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Complexity of Computation of a Spanning 
Tree Enumeration Algorithm 

R. JAYAKUMAR, K. THULASIRAMAN, AND M. N. S. SWAMY, FELLOW, IEEE 

Absrracr -In l!X3, Char [4] presented an algorithm to enumerate all the 
spanning trees of an undirected graph G. This algorithm starts with a 
known initial spanning tree of G, and generates all the other spanning trees 
along with certain spanning non-tree subgraphs of G. In this paper a 
detailed complexity analysis of char’s algorithm and methods to speed up 
the algorithm are discussed. Two heuristics for the selection of the initial 
spanning tree are suggested. These heuristics result in a considerable 
reduction in the number of spanning non-tree subgraphs generated. A 
technique called path compression, aimed at reducing the actual number of 
comparisons, is described. Computational results on several randomly 
generated graphs are presented to illustrate the improvement achieved. 

I. INTRODUCTION 

E NUMERATING all the spanning trees of a graph 
without duplication is one of the widely studied 

graph problems in Electrical Engineering and Computer 
Science literature. Since the number of spanning trees of a 
graph increases rapidly with the size of the graph, a highly 
efficient algorithm is desired to enumerate all the spanning 
trees of a graph. Several algorithms of varying efficiency 
have been proposed in the literature. One of the well-known 
algorithms is due to Minty [l], which has been shown [2] to 
be of complexity O(m + n + mt), where m and II are the 
number of edges and the number of vertices of the graph, 
respectively, and t is the number of spanning trees of the 
graph. Another efficient algorithm of complexity O(m + n 
+ nt) is due to Gabow and Myers [3]. 

In 1968, Char [4] had presented a conceptually simple 
and elegant algorithm to enumerate all the spanning trees 
of a graph. However, Char had not presented a complexity 
analysis of his algorithm. The recent analysis of Char’s 
algorithm presented in [5] suggests that this algorithm 
might be the best of all the algorithms available so far for 
the spanning tree enumeration problem. In this paper, we 
not only present a more detailed complexity analysis of 
Char’s algorithm but also discuss different methods to 
further improve the speed of the algorithm. 

In Section II we give a formal description of Char’s 
algorithm and summarise some of its interesting properties 
reported in [5]. In Section III we give a detailed complexity 
analysis of this algorithm and present several of its quanti- 
tative and qualitative properties. In Section IV we develop 
two heuristic procedures which help speed up Char’s algo- 
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rithm by minimizing the number of non-tree subgraphs 
generated by the algorithm. Finally, in Section V, we 
discuss a general technique called path compression, which 
can be used for an efficient implementation of Char’s 
algorithm to reduce the actual number of comparisons 
made by the algorithm. 

For graph theory terms and notation not defined here, 
see [6]. Without any loss of generality we also assume that 
the graphs considered in this paper are simple biconnected 
undirected graphs. 

II. CHAR'SALGORITHMTO ENUMERATEALLTHE 
SPANNINGTREES 

Consider a connected undirected graph G = (V, E) with 
IZ = JV] vertices and m = ]E] edges. Let the vertices of G be 
denoted as 1,2; . 0, n. Let h = (DIGIT(l), DIGIT(2); . ., 
DIGIT(n - 1)) denote a (II - 1)-digit sequence of vertices 
such that DIGIT is a vertex adjacent to vertex i in G. 
With each such sequence A we can associate a subgraph 
Gx = (V,, Eh) of G such that 

and 
E,= {(~,DIGIT(~)), (~,DIGIT(~)),..., 

(n -l,DIGIT(n -1))). 

Char’s algorithm first performs a Breadth-First Search 
[6] on G and finds a spanning tree called the initial 
spanning tree. During this search, the vertices of G are also 
renumbered as n, n - 1,. . . , 1 in the order in which they are 
visited. Let h, = (REF(l), REF(2), * . . , REF( n - 1)) be the 
sequence corresponding to this spanning tree. Starting with 
h,, the algorithm enumerates all the other spanning trees 
of G by generating the sequences corresponding to the 
spanning trees of G. During this enumeration, the algo- 
rithm also generates certain sequences which correspond to 
spanning non-tree subgraphs of G. The sequences corre- 
sponding to spanning trees are referred to as tree sequences 
and those corresponding to spanning non-tree subgraphs 
are referred to as non-tree sequences. The sequence h, is 
called the initial tree sequence. 

