
Cross-layer speculative architecture for end systems and gateways
in computer networks with lossy links

Haowei Bai • David J. Lilja •

Mohammed Atiquzzaman

Published online: 20 October 2009

� Springer Science+Business Media, LLC 2009

Abstract The throughput degradation of Transport Con-

trol Protocol (TCP)/Internet Protocol (IP) networks over

lossy links due to the coexistence of congestion losses and

link corruption losses is very similar to the degradation of

processor performance (i.e., cycle per instruction) due to

control hazards in computer design. First, two types of loss

events in networks with lossy links are analogous to two

possibilities of a branching result in computers (taken vs.

not taken). Secondly, both problems result in performance

degradations in their applications, i.e., penalties (in clock

cycles) in a processor, and throughput degradation (in bits

per second) in a TCP/IP network. This has motivated us to

apply speculative techniques (i.e., speculating on the out-

come of branch predictions), used to overcome control

dependencies in a processor, for throughput improvements

when lossy links are involved in TCP/IP connections. The

objective of this paper is to propose a cross-layer network

architecture to improve the network throughput over lossy

links. The system consists of protocol-level speculation

based algorithms at transport layer, and protocol enhance-

ments at middleware and network layers that provide con-

trol and performance parameters to transport layer

functions. Simulation results show that, compared with

prior research, our proposed system is effective in

improving network throughput over lossy links, capable of

handling incorrect speculations, fair for other competing

flows, backward compatible with legacy networks, and

relatively easy to implement.

Keywords Network architecture � Transport control

protocol (TCP) � wireless networks � Speculative execution

1 Introduction

Networks with lossy links, such as RF wireless networks,

have a number of characteristics inherently different from

wireline networks, for which the TCP/IP protocol suite was

originally designed. Notable among them is the transmis-

sion error measured by bit error rate (BER). Few errors per

packet may be corrected by lower layer encoding schemes.

However, more errors may result in packet drops. Dropped

packets will not be handed up to applications; therefore it is

the responsibility of transport layer protocols to handle the

recovery of dropped packets. The original TCP protocol

uses packet losses as indications of network congestion.

However, in a network with lossy links (include RF wire-

less links, IR wireless links, satellite links, and even copper

and fiber links exposed to high-dose rate radiations), packet

losses due to link errors are not related to network con-

gestions. Unfortunately, the current TCP treats these losses

as congestion losses, and in turn reduces the transmission

speed. This issue is currently the subject of much debate

and research in the networking community, and has led to

the development of enhancements.

There have been many algorithms proposed to improve

network throughput over lossy links such as RF wireless

H. Bai (&)

Space Applications, Honeywell Aerospace, 19019 N. 59th Ave.,

Glendale, AZ 85308, USA

e-mail: haowei.bai@honeywell.com

D. J. Lilja

Electrical and Computer Engineering, University of Minnesota,

200 Union St. S.E., Minneapolis, MN 55455, USA

e-mail: lilja@umn.edu

M. Atiquzzaman

School of Computer Science, University of Oklahoma,

200 Felgar St., Norman, OK 73019-6151, USA

e-mail: atiq@ou.edu

123

Wireless Netw (2010) 16:1621–1638

DOI 10.1007/s11276-009-0218-6

links. Our previous work [1] gives a more detailed review.

Among all algorithms we surveyed, a group of algorithms

makes the congestion window behave differently in the

presence of congestion losses and corruption losses (due to

link errors and hand-offs) by distinguishing the two types

of losses. TCP-Decoupling [2] sends TCP data packets and

header packets in independent streams. Congestion control

is only applied to the header-packet stream. TCP-Peach [3]

sends dummy packets to probe the type of losses. WTCP

[4] measures the inter-packet interval time to differentiate.

LEA [5] uses ender’s receiving of either an acknowl-

edgement packet, or an ICMP (Internet Control Message

Protocol), or both to differentiate. ELN [6] explicitly sets

the ELN bit in packet header whenever a non-congestion

loss is detected.

Despite much efforts in the past several years, none of

the proposed enhancements, ranging from algorithms at the

link layer, and middleware layer, to algorithms across

multiple layers, have provided compelling evidence that

they are suitable for mass deployment. Any new net-

working protocols should meet certain basic requirements.

Designing a network protocol satisfying a set of design

requirements has been difficult to achieve. A set of good

criteria to measure the proposed algorithms has yet to be

agreed by the networking community. Consequently, this

still remains as an open issue.

The objective of this paper is to investigate the feasibility

of, and furthermore, evaluate the performance of, applying

speculative parallelization to the design of network protocol

architecture that improves network throughput over lossy

links. To achieve this goal, we first will establish a number

of basic requirements that a new algorithm for this purpose

should possess. We then blueprint a system architecture

integrating protocol enhancements at middleware, trans-

port, and network layers, which can meet all these

requirements. With this road map in mind, we will describe

the function and principle of each functional block, and

present performance evaluation results.

