India). He is Associate Editor
of the Fibonacii Quarterly and the new journal, Circuits, Systems and
Signal Processing. He was Vice-President of the IEEE Circuits and
Systems Society in 1976, and General Chairman of the International
Symposium on Circuits and Systems, 1984.