Char’s algorithm classifies a generated sequence as a tree 
sequence if it satisfies the following. 

Tree Compatibility Property 
The sequence (DIGIT(l), DIGIT(2), * . . , DIGIT( n - 1)) 

represents a spanning tree of graph G if and only if 
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for each j 6 n -1 there exists, in G, a sequence of 
edges (chosen from among the edges (1, DIGIT(l)), 
(2, DIGIT(2)); . . , (n - 1, DIGIT(n - 1))) with 
( j, DIGIT( j)) as the starting edge, which leads to a vertex 
k > j. 0 

If a sequence does not have the above property, then it is 
a non-tree sequence. 

Char’s algorithm can be presented in ALGOL-like nota- 
tion as follows. 

Char’s Algorithm to Enumerate all the Spanning Trees 
procedure CHAR; 
comment The graph G is represented by the adjacency lists 

of its vertices. SUCC(DIGIT(i)) is the entry next 
to DIGIT(i) in the adjacency list of vertex i. 

begin 
find the initial spanning tree and obtain the initial tree 
sequence X, = (REF(l), REF(2), . . . , REF( n - 1)); 
renumber the vertices of the graph using the initial 
spanning tree; 
initialize DIGIT(i):= REF(i), 1~ i G n - 1; 
output the initial spanning tree; 
k:=n -1; 
while k f 0 do begin 

if SUCC(DIGIT(k)) # nil 
then begin 

DIGIT(k): = SUCC(DIGIT(k)); 
if DIGIT(i), 1~ i 6 n - 1, is a tree sequence 

then begin / 
output the tree sequence; 
k:=n -1 

end 
end 
else begin 

DIGIT(k): = REF( k); 
k:=k -1 

end 
end 

end CHAR; 
Given any sequence A = (DIGIT(l), DIGIT(2), . . a, 

DIGIT(n - l)), Char’s algorithm obtains the next sequence 
by changing DIGIT(k) in X. In the new sequence 
DIGIT(i) = REF(i) > i, k + 1~ i < n - 1, and DIGIT(l), 
DIGIT(2), . . . , DIGIT( k - 1) have the same values as in 
the previous sequence. Hence the new sequence is to be 
tested for tree compatibility property only at position k 
and this test, in the worst case, involves k - 1 comparisons. 
Hence at most n computational steps are required to 
generate and test a sequence. So, if to is the number of 
non-tree sequences and t is the number of tree sequences 
generated by Char’s algorithm, in the worst case n(t + to) 
computational steps are required to enumerate all the 
spanning trees of the given graph and hence, Char’s algo- 
rithm is of time complexity 0( m + n + n(t + to)), which 
also includes the complexity of finding the initial spanning 
tree. 

The following are two of the interesting properties of 
Char’s algorithm. For other properties, see [5]. 

Theorem 1 
For a complete graph, the number to of spanning non-tree 

subgraphs generated by Char’s algorithm is independent of 
the initial spanning tree. cl 

Theorem 2 
Let G(“-i) be the set of all connected n-vertex graphs 

having at least one vertex of degree n - 1. For any graph 
G E G(“-l), to 6 t, if the initial spanning tree is a star tree. 

cl 

A characterization of each spanning non-tree subgraph 
generated by Char’s algorithm is also given in [5]. 

III. COMPUTATIONAL COMPLEXITY OF CHAR'S 
ALGORITHM 

Since the computational complexity of Char’s algorithm 
is O(m + n + n(t + to)), any complexity analysis of this 
algorithm would require a study of the number (t + to). 
With this objective in view, we first obtain an expression 
for (t + to). 

Let 
n-l 

T= u q 
I=0 

be the set of all the tree sequences such that 
(i) To = {A,,}, and 
(ii) T., l<i<n - 1, is the set of all the tree sequences of 

the form (DIGIT(l), DIGIT(2), * . . , DIGIT(i), REF( i + l), 
REF(i +2); * ., REF( n - 1)) with DIGIT(i) # REF( i). 
Also let 

n-1 
T’= u qr 

i=l 

be the set of all the non-tree sequences such that q’ is the 
set of all the non-tree sequences of the form (DIGIT(l), 
DIGIT(2), . . . , DIGIT(i), REF( i + l), REF( i + 2), * . . , 
REF(n-1)) with DIGIT(i)#REF(i) for l<i<n--1. 
Note that JTI = t. Further, it follows from the characterisa- 
tion of the non-tree subgraphs given in [5] that IT’1 = to. 

