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ABSTRACT
Bloat is a well known phenomenon that may occur when
evolutionary mechanisms allow for chromosome growth. Re-
cently it has been shown that elitism can inhibit this bloat
by constraining the growth of chromosomes. In this paper
we study more closely the interaction effects between the fit-
ness landscape, growth, and elitism when the fitness search
stagnates. Our results show that in some cases elitism does
not constrain the growth. Our results also show that in some
cases elitism can stall the search completely, and that elitism
does not cause a significant improvement in performance.
We also look at elitism on fitness landscapes with different
fitness slopes. All these results are informative, although
whether elitism is a beneficial way to constrain growth in
certain circumstances remains an open question.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—parameter learn-
ing

General Terms
Algorithms
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1. INTRODUCTION
In many evolutionary methods, variable-length chromo-

some representations are used. In these methods, solutions
to a problem (chromosomes) usually get larger to accommo-
date more information. Two common evolutionary methods
under the growing-chromosome paradigm are Genetic Pro-
gramming (GP) and Neural Evolution (NE). In GP, evolu-
tion finds a program to solve a problem. In certain types of
NE like SANE, ESP [6] and NEAT [7], neural networks are
evolved from smaller to larger networks.
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When growth is allowed in an evolutionary method, we
hope to find sizes for the solutions that allow for the prob-
lem to be solved correctly, yet small enough that the so-
lution is not wasteful. For example, if a NE problem can
be solved with only 20 neural units, yet the evolutionary
process creates a network with 50 units, then, when the net-
work is deployed, it will require far more computations per
input/output combination than are necessary, wasting CPU
cycles and potentially slowing the deployed system. Unfor-
tunately, in many cases we do end up evolving solutions that
are much larger than what we need. In GP this problem is
commonly known as bloat [1].

The difference between bloat and growth is that in bloat
we keep on adding non-functional parts to our solution. In
GP this might look something like if(false)<foo>. This
is non-functional, because whatever is represented here by
<foo> (calculate a value, execute a procedure, etc.) will
never be executed, so this code makes the solution bigger
without affecting the fitness. In NE with growing networks,
bloat could keep on adding new nodes with all input (or
output) connections having 0 weights. These would not
affect the output of the network, yet will make it bigger,
and waste computation cycles. In both GP and NE, more
complex non-functional structures are possible as well. In a
GP calculating a value, for instance, we might have a node
that multiplies the value by a constant and another node
that divides the value by the same constant, resulting in the
original value after both operations have been completed.
Similarly, in NE we could have two neural nodes with offset-
ting weights, resulting in a network that outputs the same
values as an otherwise identical network with both nodes
removed. Theoretically, such structures could exist for an
arbitrary number of nodes for both GP and NE.

Bloat is also detrimental to the search process because
solutions become unnecessarily computationally expensive,
and therefore the amount of computation that is needed to
evaluate solutions as they are being evolved is so great that
the search slows down to unpractical levels. This brings a
dilemma: if growth is constrained, a suitable solution to a
problem might not be found, but if the growth is unbounded
we might evolve inefficient solutions. Many different solu-
tions to the bloat problem have been proposed [3], but lately
it has been shown that elitism can constrain the growth of
solutions in certain GP problems [4]. Elitism seems to be
a natural and simple way to constrain growth. However,
a greater understanding of this phenomenon can help us
to make better decisions as to whether and when elitism



can be used and for what purposes. In this paper we will
show, through a simple demonstration problem, some inter-
actions between elitism, chromosome growth, and the shape
of the fitness landscape when fitness stagnates, that is when
changes in fitness values slow greatly or cease entirely during
some portion of an evolutionary search. In particular, we are
interested in stagnation caused by relatively flat plateaus in
the fitness landscape bounding the upward climb in fitness
while selection prevents large drops in average population
fitness. (New chromosomes may, of course, have reduced
fitness as a result of the destructive potential of crossover
or mutation. However, as these chromosomes are selected
against, the average population fitness will not be greatly re-
duced.) This period of fitness stagnation in an evolutionary
search was specifically chosen because in previous work [4] it
is claimed that stagnation seems to be the time when elites
constrain the growth of chromosomes.

A GP problem in which stagnation would likely be seen
is the artificial ant problem with a trail containing a very
large gap. Assume that there is no time limit. The GP will
likely evolve solutions to find most or all of the food prior
to the gap. As soon as all of that food is accounted for,
the evolutionary process will go into stagnation, not being
able to readily find solutions with greater fitness (a fitness
plateau).