The systematic design methodology described in this

paper, i.e., design and validate against clearly established

requirements, orchestrates the overall research work, which

has made the following contributions:

• A cross-layer system is developed to improve the

network throughput over lossy links. This system

consists of protocol enhancements at middleware,

transport, and network layers. Enhancements at the

middleware layer provide control and management

functions, and enhancements at the network layer

provide performance parameters to protocol-level spec-

ulative parallelization algorithms at the transport layer.

We have analyzed the feasibility of this system and

found that it is effective in improving network

throughput over lossy links, capable of handling

incorrect speculations, fair for other competing flows,

backward compatible with legacy networks, and rela-

tively easy to implement.

• We propose a protocol-level speculation algorithm to

improve the network throughput over lossy links. This

transport layer algorithm consists of a conditional

Bernoulli predictor used to predict the type of a loss

event, and a speculative congestion control algorithm

used to appropriately adjust the window size for the

predicted loss events. Our simulation evaluation results

have shown that the conditional Bernoulli predictor

needs less memory space but produces higher predic-

tion accuracy than other previous network predictors.

The proposed speculative congestion control algorithm

outperforms several previous TCP improvement algo-

rithms as well as the baseline TCP-Reno.

• To maximize the speculation accuracy, we develop

mathematical models to minimize congestion losses at

ECN-capable random early drop (RED) gateways, by

optimally dimensioning the maximum buffer size and

the maximum threshold at the network layer for ECN-

capable RED gateways. This is critical to the function

of conditional Bernoulli predictor at the transport layer.

Speculative techniques are used to maximize the

instruction-level parallelism for modern processor

design, at the price of additional hardware required to

handle incorrect speculations. However, in the problem

we aim at, a speculation result is either congestion loss

or link corruption loss. If we knew the speculation was

incorrect, i.e., we knew which type of loss it was, the

problem of the coexistence of two types of losses would

not need to be formulated. Therefore, our focus is to

improve the speculation accuracy, without adding too

much complexity. Simulation-based verification results

have shown that our mathematical models can effec-

tively adjust RED gateway parameters so that conges-

tion losses can be minimized. Most significantly, the

buffer size inside a RED gateway dimensioned by our

models are much smaller than previously suggested

values. This means that, without other contributions in

this paper, the modeling task itself has significant

contribution to the network performance improvement.

Based on the previously published versions [7, 8], in this

paper, we focus on how we approached this problem using

a systematic methodology, i.e., from thought process to

system requirements, to system architecture design, then to

system performance validation. In addition, we describe

the overall cross-layer software architecture, resolve the

bounding conditions for our congestion loss minimization

mathematical model, introduce the core of SpecTCP—

Conditional Bernoulli Predictor and perform an extensive

1622 Wireless Netw (2010) 16:1621–1638

123

performance evaluation of it. The rest of this paper is

organized as follows. In Sect. 2, we explain why and how

we apply speculation parallelization to network protocol

design. The proposed system architecture is presented in

Sect. 3. The proposed protocol-level speculation algorithm

is described in Sect. 4. In order to improve the speculation

accuracy, we describe our mathematical models used to

minimize congestion losses in Sect. 5. System performance

evaluation results are presented and analyzed in Sect. 6.

Finally concluding remarks are given in Sect. 7.

2 Thought process: from speculative parallelization

to network protocol design

In this section, we describe our thought process, which

leads to the main idea of this paper.

One of the major contributions to modern processor

design is the use of pipelining architecture to overlap the

execution of instructions, thereby improving the perfor-

mance. Accordingly, all techniques used to increase the

amount of instructions per clock cycle at this level are called

instruction-level parallelism (ILP) techniques. Determining

how one instruction depends on others is essential to ILP.

One type of dependency related to branches is called control

dependency. The control dependency cannot be removed,

i.e., an instruction control-dependent on a branch cannot be

moved to a place before the branch instruction. This poses

the limitation on the flexibility of dynamic scheduling and/or

branch delaying. Such limitations result in control stalls (one

to several clock cycles) waiting for branch result(s) so that

instruction stream can be resumed. Branch prediction was

proposed to predict the branch results before the execution

of branch instructions is completed, and execute instructions

as if predictions were correct. This reduces control stalls at

the price of incorrect predictions [9, 10]. The simplest

branch prediction is a branch prediction buffer or branch

history table that contains a bit indicating whether the recent

branch result was taken or not, based on which, future branch

results are predicted so that a continuous instruction stream

is provided to the processor.