Theorem 3 
Let G be a connected n-vertex undirected graph with its 

vertices numbered as in Char’s algorithm. Let Gp), 1~ k 
< n - 1, be the graph obtained from G by coalescing the 
vertices k, k +l; . ., n and let t(k) be the number of 
spanning trees of Gp). If t is the number of tree sequences 
and to is the number of non-tree sequences generated by 
the algorithm, then 

n-l 
t + to =l+ c (deg(k)-l)t(k) 

k=l 

where deg( k), 1~ k < n, is the degree of vertex k in G. 

Proof: 
Consider a tree sequence A, = (DIGIT(~), 

DIGIT(2), . . . , DIGIT(k - l), REF(k), REF(k + 1); . . , 
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REF(n - 1)) generated by Char’s algorithm. Let G, = 
(V,, Ek) be the spanning tree corresponding to X, and 
G; = (V;, EL) be the spanning 2-tree obtained from G, by 
deleting the edge (k, REF(k)). Since REF(i) > i, 1~ i < 
n - 1, it follows that in G; the edges (k + 1, REF( k + l)), 
(k+2,REF(k+2));.*, (n-l,REF(n-1)) are in one 
component, say the component G;,, = (Vl,,, EL i), and the 
vertex k is in the other component, say the component 
G; 2 = V’,,,, EL,2). Note that in G;,, and in G;,2 there 
exists an unique path between every pair of vertices. 

Consider any vertex u # REF(k), adjacent to vertex k. 
Let ht = (DIGIT(l), DIGIT(2), . . . , DIGIT(k - l), u, 
REF(k + l), REF(k + 2); . . , REF(n - 1)) and Gt = 
(V/, EL u(k, u)) be the subgraph corresponding to A%. 
Now the following two cases arise. 

(i) If u E V/ 1, then Gz is a spanning tree of G. Thus the 
sequence h$ with u E V/, is a tree sequence passing the 
tree compatibility test at ‘position k. 

(ii) If u E v/J, then in G,$ the edge (k, u), along with 
the unique path in G;,2 between the vertices k and u, 
forms a circuit passing through the vertex k, and so Gz is 
a non-tree subgraph of G. Thus the sequence X% with 
UEVL, is a non-tree sequence failing the tree compatibil- 
ity test at position k. 

Since vertex k is adjacent to deg(k)-1 vertices other 
than REF( k), there are deg( k)- 1 distinct Xt’s which have 
the same DIGIT(l), DIGIT(2), . . . , DIGIT(k - 1) as X,. 
Each one of these sequences is either a tree sequence or a 
non-tree sequence and so all these sequences belong to 

w(i, j) denotes the weight of the edge (i, j). Let i be any 
vertex of G(W) and let l?(i) be the set of vertices adjacent 
to vertex i in G(w). Let 

di= C w(i, j). 
j E r(i) 

By pivotal condensation at vertex i in G(w) we mean the 
following operation: For each pair of vertices j,, j, E r(i), 
if the edge ( j,, j,) is already present in G(w), then increase 
its weight by w(i, j,)w(i, j2)/di; otherwise add to G(w) 
the edge (j,, j,) with the weight w(i, j,)w(i, j,)/di. After 
all possible pairs of neighbors of the vertex i are consid- 
ered, delete from G(w) the vertex i and all the edges 
incident on it. 

Let N be a resistive network consisting of one Siemens 
admittances and G(N) be the graph of N in which all the 
edges are of unit weight. Let A be a subset of the vertex set 
v= {1,2;. *, n } of N. Let the networks NA and NAo be 
defined as 

NA the network that results after coalescing all the 
vertices of N which do not belong to A, 

Nj the network that results after suppressing all the 
vertices of N which belong to A. 

If T(N), T(N,), and T(Nj) denote the sum of tree-admit- 
tance products of the networks N, NA, Ni, respectively, 
then it has been shown in [7] that 

T(N)=T(N,)T(N,O). (2) 
T,UT,‘. Thus if t(k) is the number of all the tree sequences 
of the form xk = (DIGIT(l), DIGIT(2); . ., DIGIT(k -l), Note that the graph G(Ni) of the network Ni can be 

REF( k), REF( k + l), . * *, REF( n - l)), then obtained from the graph G(N) by performing pivotal 
condensation, in G(N), at all the vertices in A. Let A = 

