
Using Action Abstraction to Evolve Effective Controllers

Track: Artificial Life, Evolutionary Robotics, Adaptive Behavior, Evolvable Hardware

ABSTRACT
We propose that abstracting the actions of a behavior co-
ordination mechanism promotes the faster development and
higher fitness of an effective controller for complex, compos-
ite tasks. Various techniques are well suited for the devel-
opment of controllers for individual simple tasks. However,
as individual tasks are combined into complex, composite
tasks, many of these techniques quickly become impractical.
By reusing existing behaviors, the focus of development for
a controller can be shifted from low-level control to high-
level coordination of these existing behaviors. As a result,
the development of an effective controller becomes far more
practical. Experiments using a single-agent task in a contin-
uous environment demonstrate that grammatical evolution
is capable of discovering fuzzy rulesets which effectively coor-
dinate existing behaviors in a controller in fewer generations
and with higher fitness than a monolithic controllers.

Keywords
Artificial intelligence, Evolutionary robotics, Fuzzy systems,
Modelling behaviours and ecosystems

1. INTRODUCTION
The development of controllers for intelligent agents given

a simple task is relatively straightforward and even the most
basic techniques are easily capable of developing such con-
trollers. However, as agents are given more than one task,
the development of effective controllers quickly becomes im-
practical. While some complex tasks are composed of a se-
ries of sequential simple tasks, this paper is concerned with
complex tasks that are composed of a collection of simple
tasks that may all be active at the same time and may not
have termination criteria.

The näıve approach to such complex tasks is to combine
the simple, or primitive, tasks into a single complex, or com-
posite, task. A controller is then developed for the entire
composite task, effectively developing a single, monolithic
controller responsible for addressing each primitive task and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO ’09 Montreal, Quebec CA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

β1 β2

B1 Bm

B0

βn

Figure 1: A set of primitive behaviors (denoted βi) are orga-
nized into a hierarchy and adaptively weighted by composite
behaviors (denoted Bm) as described by Tunstel [21] and re-
drawn here. The half-filled circles denote the weights used
to compose behaviors.

the coordination between them. The problem with this
monolithic approach is that development of even the sim-
plest composite task can be impractical since each primi-
tive task added makes the prospect of developing an effec-
tive controller exponentially more difficult. Furthermore,
the controller is highly dependent on the current compos-
ite task and definition of fitness making its reuse limited.
To make the development of controllers for composite tasks
practical, a method for combating the effects of this curse of
dimensionality must be developed. A solution that also pro-
motes the development of higher quality controllers further
improves their practicality.

One approach to mitigating the curse of dimensionality
is to keep the primitive tasks separate and develop a con-
troller for each separately. The individual controllers can
then be combined in such a way as to act as a controller for
the composite task as a whole. In behavior-based robotics,
these individual controllers are known as behaviors and are
responsible for accomplishing primitive tasks [2]. Coordi-
nation of these behaviors can be performed either by using
an explicit coordination mechanism or within the behav-
iors themselves [11]. The option of controlling coordina-
tion within the behaviors themselves can lead to complexity
problems in developing the behaviors, so an explicit coordi-
nation mechanism is often chosen. Since an explicit coordi-
nation is only responsible for effectively coordination each of
the combating behaviors to accomplish the composite task,
it does not need to produce low-level control actions directly.
This change in focus allows for the use of techniques to ad-
dress the curse of dimensionality which are not applicable
to low-level control problems.

Since composite tasks are, by definition, hierarchical in na-
ture, a common approach is to use a hierarchical approach
in developing associated controllers [1, 5, 9, 21]. Since the
use of a hierarchy allows for a change in focus from low-level
control to high-level coordination, abstraction can be used to
simplify the coordination process. By changing the develop-
ment focus from low-level control to high-level coordination,
we are effectively abstracting the actions of the coordination
mechanism. We propose that this abstraction of the action
space will promote the faster development of an overall con-
troller and result in higher overall fitness. Furthermore, we
propose that this action abstraction insulates the controller
from the negative effects of state abstraction and perceptual
aliasing [20]. In this work, we use grammatical evolution
to evolve fuzzy rulesets that are responsible for coordinat-
ing low-level behaviors to accomplish a given composite task
(see Figure 1). Through a series of experiments, we demon-
strate that this change in focus from low-level control to
high-level coordination results in a significant improvement
in the rate at which effective coordination can be evolved
and the fitness of the overall controller when compared to a
monolithic controller.