Our results show four main points. First, when fitness
becomes stagnant but chromosomes do not lose any fitness
through crossover, elitism will not constrain the growth of
the chromosomes. Second, when fitness becomes stagnant
but solutions generally lose small amounts of fitness during
crossover, growth will be halted. Also, populations will tend
to converge to a lower average chromosome size, and the
size at which convergence happens will reflect the number
of elites in the population. Third, we will show that elitism
produces no significant effect on the average fitness of the
population. Finally, we show that if there is another possible
increase of fitness after the period of stagnation, even very
small amounts of elitism could cause the search to fail to find
the other section of the landscape. These results will help us
make better judgments when using different parameters in
our experiments, and they create a basis to search for some
of these effects in more standard GP or NE problems.

2. METHODS
For our experiments we used a genetic algorithm (GA)

very similar to the one used by Soule [5]. The GA proceeds
in the following manner.

Initialize:

population = CreatePopulation(population_size)

generation = 1

Repeat:

CalculateFitness(population)

new_population[1..num_elites]

= CloneElites(num_elites,population)

For (counter = num_elites + 1,

counter <= population_size,

counter++){

individual1

= Tournament(tournament_size,population)

if (rand(0..1) < mutation_rate)

Mutate(individual1)

if (rand(0..1) < crossover_rate){

individual2

= Tournament(tournament_size, population)

if (rand(0..1) < mutation_rate)

Mutate(individual2)

child1, child2

= Crossover(individual1, individual2)

new_population[counter] = child1

counter++

new_population[counter] = child2

}

else

new_population[counter] = individual1

}

population = new_population

generation++

Until (generation == max_generations)

The chromosomes are arrays of integers with three pos-
sible allele values: 0, 1, or 4. When the chromosomes are
created for the initial population, we choose a random size
between 10 and 15 uniformly, then with equal probability
we assign one of the alleles to each of the genes in the chro-
mosome. To evaluate a chromosome, the values of all of
the genes in the chromosome are added. Then, the summed
value is put through a fitness function that tells us how fit
that chromosome is. In our experiments we used four dif-
ferent fitness functions: L1–L4. In Figure 1 we can see the
different “landscapes” of these functions. (Note that these
are not fitness landscapes in the traditional sense [8], because
we are plotting summed chromosome values versus fitness,
rather than looking at fitness as it relates to similarities with
respect to chromosomes and operators on them.)

The landscapes are simple, but there is a subtle differ-
ence that should be noticed. The plateau in L1 is at y=100,
while in the rest of the landscapes the plateau is at y=99.
L1 simulates the situation in which the fitness becomes stag-
nant and the chromosomes do not lose fitness at all through
crossover. L2 and L3 simulate fitness stagnation but with a
small loss of fitness when chromosomes cross over (a more
common scenario), but with different fitness slopes. L4 has
the steepest initial slope, and it has another slope after the
period of stagnation.

What allows the growth of the chromosomes is a special
type of crossover called constant crossover [5]. The idea is
to take from each of the parents for exchange a segment
that is largely independent of the size of the parent chromo-
somes. The pseudo-code of the algorithm for segment size
determination is:

starting_point = rand(0..Size(chromosome))

segment_size = 2

while ((rand(0..1) > 0.5)

segment_size = segment_size * 2

segment_size = Min(segment_size,

Size(chromosome) - starting_point)

What this algorithm means is that with 50% probability a
parent will donate a segment of size 2, with 25% probability
a parent will donate a segment of size 4, and so on, given
that the segment selected does not run beyond the end of
the chromosome. After the segments have been chosen for
each of the parents, they are exchanged between parents to
produce two new offspring. Since the segments donated by
each parent may be of different sizes, one of the new offspring
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Figure 1: Fitness landscapes used in the different experiments.

Table 1: GA Parameters
Population Size 500
Initial Chromosome Size random in interval [10–15]
Tournament Selection Size 3
Mutation % 0
Crossover % 90

may become larger while the other becomes smaller. It is
important to note that the elites are never crossed over (they
are copied exactly from one generation to the next), and that
the rest of the population will come 90% from crossover, and
10% from copies of potentially non-elite individuals. We do
not use mutation at all in these experiments.

The rest of the parameters for the experiments are de-
scribed in Table 1.

3. RESULTS
Each experiment was run 30 times, and our experimental

data shows the averages of the 30 trials.
In Figure 2(a), for both elitism cases, we can see two stages

in the results. The first stage shows a rapid growth pat-
tern. Afterward, in stage two, the chromosomes continue to

grow but less rapidly and less consistently. It appears that
the population is slowly drifting toward larger chromosomes.
(By “drift,” we are referring to the slow increase in the av-
erage population size when there is no fitness increase due
to growth. This is distinct from, though similar to, genetic
drift, in which gene frequencies change over time without
being driven by selection pressures.)