IT,UT/‘( = (deg(k)-l)t(k). (1) {LZ- * -9 k - l}, G,(N) = G(N) and the graph Gi( N), 2 < 

Since in the spanning tree corresponding to A,, the i < k - 1, be obtained from G,-i(N) by performing a 

edges (k,REF(k)), (k + l,REF(k +l)); .., (n - l,REF(n pivotal condensation at vertex i -1 in G,-i(N). If d;, 

- 1)) are present, it follows that t(k) is the number of 1~ i 6 k - 1, is the sum of admittances of all the edges . 
spanning trees of G in which the edges (k, REF( k)), (k + incident on vertex k in G,(N), then as shown in [7] 

l,REF(k +l)); * ., (n - 1, REF( n - 1)) are present. Thus 
t(k) is the number of spanning trees of the graph obtained 

T(N) = d,d, . * * d,-,T( N,o). (3) 

from G by coalescing the vertices k, k + 1,. . ., n - 1, Comparing (2) and (3) we get 
REF(k), REF(k + 1); . ., REF(n - 1). But {k, k + 
1; * *, n - 1, REF(k), REF(k + 1); . a, REF(n - l)} = T( N,) = d,d, . . . &I 

{k,k+l;.., n} becauseREF(i)>i, l<i<n-1, and so 
t(k) is the number of spanning trees of Gp), the graph 

when A= {1,2; * *, k-l}. Note that the graph of the 

obtained from G by coalescing the vertices k, k + 1; . . , n. 
network NA is obtained from G by coalescing the vertices 
k k + I . . . 

Also the total number of sequences generated by Char’s i . 
, n and hence it is Gp). Since each element of 

algorithm is 
is of admittance one Siemens, the admittance product of 

each spanning tree is one and so T(N,) is the number of 
n-l n-l spanning trees of the graph GI;“. Thus we get the following 

t + to = [ToI+ c IT,UT,‘I =l + c IT,JJT,‘J. theorem. 
k=l k=l 

From these observations and equation (1) the theorem 
Theorem 4 

follows. 
The number of spanning trees t(k) of the graph Gp) is 

’ given by 
From Theorem 3 we can easily prove Theorem 1 stated 

in Section II. 
t(k) = d,d, . . . d,-,. Cl 

Now we develop a systematic procedure to compute If A= {1,2;. ., n -l}, then the above theorem reduces 
t(k). Let G(w) be a weighted undirected graph in which to the following corollary. 
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Corollary 4. I 
The number of spanning trees of G is given by 

t = d,d, . . . d,-,. 0 

Using the above corollary and Theorem 4 in Theorem 3, 
we get the following. 

Theorem 5 
The number of sequences generated by Char’s algorithm 

is 

‘-* deg(k)-1 
t+t,=l+t c 

k-1 d,-14-2 * * * d, ’ 
q 

Now we illustrate the above procedure to compute (t + 
to) for the graph G in Fig. l(a). This graph has 8 spanning 
trees and Char’s algorithm generates 11 sequences for the 
vertex numbering shown. The graphs G,, G,, and G, are 
shown in Fig. l(a)-(c), respectively. Note that d, = 2, 
d, = 5/2, and d, = 8/5. Thus 

and 

t = d,d,d, = 8 

t+t,=l+t $ deg(k)-1 
k=l d,-,d,-, . . . d, =“’ 

Using Theorem 5 we can easily prove the following. 

Theorem 6 
For an n-vertex complete graph to = nnp2 - n”-’ [ 1 (n -iI’ 

0 

Corollary 6.1 
For a complete graph to < t, for any choice of the initial 

spanning tree. rJ 

The value of (t + to) given in Theorem 3 depends on the 
number of spanning trees of Gf’, which is obtained from 
G by coalescing the vertices k, k + 1; . . , n. So, for two 
different initial spanning trees, the values of t(k) for a 
given k will be the same if the set of vertices which receive 
the numbers k, k + 1,. . . , n as given by Char’s algorithm is 
identical in both cases. In other words, the value of t(k) 
depends on the set of vertices which are assigned the 
numbers k, k + 1, * . . , n and not on the edges connecting 
these vertices. Since this statement is true for all values of 
k, we get the following result which is more general than 
Theorem 1. 