2. MOTIVATION
In this work, we consider the problem of learning a con-

troller for a set of N simple, or primitive, tasks, where each
task is a Markov decision problem (see [19] for a more in-
depth discussion). All of the primitive tasks may be active
at the same time and may not even have termination crite-
ria. In general, the state space for each task is distinct and
local to that specific task, while all the tasks share the same
action space. For example, if both a CollisionAvoidance
and GoalSeek task are active, only the state space for the
CollisionAvoidance task contains information regarding
potential collisions while only GoalSeek’s state space con-
tains information regarding the goal location. The combi-
nation of these primitive tasks forms a composite task. An
important aspect to this combination is that the primitive
tasks will often interfere with one another, necessitating an
intelligent coordination mechanism.

While each primitive task has a (relatively) small and local
state space, the state space for the composite task represents
the cross product of the state space for each primitive task:
S = S1×S2×. . . SN . When this joint state space is combined
with the low-level action space, the resulting complexity can
make the development of an effective controller impractical.
This exponential increase in the size of the state-action space
is the motivating factor for finding an alternative to the
approach of developing a single, monolithic controller for the
composite task. Without such an alternative, the practical
ability to develop an effective controller for the composite
task is in question.

3. FUZZY BEHAVIOR HIERARCHIES
In behavior-based controllers, command fusion is the act

of combining the contributions of individual behaviors into
a single action [11]. The behaviors are executed in parallel
and their resulting actions are then combined into a sin-
gle action. Since the behaviors frequently have individual
goals that conflict with one another, the controller must ef-
fectively coordinate the behaviors and combine the actions

to be effective. Fuzzy logic1 can be used to simplify this
process through the use of fuzzy inferencing techniques and
has been frequently used with great success [4, 11, 14, 17,
21, 23]. In fuzzy command fusion, each behavior is imple-
mented using a set of fuzzy rules whose output is the desired
action [16]. However, fuzzy command fusion in and of itself
is incapable of fully addressing the complexity of coordinat-
ing many behaviors.

As previously discussed, the use of a hierarchy can reduce
the number of rules for a hierarchy to be a linear function of
the state space as opposed to non-hierarchical approaches in
which the number of fuzzy rules is exponential in the num-
ber of features [13]. An example of a hierarchical approach,
and the one used for these experiments, is a fuzzy behav-
ior hierarchy [21]. Behaviors responsible for accomplishing
simple, primitive tasks are called primitive behaviors (see
Figure 1). Primitive behaviors reside at the lowest level of
the hierarchy and use low-level control actions to accomplish
their task. In general, primitive behaviors are not required
to use the same set of actions, but the primitive behaviors
used in this work do. Individual rules within a primitive
behavior’s ruleset have the following form:

IF x is Ãi THEN u is B̃i (1)

where x and u represent the primitive task state information
and motor command output fuzzy variables, respectively. Ãi
and B̃i represent the fuzzy linguistic values corresponding to
the variables x and u [21]. Examples of fuzzy linguistic val-
ues describing state information are LEFT and CLOSE, while
examples fuzzy linguistic values describing motor commands
are FASTER and SMALL_RIGHT.

High-level, or composite, behaviors reside in the higher
levels of the hierarchy and modulate lower-level behaviors,
which can be either primitive or other composite behaviors,
through weights in order to accomplish a composite task.
A composite behavior determines a lower-level behavior’s
weight, or degree of applicability (DOA), by evaluating the
behavior’s relevance given the agent’s state with respect to
the composite task. For example, the composite behavior for
the CA-GS task could determine that since a collision is not
imminent, the CollisionAvoidance behavior should have
a LOW weight while the GoalSeek behavior should have a
HIGH weight. Individual rules within a composite behavior’s
ruleset have the following form:

IF x is Ãi THEN α is D̃i (2)

where Ãi is defined in Equation 1 and D̃i represents the
fuzzy linguistic values (e.g., LOW, MEDIUM, HIGH, etc.), corre-
sponding to a behavior’s DOA [21].