In Figure 2(b), we can see a two stage pattern similar to
the one seen in Figure 2(a). The main difference is that
in stage two of Figure 2(b), in which growth stalls, chro-
mosome size actually decreases slightly, then finally stays
relatively constant. It is important to note the gap between
the convergences for the 0 elite experiments and the 100 elite
experiments. Not only is there a gap between the elite and
non-elite cases for each landscape used, but there is a gap
between the two landscapes.

The most important thing to note about Figure 2(c) is
that the use of elitism (in this case elitism of 20% which is
a very high level of elitism) does not produce a very sub-
stantial effect on the performance of the algorithm (perfor-
mance is being measured by how fit the population is at a
given generation). Because the difference appears small, we
tested the performance curves using a randomized ANOVA
method as the test [2]. As we would expect for L2, there
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(a) Average chromosome size for landscape L1 using 0 and
100 elites (E0 and E100, respectively).
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(b) Average chromosome size for landscapes L2 and L3 using
0 and 100 elites.
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(c) Average fitness for landscapes L2 and L3 using 0 and 100
elites.
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(d) Average chromosome size for landscape L4 using 0 and
15 elites (E0 and E15, respectively).

Figure 2: Average population values. Note different vertical and horizontal axes labels and ranges between
subfigures.

is no statistically significant difference (algorithm p-value <
0.15; interaction p-value < 0.30). For L3, even though the
difference is small, it is statistically significant (algorithm
p-value < 0.0001; interaction p-value < 0.02).

In Figure 2(d), we can see a drift pattern for the case with
zero elites. Then, after a few generations of drifting toward
greater sizes, the population goes back to a rapid increase.
The case with 15 elites does not drift substantially, and it
never goes into the rapid increase seen with zero elites.

4. DISCUSSION
The experiments were designed to show particular effects

in the interaction between growth and elitism in several cases
of fitness stagnation. In the first set of experiments, shown
in Figure 2(a), we wanted to show that if the population
does not lose any fitness after fitness stagnates (the fitness
at the end of the slope is equal to the fitness through the
plateau), that elitism would not eliminate a drift in the size
of the chromosomes when the plateau was reached in the
landscape.

This drift is an interesting effect because once the plateau

is reached, there is no fitness difference between larger and
smaller chromosomes. What is important to note is that the
figure shows the average population size. As the plateau is
reached by the bulk of the population, there will still be
some chromosomes on the slope, and some of them will
be on the plateau. Chromosomes still on the slope will
tend to be selected against until all chromosomes are on
the plateau. Moreover, during crossover, chromosomes near
the slope may lose valuable alleles (those with values of 1 or
4) and their offspring may therefore lie on the slope. When
this happens, the offspring of some of the chromosomes on
the plateau but near to the slope will be selected against, in
favor of the offspring of longer chromosomes that are further
from the slope, until no chromosomes in the population are
likely to have offspring on the slope. This may be due to a
kind of resilience in which an increased value of the chromo-
some does not increase its own fitness but does mean that its
offspring are less likely to have reduced fitness. Alternately
or in addition, this may be due to a one-sided version of the
type of resilience seen by Soule [5]. In this type of resilience,
the greater value of the chromosome does not provide the



resilience; it is provided by the greater length of the chro-
mosomes. As a chromosome grows longer, even if its value
remains unchanged, the constant crossover operation will, on
average, remove a smaller portion of the chromosome. For
a longer chromosome to have the same value as a shorter
chromosome, the longer one must contain more 0 alleles or
have fewer 4 alleles and more 1 alleles. In either case, the
crossover is then more likely to remove fewer valuable alle-
les, which increases the chance that the resulting offspring
is on the plateau, rather than on the slope.

This is why we see a drifting effect as longer and higher
value chromosomes come to dominate the population. Once
all of the shorter/lower value chromosomes have been re-
placed, we see a convergence to a certain size, since no off-
spring chromosome has fitness less than that of the plateau.
Also, because there is no fitness incentive for the popula-
tion to be in a particular place, as the population drifts,
the variance of the population’s size gets larger and larger.
This is another factor in favor of the drift, since as variance
increases, those at the bottom end of the range will again
approach the slope and be selected against.