Theorem 7 
Let G be a connected undirected graph. Let the vertices 

of G be numbered as ~‘1, u:, . . . , u: according to one initial 
spanning tree and as u:, ui,. . . , u,” according to another 
initial spanning tree. Let vi’ = { uf, ui+i,. . . , uk } and y2 = 
{uf, u;+l,- * * ,u,‘}, for 2<i<n. If q1=v2 for all i, 2<i 
4 n, then the number of non-tree sequences generated by 
Char’s algorithm .will be the same for both initial spanning 
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Fig. 1. (a) Graph G = G1. (b) Graph GZ. (c) Graph GJ. 

trees. In other words, t + to will be the same for all choices 
of initial spanning trees which have identical y1 and I$2 
for every i, 2 < i < n. 0 

Consider a graph G E G(“-‘) (defined in Theorem 2) in 
which vertex x is of degree n - 1. Let G, be any arbitrary 
spanning tree of G and G2 be a star tree having the vertex 
x as the star vertex. Suppose we assign the number n to 
vertex x and number the other vertices using G, and 
satisfying the tree compatibility property; then an identical 
numbering (satisfying Theorem 7) of the vertices of G 
using G, and satisfying the tree compatibility property is 
possible. Thus if to and t; are the numbers of non-tree 
sequences generated with respect to G, and G,, then 
to = t& By Theorem 2 t; < t, where t is the number of 
spanning trees of G and so to < t. Since the above argu- 
ments are valid for any arbitrary G, chosen as the initial 
spanning tree, we get the following theorem which is more 
general than Corollary 6.1. 

Theorem 8 
For an n-vertex connected graph with maximum degree 

n - 1, to < t for any choice of the initial spanning tree in 
which a vertex with degree n - 1 is assigned the number n. 

0 

Using Theorems 3 and 5 we can give simpler proofs of 
the following two interesting results which have been re- 
ported in [5]. 
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Theorem 9 then 
If L, is the number of spanning trees of an n-vertex n-l n-2 

ladder’ and Li is the number of non-tree sequences gener- COSTl= c IT/&-k-l)= c ITkl(n-k-1). 
ated by Char’s algorithm when a star tree is chosen as the k=l k=l 
initial spanning tree, then But ]Tk]=t(k+l)-t(k)forall k, liken-2. So 

L; = L,-, 

and 

0 

Theorem 10 
If W, is the number of spanning trees of an n-vertex 

wheel and W,” is the number of non-tree sequences gener- 
ated by Char’s algorithm when a star tree is chosen as the 
initial spanning tree, then 

W,o=l+ L, 

and 

cl 

Next we consider the question of computing the total 
number of computational steps required in the execution of 
Char’s algorithm. Consider a sequence A = (DIGIT(l), 
DIGIT(2), . . . , DIGIT(k - l), x, REF( k + l), . . . , REF( 12 
- l)), with x # REF(k), generated by the algorithm. This 
sequence belongs to T,UT,‘. To generate this sequence the 
algorithm explicitly requires setting DIGIT(i) = REF(i) 
for each i, k + 1 < i 6 n - 1, in addition to setting 
DIGIT(k) = x. Then h is tested for the tree compatibility 
property at position k. Thus generating and testing X 
involves the following two types of computational steps. 

Type 2: (n - k - 1) steps to set DIGIT(i) = REF(i), 
k+l<i<n--1. 

Type 2: C, steps to set DIGIT(k) = x and to test h 
for the tree compatibility property. 

Suppose h is a tree sequence. Then the cost of Type 1 
computation required to generate A can be associated with 
X. If, on the other hand, A is a non-tree sequence, then the 
algorithm generates a new sequence X by setting DIGIT(k) 
to the vertex next to x in the adjacency list of k. Note that 
generating A’ does not require Type 1 computation. If X 
also fails the test, the algorithm continues to generate 
sequences (without using Type 1 computation) until a tree 
sequence X’ is generated. The cost of the Type 1 computa- 
tion required in generating A” can therefore be charged to 
the tree sequence h. Thus the cost of each Type 1 computa- 
tion can be charged to a tree sequence. Clearly the cost of 
Type 1 computations (in terms of computational steps) for 
generating all the tree sequences in Tk is given by ITkl(n - 
k - 1). If we denote by’ COST1 the total cost of Type 1 
computations required in generating all the tree sequences, 

n-1 

COSTl= c [t(k+l)-t(k)](n-k-l) 
k=l 

n-1 

=t c 
[ 

1 
kc2 dn-ldn-20ea dk I 

-(?r -2). (4) 

As regards Type 2 computation, it is required for each 
sequence in T,UT,‘, 1~ k < n - 1. If Cr denotes the maxi- 
mum number of computational steps required to perform 
Type 2 computation for any sequence in TkuTL’, and 
COST2 denotes the cost of performing all the Type 2 
computations, then 

n-l 

COST2 < c crlTkuT;l = t 
k-l 

(5) 
From (4) and (5), it is clear that COST1 4 nt and COST2 

< n3t. So the total cost of execution of Char’s algorithm is 
O(n3t). A better bound for COST2 does not appear to be 
possible, even though it has been found in a large number 
of cases that COST2 6 nt. For example, for all the graphs 
in G(“-‘) COST2 is 
O(d) in such cases. 