Once this weighting action is performed, the behaviors for
the lower level tasks are executed. The DOA value for each
primitive behavior is used to weight its output and, there-
fore, allow some primitive behaviors to contribute more to
the current action that other primitive behaviors. The out-
put of the entire behavior hierarchy is calculated as follows:

βH =
]
p∈P

αp · βp (3)

where αp and βp are the DOA and output of a given primi-
tive behavior p, respectively, βH is the output of the entire

1See [6, 7] for a more detailed description on the use of
fuzzy logic in control.

behavior hierarchy, and P is the set of all primitive behav-
iors. The fuzzy output values are then defuzzified using
Center of Sums defuzzification as follows:

u∗ =

R
u∈U u · µβ̃H

(u)R
u∈U µβ̃H

(u)

=

R
u∈U

P
p∈P αp · µβ̃P

(u)R
u∈U

P
p∈P αp · µβ̃P

(u)

(4)

where u is the motor command output fuzzy variable, αp
and βp are the DOA and output of a given primitive behav-
ior p, respectively, βH is the output of the entire behavior
hierarchy, and P is the set of all primitive behaviors. This
is an instance of weight-counting defuzzification [22] and re-
sults in a crisp-valued output used for agent control

Since composite behaviors only weight lower-level behav-
iors using state information, composite behaviors do not re-
quire lower-level behaviors to provide any information to
aid in the weighting process. This is in contrast to other
behavior coordination mechanisms which, for example, may
require low-level behaviors to indicate the utility of a specific
action [12]. The only restriction on the lower-level behav-
iors is that primitive behaviors generate actions that can be
process using fuzzy inferencing.

Since primitive behaviors are the only behaviors respon-
sible for producing control actions, it is possible that com-
posite behaviors may not require the full joint state space in
order to effectively weight lower-level behaviors. Precisely
how much of the joint state space is required, however, is
unknown. For example, it is possible that the direction of
the closest collision is irrelevant when weighting the Colli-
sionAvoidance primitive behavior and only the estimated
time until the collision is important. There are two ways
in which the state space can be reduced. First, state in-
formation that is determined to be irrelevant can simply be
removed from the state space. However, the difficulty is in
determining which information is relevant and which is not.
In the second option, state information is extracted into a
more abstract form. Since primitive tasks are, by definition,
simple and straightforward, the process by which informa-
tion is abstracted can be easily defined and is, therefore, the
method used in this work.

4. THE NAVIGATION PROBLEM
In this work, we first consider the conceptually simple

composite task of navigating an agent towards a goal loca-
tion while avoiding any obstacles in its path. This composite
task, denoted CA-GS, is the combination of the Collision-
Avoidance and GoalSeek primitive tasks (see Figure 2a).
The state information local to the CollisionAvoidance
task consists of the relative direction to the collision and
the estimated time until collision. The state information lo-
cal to the GoalSeek task consists of the relative direction
to the goal location and the estimated time of arrival at the
goal location given only the current speed of the agent. All
state information is normalized and measured relative to the
agent’s position and orientation. This is done to decouple
the learned behavior from the specifics of the environment.

We also consider a more complex composite task in which
a third primitive task is added to the previous two. In
this new primitive task, denoted RunAway, the agent must
avoid approaching “hazardous” objects in the environment
(see Figure 2b). The hazardous objects are not physical ob-

CollisionAvoidance GoalSeek

CA-GS

(a) CA-GS Behavior Hierarchy

CollisionAvoidance GoalSeek RunAway

CA-GS-RA

(b) CA-GS-RA Behavior Hierarchy

Figure 2: In the CA-GS behavior hierarchy, the CA-GS
composite behavior weights the CollisionAvoidance and
GoalSeek primitive behaviors. The CA-GS-RA behavior
hierarchy adds the RunAway primitive behavior.

jects with which the agent can collide, but instead represent
areas that could be dangerous to the agent like high-traffic
areas or areas with difficult terrain. The state information
local to the RunAway task consists of the relative direction
and magnitude of a repulsive“force”which effectively acts to
push the agent away from all the sensed hazardous objects.
The new composite task is denoted CA-GS-RA.

While these tasks are conceptually simple, their execution
is not. The environments in which these tasks are performed
are unbounded and continuous. This is in contrast to the
grid worlds commonly used, but more accurately reflects the
complex tasks which we wish to give agents. Furthermore,
both two and three-dimensional environments are used to
increase the complexity of the state-action space without
modifying the composite task itself. Since fuzzy inferenc-
ing is used for control, the real-valued state information is
discretized using relatively coarse fuzzy linguistic values.

5. EVOLVING FUZZY RULESETS
Tunstel originally used genetic programming to evolve

the fuzzy rules for composite behaviors [21]. However, ex-
ploratory experiments have shown that the creation of in-
valid fuzzy rules can be quite common when using genetic
programming. To avoid wasted computational effort in eval-
uating these invalid fuzzy rules, we use grammatical evo-
lution [10, 15] to evolve the fuzzy rules instead of genetic
programming.