The phenomenon seen in Figure 2(a) is interesting, but
perhaps is not very common. In many problems, when fit-
ness stagnation sets in, small changes in the chromosomes
can cause loss of fitness. This is why in L2 and L3 we set
the plateau at 99 (one unit lower than the end of the slope).
We choose 99 instead of a lower value because we wanted to
show how great the effect of this small change can be. The
only difference between L1 and L2 is this small change in
the plateau, yet in Figure 2(b) we can see that even without
any elites, the drifting effect is not there anymore.

The difference between L2 and L3 is that the slope in L3 is
half as steep as the slope in L2. To better understand what
is going on in Figure 2(b) we will say that L2 is a faster
slope and that L3 is a slower slope. L2 is faster because it
is shorter, so that the population can climb it faster. L3 is
slower because it is longer and to reach the plateau the chro-
mosomes will have to be longer, taking more generations to
reach the end of the slope. The reason why this is impor-
tant is that it will help explain some of the small details in
the graphs. For example, the rate at which the population
decreases in size after stalling is greater in the slower slope
than in the faster slope for the non-elite case. In the elite
case there does not seem to be much of a difference.

Examining fitness variance shows that the increased effect
in the slower slope is caused by the population being more
tightly grouped together (having less variance) as it climbs,
causing more members of the population to find the peak
at the same time. Because of the slower speed of the slope,
fewer chromosomes overshoot the end of the slope (becoming
larger than necessary), so that there are more small chro-
mosomes causing the decrease in size, and convergence to a
smaller size.

In the faster slope, more chromosomes overshoot the end
of the slope, so that quite a few chromosomes have a fit-
ness of 99 instead of 100. This is eventually fixed as some
members of the population find the peak but, as we can
see, the decrease in size back to convergence takes much
longer than it did for the slower slope. Just as the slow
slope causes the population to have lower fitness variance
(making the population tighter), the experiments in the fast
slope showed greater fitness variance causing the slower re-
turn to the smaller size at which the population converged.

The last thing to discuss is the gap between the no elites
case and 100 elites case for both landscapes. We believe that
elitism ends up causing the population to converge to smaller
chromosome sizes because elitism allows for the population
to use outliers. What this means is that if the average of the
population fitness is fairly low on the slope, but there is one
outlier at the end of the slope, with elitism the population
will pass this outlier on to the next generation from then on
so that it can have a greater chance to reproduce and cause
more offspring to be closer to 100. Without elitism these
outliers could be easily lost if there is not enough selection
pressure. In the slow slope this effect can be easily seen since
the experiment with elites finds the end of the slope faster.
This is not so distinguishable in the fast slope, but at the
same time the gap between elites and no elites in the fast
slope is not as large as the one in the slow slope.

Figure 2(c) shows that there is not a large difference in
performance between the cases with and without elites. The
importance of this result is one of judgment. We have seen
that elitism can decrease the size of the chromosomes but
in Figure 2(d) we have a case in which even a small amount
of elitism caused the population to not be able to find the
second slope in the landscape (L4) so that the fitness of the
population could continue to increase. So, if elitism can have
negative effects (in some circumstances), and if elitism does
not offer substantial benefits in performance, is the small
decrease in chromosome size worth the risk of halting the
search?

We believe that similar effects will be seen in more authen-
tic problems and the understanding developed in the present
work regarding the interaction between growth, elitism, and
fitness landscapes will help us to identify salient characteris-
tics of landscapes and make decisions about the parameters
to be used given the landscape.

5. CONCLUSIONS
In conclusion, we have seen how elitism can affect the

size of the chromosomes in the population and under which
conditions. We have also examined the effects of elitism, un-
der different fitness landscape conditions, and we have an-
alyzed the possible benefits and risks of these interactions.
More specifically, we looked at four effects caused by differ-
ent conditions. First, the lack of influence of elitism when
fitness becomes stagnant, but solutions do not lose any fit-
ness through crossover. Second, the halt of the growth and
the convergence to a certain size in the case when fitness
becomes stagnant and solutions lose a small amount of the
fitness during crossover. Third, the small effect that elites
have on fitness. And last, how elitism can interrupt the
search for higher fitness after stagnation. In the end we are
not arguing that growth or elitism are necessarily beneficial
or detrimental, we are simply presenting possible scenarios
that we believe will be commonly seen in authentic evo-
lutionary computation problems (like certain GP problems
and certain types of NE) and will help identify some of the
effects and patterns that might be seen.



6. FUTURE WORK
As has already been mentioned, we would like to look

at more conventional GP or NE problems to see if through
this knowledge we can identify specific characteristics of the
fitness landscape, and ways to improve the performance of
the algorithm.
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