O(nt) and hence the total cost is 

IV. HEURISTICS FOR CHOICE OF INITIAL 
SPANNING TREE 

Since to and the complexity of Char’s algorithm depends 
on the initial spanning tree, we now consider the problem 
of choosing the initial spanning tree which leads to a 
minimum to. The initial spanning tree can be obtained by 
performing a Breadth-First Search (BFS) or a Depth-First 
Search (DFS) on the given graph. The implementation 
given in [5] selects the initial spanning tree by performing a 
BFS starting at a vertex of maximum degree. In this 
section we consider the question of using DFS for selecting 
the initial spanning tree, with the objective of minimizing 
to. For results relating to DFS, see [6]. 

Let TDFs denote a DFS tree of the given graph G. 
Starting at the root of TDFS, let the vertices of G be 
numbered as n, IZ - 1; . . ,l, in the order in which they are 
visited during the DFS. With such a numbering, TDFs will 
clearly satisfy the tree compatibility property. It should be 
noted that each ancestor of k in TDFs will have a number 
greater than k and each descendant of k will have a 
number less than k. Furthermore, there are no cross edges 
in G 161. In other words, if x and y are two vertices such 
that neither of them is a descendant of the other in TDFS, 
then the edge (x, y) is not in G. Using these observations, 
we can prove the following. 

‘A ladder is also known as a fan [8]. 
Theorem 11 
If vertex k is a leaf m TDFS, then IT/l = 0. 0 
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Theorem 12 
If 6, is the number of descendants of vertex k in TDFS, 

then 

From Theorem 5, it is clear that if the vertices of the 
graph G could be numbered in such a way that deg(n - 
l),deg(n -2);. ., deg(1) are in the ascending order and 
d,-l,dn-2,- . ., d, are in the descending order, then (t + to) 
will be reduced considerably. Since deg( n) does not appear 
in the expression for (t + to), we can number the vertex 
having the maximum degree in G as n. In other words, we 
can start the DFS to find the initial spanning tree at a 
vertex of maximum degree. 

Let l?‘(i) be the set of ancestors of vertex i in TDFs 
which are adjacent to i in G and let dl= Ir’(i)j. To find 
the numbers d,, d,, . . . , dnel, we start with the graph G, 
obtained from G by assigning unit weight to each edge of 
G. Recall that d, is the sum of the weights of the edges 
incident on i in the graph Gi which is obtained from G, by 
performing pivotal condensation at the vertices 1,2,. . . , 
i - 1. Since pivotal condensation does not reduce the weight 
of any edge connecting i to any vertex in r’(i), and since 
each such edge has a weight of value at least one, it follows 
that 

d, b d;, ldi<n-1. 

It is evident from Theorems 11 and 12 and the above 
discussions that to could be reduced considerably if we do 
the following. 

1) Maximize the number of leaves in TDFS. 
2) Maximize the number of ancestors of each vertex 

during the DFS. 
3) Minimize the number of descendants 6k, for each k. 

To achieve the above objectives, we suggest the following 
two heuristics for selecting the initial spanning tree using 
DFS. 

Heuristic 1: Start the DFS at a vertex of maximum 
degree. During the search, when we are at vertex i, choose, 
from among the neighbors of i, the one having the maxi- 
mum number of ancestors in the tree developed so far. If 
more than one vertex has this property, then choose, from 
among these vertices, the one having minimum degree in G. 

Heuristic 2: Start the DFS at a vertex of maximum 
degree. During the search, when we are at vertex i, choose, 
from among the neighbors of i, the one having minimum 
degree in G. If more than one vertex has this property, then 
choose, from among these vertices, the one having the 
maximum number of ancestors in the tree developed so far. 