Grammatical uses a variable-length bit-string as a geno-
type, just as genetic algorithms. This bit-string is then used
to generate the phenotype using a grammar. Codons within
the bit-string are used to select replacement symbols from
within the grammar. Replacement stops when only terminal
symbols remain or a maximum number of replacements has
been made. If the end of the bit-string is reached before ei-
ther of these conditions is met, replacement continues using
the codons at the beginning of the bit-string. The result-
ing phenotype has the expressive power of individuals from
genetic programming. However, since a grammar is used to
generate the phenotype, the rules of the grammar can ensure

that the resulting phenotype is valid.

〈rule〉 ::= 〈antecedent〉 〈consequent〉 〈rule〉
| 〈antecedent〉 〈consequent〉 〈rule〉
| 〈antecedent〉 〈consequent〉

〈antecedent〉 ::= 〈antecedent〉 〈antecedent〉
| VERY (〈antecedent〉)
| NOT (〈antecedent〉)
| 〈collision-dir〉
| 〈time-till-collision〉
| 〈goal-dir〉
| 〈goal-arrival-time〉

〈consequent〉 ::= 〈consequent〉 〈consequent〉
| VERY (〈consequent〉)
| 〈relative-steer-speed〉
| 〈steer-dir〉

〈collision-dir〉 ::= collision-dir(BACK LEFT)
| collision-dir(LEFT)
| collision-dir(SMALL LEFT)
| collision-dir(CENTER)
| collision-dir(SMALL RIGHT)
| collision-dir(RIGHT)
| collision-dir(BACK RIGHT)

〈time-till-collision〉 ::= time-till-collision(NOW)
| time-till-collision(REAL SOON)
| time-till-collision(SOON)
| time-till-collision(LONG TIME)
| time-till-collision(DISTANT)

〈goal-dir〉 ::= goal-dir(BACK LEFT)
| goal-dir(LEFT)
| goal-dir(SMALL LEFT)
| goal-dir(CENTER)
| goal-dir(SMALL RIGHT)
| goal-dir(RIGHT)
| goal-dir(BACK RIGHT)

〈goal-arrival-time〉 ::= goal-arrival-time(NOW)
| goal-arrival-time(REAL SOON)
| goal-arrival-time(SOON)
| goal-arrival-time(LONG TIME)
| goal-arrival-time(DISTANT)

〈relative-steer-speed〉 ::= steer-speed(MUCH SLOWER)
| steer-speed(SLOWER)
| steer-speed(SAME)
| steer-speed(FASTER)
| steer-speed(MUCH FASTER)

〈steer-dir〉 ::= steer-dir(LEFT)
| steer-dir(SMALL LEFT)
| steer-dir(CENTER)
| steer-dir(SMALL RIGHT)
| steer-dir(RIGHT)

Figure 3: The grammar used for evolving a monolithic fuzzy
ruleset for the two-dimensional CA-GS composite behavior
is shown. The grammar’s start symbol is 〈rule〉.

Figure 3 shows the grammar used to generate fuzzy rule-
sets for the two-dimensional CA-GS composite behavior.
Replacement starts using the start symbol 〈rule〉. It is de-
signed to not only ensure that at least one rule is generated,
but also bias replacement towards the generation of multiple
rules. Exploratory experiments demonstrated that without
this bias, the generated rulesets had too few rules to pro-
vide effective control2 Since grammatical evolution does not
provide a means of giving weight to specific choices for re-
placement, this bias was manually implemented by specify
multiple replacements which generate additional rules.

The replacement of symbols continues until only termi-
nal symbols remain (i.e, antecedents or consequents), or the
maximum number of rules have been generated. The result-
ing ruleset is guaranteed to be valid and contain complete
antecedents and consequents. This guarantee can provide
significant benefits as the search space is now restricted to
all valid rulesets. Note that the grammar uses linguistic
hedges such as NOT and VERY to allow broad or more specific
rules respectively. The use of these linguistic hedges can
result in fewer rules, and, therefore, a simpler ruleset.

6. EXPERIMENTS
To evaluate the relative performance of fuzzy behavior

hierarchies, fuzzy rulesets for the CA-GS and CA-GS-RA
composite behaviors and a monolithic behavior were evolved.
Since it is possible that composite behaviors in fuzzy behav-
ior hierarchies do not require the full state space for effective
coordination of lower-level behaviors, grammars describing
four different levels of abstraction of the agent’s state space
were used. These were used to evaluate how abstractions af-
fected both the rate at which effective rulesets evolved and
the quality of the evolved rulesets.

Full This state space represents the original, joint state
space of all the primitive tasks without any abstraction
and acts as a baseline for comparison (see Figure 4a).

Large In this state space, state information describing di-
rections, such as SMALL_LEFT or SMALL_RIGHT, are ab-
stracted away into variables which denote the abso-
lute value of the angle, such as SMALL (see Figure 4b).
State information not describing a direction remains
unchanged.

Medium In this state space, state information describing
three-dimensional directions are abstracted away into
a single variable which denotes the absolute value of
the largest angle (see Figure 4c). State information not
describing a direction remains unchanged. Note that
in two-dimensional environments, this state space is
the same as the Large state space.

Small In this state space, state information is abstracted
into a single dynamic priority which is calculated using
all the relevant state information local to each primi-
tive task (see Figure 4d). This dynamic priority rep-
resented the task’s determination of its applicability

2While such a bias is not generally needed in a grammar,
the fact that we are randomly generating rules using the
grammar necessitates the bias. An example would be to
give higher weight to the letter ’e’ when randomly generating
words for the English language since it is the most common
letter.

〈goal-dir-theta〉 ::= goal-dir-theta(BACK LEFT)
| goal-dir-theta(LEFT)
| goal-dir-theta(SMALL LEFT)
| goal-dir-theta(CENTER)
| goal-dir-theta(SMALL RIGHT)
| goal-dir-theta(RIGHT)
| goal-dir-theta(BACK RIGHT)

〈goal-dir-phi〉 ::= goal-dir-phi(DOWN)
| goal-dir-phi(SMALL DOWN)
| goal-dir-phi(CENTER)
| goal-dir-phi(SMALL UP)
| goal-dir-phi(UP)

〈goal-arrival-time〉 ::= goal-arrival-time(NOW)
| goal-arrival-time(REAL SOON)
| goal-arrival-time(SOON)
| goal-arrival-time(LONG TIME)
| goal-arrival-time(DISTANT)

(a) Full grammar

〈goal-dir-theta-abs〉 ::= goal-dir-theta-abs(ZERO)
| goal-dir-theta-abs(SMALL)
| goal-dir-theta-abs(MEDIUM)
| goal-dir-theta-abs(LARGE)

〈goal-dir-phi-abs〉 ::= goal-dir-phi-abs(ZERO)
| goal-dir-phi-abs(SMALL)
| goal-dir-phi-abs(MEDIUM)
| goal-dir-phi-abs(LARGE)

〈goal-arrival-time〉 ::= goal-arrival-time(NOW)
| goal-arrival-time(REAL SOON)
| goal-arrival-time(SOON)
| goal-arrival-time(LONG TIME)
| goal-arrival-time(DISTANT)

(b) Large grammar

〈goal-dir-max-abs〉 ::= goal-dir-max-abs(ZERO)
| goal-dir-max-abs(SMALL)
| goal-dir-max-abs(MEDIUM)
| goal-dir-max-abs(LARGE)

〈goal-arrival-time〉 ::= goal-arrival-time(NOW)
| goal-arrival-time(REAL SOON)
| goal-arrival-time(SOON)
| goal-arrival-time(LONG TIME)
| goal-arrival-time(DISTANT)

(c) Medium grammar

〈goal-seek-priority〉 ::= goal-seek-priority(ZERO)
| goal-seek-priority(LOW)
| goal-seek-priority(MEDIUM)
| goal-seek-priority(HIGH)

(d) Small grammar

Figure 4: Samples of grammars for the three-dimensional GoalSeek primitive task are shown. Each uses a different level of
abstraction of the state space.

to the agent’s current state. For example, using this
state space, the CA-GS-RA composite behavior would
only use dynamic priorities for the primitive behaviors
CollisionAvoidance, GoalSeek, and RunAway to
determine how to weight its sub-behaviors.

Note that these abstractions of the state space are only used
by composite behaviors. Since primitive behaviors are re-
sponsible for producing low-level control actions, they still
require the unabstracted state space relevant to their prim-
itive task since. Furthermore, since monolithic controllers
are also responsible for producing low-level control actions,
they require the unabstracted joint state space of the com-
posite task.

The ECJ [8] library was used to perform evolutionary runs
and was modified to allow for the use of grammatical evolu-
tion. The evolutionary parameters used in the experiments
are shown in Table 1. The fitness functions for both compos-
ite tasks are shown in Table 2. The task-dependent values
used to calculate fitness were capped at maximum values and

normalized before calculations were performed. The reward
function was designed to be intentionally dense to provide
as much fitness information as possible [18].