We have implemented Char’s algorithm using each one 
of the above two heuristics as well as. BFS. In Table I we 
give the number of non-tree sequences generated in these 
cases for ten randomly generated graphs. From Table I it is 
clear that the heuristics considerably reduce the number of 
non-tree sequences generated by the algorithm and that the 
two heuristics result in approximately the same number of 
non-tree sequences. 
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TABLE1 
NUMBEROFNON-TREESEQUENCESGENERATED 

Number of 
Number of Non-Tree Sequences 

Spanning 

Trees 

24672 
13931 

151662 
151719 

1360710 
12897990 

1592512 
1820488 

14689650 
26520950 

I BFS 

20738 14412 14438 
8778 5308 5310 

120259 66079 67036 
90831 65657 65950 

1112223 504279 481506 
7559568 7136979 6971221 

871944 528193 528128 
1151321 634183 635357 

11998877 6179924 6207721 
20921468 9096476 8941338 

Heuristic 1 Heuristic 2 

V. PATHCOMPRESSION 

The heuristics for the selection of the initial spanning 
tree discussed in the previous section are aimed at reducing 
both COST1 and COST2 (defined in Section III). Though 
the number of comparisons required in a straightforward 
implementation is influenced by the initial spanning tree 
chosen, the actual number of comparisons done during the 
execution of the algorithm can be reduced considerably by 
an appropriate choice of a data structure for maintaining 
the information relating to a tree sequence. In this section 
we discuss a method to achieve this. 

Consider a sequence A = (DIGIT(l), DIGIT(2), . . . , 
DIGIT(k - l), x, REF(k + l), . * . , REF(n - l)), x # 
REF(k), generated by Char’s algorithm. Let Gh be the 
corresponding subgraph of the given graph G. Let G’ be 
the subgraph obtained by removing from G, the edge 
(k, x). To test whether h is a tree sequence or not, Char’s 
algorithm traverses the sequence of vertices k, x, 
DIGIT(x), DIGIT(DIGIT(x)), . . . until the vertex k or a 
vertex j > k is encountered. In the latter case, X is a tree 
sequence. Suppose A is a tree sequence. Let P denote the 
path k, x, DIGIT(x), DIGIT(DIGIT(x)); * *, j. 

After generating and identifying the tree sequence h, the 
algorithm proceeds to generate sequences in which 
DIGIT(l), DIGIT(2), . * . , DIGIT( k - l), and DIGIT(k) 
are the same as in X. So the path P will be present in all 
the subgraphs corresponding to such sequences. Consider 
now one -such sequence X which is to be tested for the tree 
compatibility property at position i. Clearly i > k. Let 
DIGIT(i) = (Y in A’. Then to test A’ for the tree compatibil- 
ity property, we need to traverse the sequence P’ of vertices 
i, OL, DIGIT( DIGIT(DIGIT(a)), . . . until vertex i or 
a vertex greater than i is encountered. If k lies on P’, 
then the sequence of vertices k, x, DIGIT(x), 
DIGIT(DIGIT(x)), . . . , j representing P will be a subse- 
quence of P’. Thus while traversing P’, we can proceed to 
j directly from k using the path P. In other words, we can 
effectively compress P’ if we keep track of the information 
relating to the path P. This technique, called path com- 
pression [9], will considerably reduce the actual number of 
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TABLE11 TABLE III 
NUMIIEROFCOMPARISONSMADE EXECUTIONTIME 

Number of 

Spanning 

Trees 

Number of Number of C parisons Number of 

Non-Tree 
Heuristic 1 

Sequences 

Heuristic 1 
With 

Path Compr. 

24672 14412 110374 83342 
13931 5308 40711 33811 

151662 66079 593753 442127 
151719 65657 565449 434929 

1360710 504279 5323910 3841745 
12897990 7136979 64931380 48970813 

1592512 528193 5599546 4080411 
1820488 634183 6749935 4808779 

14689650 6179924 66484647 45516982 
26520950 9096476 102984126 69897903 

comparisons made during the execution of Char’s algo- 
rithm. 

To implement Char’s algorithm with path compression, 
we use a new array NEXTVERTEX. Whereas the DIGIT 
array keeps the adjacency information of each sequence, 
the NEXTVERTEX array, for a tree, is defined as 
NEXTVERTEX = j, where j > i is the first vertex 
reachable from vertex i as we traverse the tree from vertex 
i to vertex n. We create and maintain the NEXTVERTEX 
array as follows. Since for the initial tree sequence, 
DIGIT(i) = REF( i) > i, 1 6 i < n - 1, we initialize 
NEXTVERTEX = REF(i), 1~ i 6 n - 1. Whenever a 
tree sequence X = (DIGIT(l), DIGIT(2), . . . , DIGIT(k - 
l), x, REF(k + 1); . a, REF(n - 1)) is generated by chang- 
ing the value of DIGIT(k) of the previous tree sequence, 
the NEXTVERTEX array is updated as follows. 