Environments were randomly generated and contained a
random number of obstacles and “hazardous” objects, when
appropriate. The environments were organized into ten folds
of four environments each for use in cross-validation [3].
Evolved rulesets were evaluated in the training set of en-
vironments to determine the ruleset’s fitness. Solutions that
had the highest fitness on the training set, referred to as the
“Best of Generation”, were also evaluated in the validation
set of environments. The solution with the highest fitness on
the validation set over the entire run, referred to as the“Best
of Run”, was evaluated in the testing set of environments.
This cross-validation was performed to determine the abil-
ity of the evolved rulesets to generalize to environments that
were not encountered during training.

Agents were given a maximum of 1500 time steps in each
environment to reach the goal location. Episodes ended

Table 1: Grammatical evolution parameters

Parameter Value

Population 50

Generations 50

Codon size (bits) 8

Minimum codons 50

Maximum codons 200

Tournament size 7

Crossover type One-point

Crossover probability 100%

Elite cloning probability 0%

Mutation probability per bit 1%

Table 2: Fitness function

Event Value Task

Collision −150
CA-GS

CA-GS-RA

Goal reached +150
CA-GS

CA-GS-RA

Goal distance −0.03×DistGoal
CA-GS

CA-GS-RA

Runaway −0.06× StrRun CA-GS-RA

early when an agent collided with an obstacle or reached the
goal location. Since the environments are randomly gener-
ated, an exact optimal performance value can not be easily
calculated. However, an effective controller should be able
to have a fitness of approximately 140.

7. RESULTS
Figure 5 shows the validation results of evolving fuzzy

rulesets for both the two and three-dimensional CA-GS com-
posite task over 30 runs. In each case, the monolithic rule-
sets were unable to gain any traction in accomplishing the
task, while rulesets for the composite behaviors succeeded
almost immediately. In fact, composite behavior rulesets in
the three-dimensional task were consistently found in the
initial, random population. Despite the significant differ-
ences in state information present in each of the abstracted
state spaces, there was no statistically significant difference
between the mean testing fitness of rulesets using the dif-
ferent abstracted state spaces for either the two or three-
dimensional tasks.

Figure 6 shows the validation results of evolving fuzzy
rulesets for both the two and three-dimensional CA-GS-RA
composite task over 30 runs. In each case, the monolithic
rulesets were again unable to gain any traction in accom-
plishing the task, while rulesets for the composite behav-
iors were far more successful. Composite behavior rulesets
had difficulty generalizing in the two-dimensional CA-GS-
RA task, but not in the three-dimensional case. Further
investigation reveals that a number of the “Best of Run”
rulesets were unable to generalize to the validation set of
environments. The reason for this loss in generalizability

-100

-50

 0

 50

 100

 150

 0 10 20 30 40 50

M
ea

n
 F

itn
es

s

Generation

Training
Validation

Figure 7: The training and validation fitness of “Best of
Generation” fuzzy rulesets for the evolved GoalSeek prim-
itive task fuzzy rulesets in two-dimensional environments are
shown.

as compared to “Best of Run” rulesets from the other tasks
is not known and merits further investigation. As with the
CA-GS composite task, there was no statistically significant
difference between the mean testing fitness of rulesets using
the different abstracted state spaces in both the two and
three-dimensional tasks.

To demonstrate that effective rulesets using low-level con-
trol actions can be evolved for the GoalSeek primitive task,
additional experiments were performed. Figure 7 shows the
“Best of Generation”training and validation results of evolv-
ing fuzzy rulesets for the two-dimensional GoalSeek primi-
tive task over 30 runs. While the fitness curves look erratic,
the mean “Best of Generation” fitness on the training and
validation sets were above 140 and the mean “Best of Run”
fitness on the testing set was 139.

8. DISCUSSION
The success of the rulesets evolved for composite behav-

iors was entirely due to the fact that the rulesets were able
to focus on the high-level coordination of effective primi-
tive behaviors rather than low-level control. Even though
the state-action space of for CA-GS-RA composite behav-
iors was far larger than that of the monolithic behavior, the
evolutionary process quickly found rulesets that provided ef-
fective coordination while monolithic rulesets where unable
to gain any traction on the problem.

An unexpected result was that there was no performance
difference between the different abstractions of the state
space for a given composite behavior. Although our initial
hypothesis that state abstraction would not result in a loss
in fitness held, we did not anticipate that there would be no
difference in the rate at which effective rulesets were evolved.
This discovery further lends credence to our assertion that
the overall improved performance is due to the abstraction
of the action space by focusing on high-level coordination
rather than low-level control.

What is not reflected in Figures 5 and 6 is the computa-
tional effort required to develop the primitive behaviors used
by the composite behaviors. The primitive behaviors used
in these experiments were manually developed and were de-

-100

-50

 0

 50

 100

 150

 0 10 20 30 40 50

M
ea

n
V

al
id

at
io

n
F

itn
es

s

Generation

Monolithic
Full

Large
Small

(a) 2-dimensional CA-GS

-100

-50

 0

 50

 100

 150

 0 10 20 30 40 50

M
ea

n
V

al
id

at
io

n
F

itn
es

s

Generation

Monolithic
Full

Large
Medium

Small

(b) 3-dimensional CA-GS

Figure 5: The fitness of “Best of Generation” fuzzy rulesets in the validation set of environments for the evolved CA-GS
composite task fuzzy rulesets are shown.

-100

-50

 0

 50

 100

 150

 0 10 20 30 40 50

M
ea

n
V

al
id

at
io

n
F

itn
es

s

Generation

Monolithic
Full

Large
Small

(a) 2-dimensional CA-GS-RA

-100

-50

 0

 50

 100

 150

 0 10 20 30 40 50

M
ea

n
V

al
id

at
io

n
F

itn
es

s

Generation

Monolithic
Full

Large
Medium

Small

(b) 3-dimensional CA-GS-RA

Figure 6: The fitness of “Best of Generation” fuzzy rulesets in the validation set of environments for the evolved CA-GS-RA
composite task fuzzy rulesets are shown.

signed to be effective, but not optimal. Since the primitive
tasks associated with these behaviors are relatively simple,
the process of manually creating these rulesets was straight-
forward. However, if manually creating the rulesets is im-
practical, the additional experiments in evolving a ruleset for
the GoalSeek primitive behavior demonstrate that evolu-
tion can easily be applied to find effective rulesets. As a
result, we believe that even when the computational effort
of evolving rulesets from primitive behaviors is included, the
evolution of rulesets for composite behaviors still has a clear
advantage in the amount of computational effort required to
create an effective controller.

While beneficial, there can be problems with using com-
mand fusion for agent control [12]. The most significant
problem with command fusion is that the process of fusing
two opposite actions can result in an action that is inap-
propriate for any primitive task. However, we were unable
to find evidence of any such situations in the experiments
described here. While it is possible that the implementation

of the evaluation environment prevented such problems, we
believe that the process of evolving a ruleset that weights
the primitive behaviors was successful at avoiding such situ-
ations due to the low fitness of the weighting actions which
can result in inappropriate actions.

9. CONCLUSIONS AND FURTHER WORK
The development of controllers for composite tasks is a

difficult process. As composite tasks become more complex,
the development such controllers quickly becomes impracti-
cal. A significant step in improving the practicality of de-
veloping controllers for those complex, composite tasks is
to decompose the task into a collection of simple, primitive
tasks. As a result, development process shifts from one of
low-level control to one of high-level coordination. Our re-
sults demonstrate that this shift in focus promotes higher
fitness and faster of evolution of fuzzy rulesets for the com-
posite tasks used here. The added benefit of this approach
is that existing behaviors can be reused for the development

of various composite tasks. In total, these results show that
the change our shift in focus can make the development of
controllers for complex, composite tasks farm more practi-
cal.

While existing primitive behaviors were able to be ef-
fectively reused by the evolved rulesets, the reused prim-
itive behaviors were developed manually. The next step
in this research is to evaluate and compare the reusability
of rulesets for primitive behaviors developed through evolu-
tion with other approaches, such as manual development or
other machine learning techniques. Furthermore, we would
like to perform additional experiments on more complex,
multi-agent composite tasks. We would also like to compare
the overall fitness of evolved rulesets with those developed
with reinforcement learning. Lastly, the unexplained loss of
generalization for the two-dimensional CA-GS-RA task as
compared to the other tasks requires more investigation.

10. REFERENCES
[1] A. G. Barto and S. Mahadevan. Recent advances in

hierarchical reinforcement learning. Discrete Event
Dynamic Systems, 13(1-2):41–77, 2003.

[2] R. A. Brooks. A robust layered control system for a
mobile robot. IEEE Journal of Robotics and
Automation, 2(1):14–23, March 1986.

[3] P. R. Cohen. Empirical Methods for Artificial
Intelligence. MIT Press, Cambridge, MA, USA, 1995.