Updute I: NEXTVERTEX = REF(i), k + 1~ i G n 
-1. 

Update 2: NEXTVERTEX = j, where j > k is the 
first vertex reachable from vertex k in the 
tree path from vertex k to vertex n. 

Note that j will be known when the tree compatibility test 
for A is completed. 

We have implemented Char’s algorithm with path com- 
pression using NEXTVERTEX array. In Table II we give 
the total number of comparisons made by the implementa- 
tion of Char’s algorithm with Heuristic 1 and the imple- 
mentation with Heuristic 1 and path compression. From 
Table II it is clear that the use of path compression 
considerably reduces the total number of comparisons. 

Next we compute the number of computational steps 
required to create and update the NEXTVERTEX array. 
Note that initially NEXTVERTEX( n - 1) = REF( n - 1) = 
n. Since Update 2 sets NEXTVERTEX(n - 1) to the first 
vertex greater than 12 - 1 in the tree path from vertex n - 1 
to vertex n, NEXTVERTEX(n - 1) is always equal to n 
and so we need to update only NEXTVERTEX( 16 i 6 
n - 2. For each tree sequence of the form A, = (DIGIT(l), 
DIGIT(2), * * . , DIGIT( k - l), x, REF( k + l), . . . , REF( II 
- 1)) with x # REF(k), Update 1 requires (n - k - 1) as- 
signments and Update 2 requires exactly one assignment. 

Graph 

Gl 
G2 
G3 
G4 
G5 
G6 
G7 
G8 
G9 
GlO 

Spanning 

Trees 

24672 
13931 

151662 
151719 

1360710 
12897990 

1592512 
1820488 

14689650 
26520950 

859 

Execution Time in Seconds 

B/I 
Heuristic 1 

With 
Path Compr. 

1.924 1.767 2.037 
0.970 

12.495 
10.661 

102.660 
994.735 
113.124 
129.747 

1193.974 
2264.015 

I 

0.944 0.928 
10.167 9.462 
10.489 10.205 
87.835 81.612 

966.608 894.635 
105.868 99.491 
124.721 115.582 

1026.815 946.918 
1822.345 1662.247 

Thus Update 1 and 2 together require (n - k) computa- 
tional steps for each tree sequence of the form A,. The 
number of tree sequences of the form A, is given by 
t(k + 1)- t(k), where t(i), 16 i < n - 2, is the number of 
spanning trees of the graph Gf) defined in Section III. 
Thus the total number of computational steps required to 
create and update the NEXTVERTEX array is given by 

n-2 

n-l+ c [t(k+l)-t(k)]@-k) 
k=l 

n-2 

=2t(n-1)-t c t(k), since t(1) =l. 
k=2 

which is of order O(nt). Thus employing path compression 
in the implementation of Char’s algorithm does not change 
the complexity of the algorithm. 

Since the total number of comparisons are reduced when 
Char’s algorithm is implemented with path compression, 
the execution time of the algorithm with path compression 
should also be less than the execution time of the algorithm 
without path compression. This can be verified from Table 
III where we have tabulated the execution times (on a 
CDC Cyber 835 computer) for three implementations of 
Char’s algorithm-Char’s implementation where Breadth- 
First Search (BFS) is used to select the initial spanning 
tree, implementation using Heuristic 1, and implementa- 
tion using Heuristic 1 and path compression. 

VI. SUMMARYANDCONCLUSION 

In this paper we have presented a detailed computa- 
tional complexity analysis-both theoretical and experi- 
mental-of Char’s algorithm to enumerate all the spanning 
trees of a graph and have also presented several quantita- 
tive and qualitative properties of the algorithm. 

We have described methods to speed up the algorithm. 
In particular, we have discussed two heuristics to choose 
the initial spanning tree which lead to a minimum number 
of spanning non-tree subgraphs. We have also described a 
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technique called path compression to reduce the number of 
comparisons. Theoretical analysis and experimental results 
presented in this paper establish the superiority of Char’s 
algorithm when implemented using the heuristics and path 
compression. 
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