[4] F. Hoffmann. Fuzzy behavior coordination for robot
learning from demonstration. In International
Conference of the North American Fuzzy Information
Processing Society, pages 157–162, Banff, Canada,
2004.

[5] M. Humphrys. Action selection methods using
reinforcement learning. In From Animals to Animats
4: Proceedings of the Fourth International Conference
on Simulation of Adaptive Behavior, pages 135–144.
MIT Press, Bradford Books, 1996.

[6] C. C. Lee. Fuzzy logic in control systems: Fuzzy logic
controller. I. IEEE Transactions on Systems, Man and
Cybernetics, 20(2):404–418, March 1990.

[7] C. C. Lee. Fuzzy logic in control systems: Fuzzy logic
controller. II. IEEE Transactions on Systems, Man
and Cybernetics, 20(2):419–435, March 1990.

[8] S. Luke. ECJ 15: A Java evolutionary computation
library. http://cs.gmu.edu/∼eclab/projects/ecj/, 2006.

[9] M. Nicolescu and M. J. Matarić. A hierarchical
architecture for behavior-based robots. In
International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 227–233, Bologna,
Italy, July 2002. ACM Press.

[10] M. O’Neill and C. Ryan. Grammatical Evolution:
Evolutionary Automatic Programming in an Arbitrary
Language. Kluwer Academic Publishers, Norwell, MA,
USA, 2003.

[11] P. Pirjanian. Behavior coordination mechanisms –
state-of-the-art. Technical Report IRIS-99-375,
Institute for Robotics and Intelligent Systems,
University of Southern California, October 1999.

[12] P. Pirjanian and M. J. Matarić. Multiple objective vs.
fuzzy behavior coordination. In Fuzzy Logic
Techniques for Autonomous Vehicle Navigation,
volume 61 of Studies in Fuzziness and Soft Computing,
chapter 10, pages 235–253. Springer-Phisica Verlag,
2001.

[13] G. Raju, J. Zhou, and R. A. Kisner. Hierarchical fuzzy
control. International Journal of Control,
54(5):1201–1216, November 1991.

[14] N. Ramos, P. U. Lima, and J. M. Sousa. Robot
behavior coordination based on fuzzy decision-making.
In ROBOTICA 2006 - 6th Portuguese Robotics
Festival, Guimarares, Portugal, 2006.

[15] C. Ryan, J. J. Collins, and M. O Neill. Grammatical
evolution: Evolving programs for an arbitrary
language. In W. Banzhaf, R. Poli, M. Schoenauer, and
T. C. Fogarty, editors, First European Workshop on
Genetic Programming, volume 1391, pages 83–95,
Paris, 1998. Springer-Verlag.

[16] A. Saffiotti. The uses of fuzzy logic in autonomous
robot navigation. Soft Computing, 1(4):180–197, 1997.

[17] A. Saffiotti and Z. Wasik. Using hierarchical fuzzy
behaviors in the robocup domain. In D. M. C. Zhou
and D. Ruan, editors, Autonomous Robotic Systems,
pages 235–262. Springer-Verlag, Berlin, DE, 2003.

[18] W. D. Smart and L. P. Kaelbling. Effective
reinforcement learning for mobile robots. In
International Conference on Robotics and Automation,
volume 4, pages 3404–3410. IEEE, 2002.

[19] N. Sprague and D. H. Ballard. Multiple-goal
reinforcement learning with modular sarsa(0). In
International Joint Conference on Artificial
Intelligence, pages 1445–1447, 2003.

[20] S. Steven D. Whitehead. Reinforcement Learning for
the Adaptive Control of Perception and Action. PhD
thesis, University of Rochester, 1992.

[21] E. Tunstel. Fuzzy-behavior synthesis, coordination,
and evolution in an adaptive behavior hierarchy. In
Fuzzy Logic Techniques for Autonomous Vehicle
Navigation, volume 61 of Studies in Fuzziness and Soft
Computing, chapter 9, pages 205–234.
Springer-Phisica Verlag, 2001.

[22] E. Tunstel, M. A. A. de Oliveira, and S. Berman.
Fuzzy behavior hierarchies for multi-robot control.
International Journal on Intelligent Systems,
17(5):449–470, 2002.

[23] P. Vadakkepat, O. C. Miin, X. Peng, and T. H. Lee.
Fuzzy behavior-based control of mobile robots. IEEE
Transactions on Fuzzy Systems, 12(4):559–565, 2004.