TCP was originally designed for wireline networks,

where packet losses are mostly caused by network con-

gestions. The current TCP algorithm uses either retrans-

mission timer timing out, or receipts of three duplicated

acknowledgements (ACKs) sent by receivers, to implicitly

indicate loss events. However, wireless links are charac-

terized by high error rates (see [11] for a tutorial on errors

in wireless networks). In most cases, packet losses due to

corruption are more significant than congestion losses

when a wireless link is involved in a TCP connection. In

such a case, TCP may not be able to transmit or receive at

the full available bandwidth, because the TCP algorithm

will be unnecessarily wasting time in slow-start or con-

gestion avoidance procedures triggered by link errors [12].

Consequently, the current congestion control algorithms in

TCP result in very poor performance over wireless links. It

is expected that a modification could be made so that the

TCP congestion control algorithm is able to differentiate,

and furthermore behave appropriately in the presence of

congestion and corruption losses. Significant performance

improvements can be achieved if losses due to network

congestion and corruption in lossy wireless links could be

appropriately differentiated [13].

The similarity between the degradation of processor

performance due to control hazards in computer design, and

the degradation of network throughput due to the coexis-

tence of two types of losses in network protocol design is

summarized in Table 1. First, two types of loss events in

networks with lossy links are analogous to two possibilities

of a branching result in computers (taken vs. not taken).

Secondly, both problems result in performance degradations

in their applications, i.e., penalties (in clock cycles) in a

processor, and throughput degradation (in bits per second) in

a TCP/IP network. This has motivated us to apply specula-

tive techniques (i.e., speculating on the outcome of branch

predictions), used to overcome control dependencies in a

processor, for throughput improvements when lossy links

are involved in TCP/IP connections. If we could eliminate

the waste of bandwidth responding to link errors, using

speculative techniques as computer architects would do to

eliminate the waste of time waiting for branching results, we

would significantly improve the network throughput.

In order to improve the TCP throughput over lossy links,

we propose to use a conditional Bernoulli predictor (See

Sect. 4) to predict the type of loss event, i.e., congestion

loss or link corruption loss, and make TCP congestion

window to behave accordingly. This is similar to specu-

lation techniques that computer architecture community

has used to eliminate the potential clock-cycle penalties

caused by branch hazards. However, unlike the speculation

techniques used in processor design, if the speculations are

incorrect, there are no ways to ‘‘undo’’ or ‘‘flush’’ execu-

tion results in the case of TCP congestion control. This is

because execution results of instructions in a processor are

values of pre-designed calculations, while execution results

of the TCP congestion control algorithm are changes

(increments or decrements) of the TCP sending speed.

An alternative approach to minimizing the impact of

incorrect speculations is to improve the accuracy of the

speculation. We propose to improve the speculation accu-

racy by minimizing the probability of congestion losses.

This is done by optimally dimensioning the buffer of

Explicit Congestion Notification (ECN) capable Random

Early Detection (RED) gateways in the network. ECN [14]

has been proposed by the Internet Engineering Task Force

Wireless Netw (2010) 16:1621–1638 1623

123

(IETF) to explicitly inform TCP senders of congestion at

gateways, without requiring them to wait for either a

retransmission timer timeout or three duplicate ACKs.

ECN has been recommended to be used in conjunction

with RED [15, 16].

If a RED buffer is optimally dimensioned with the

thresholds appropriately set, the probability of congestion

losses can be minimized by appropriately adjusting the

sender’s congestion window size based on feedback from

ECN signals. Some preliminary work in minimizing packet

losses at gateways have been reported in the literature [7,

17, 18]. The first study by Liu et.al. [17], instead of using a

linear drop function and two thresholds as in RED, used

only one threshold to mark packets; a packet is marked as

congestion experienced (CE) with the probability of one if

the average queue level exceeds the threshold. The study

therefore, does not apply to gateways using RED. The

second study by Kunniyur et al. [18] did not study the

effect of maximum threshold on packet drops at a RED

gateway. Bai et.al. reported their results of a detailed

investigation on this issue in their recent paper [7].

3 The proposed system architecture

Having described our motivations and the thought process,

in this section, we present a system architecture that

implements the idea we described previously. The discus-

sions in this section are focused on the system level. More

detailed description, analysis, and evaluation of each

individual functional component of the system will be

presented in the rest of this paper.

3.1 Design challenges and considerations

Our goal is to develop a system with protocol enhance-

ments and/or additions to the existing TCP/IP protocol

suite, to improve the network performance, in particular,

the throughput, for networks with lossy links. A lossy link

is defined as a communication link with high (e.g.,[10-5)

bit error rate. This includes RF wireless links, IR wireless

links, satellite links, and even copper and fiber links

exposed to high-dose rate radiation events. The wide def-

inition is intended to target at many applications involving

TCP/IP networks. However, in this paper, we will use RF

wireless links (including RF satellite links) as an example

to discuss and evaluate our algorithms. We do not intend to

solve other significant issues for wireless networks such as

handoff due to mobility, unless mobility can cause link

errors (in most cases, it does). Given the background

information and our intended approach, the following

general requirements shall be considered for the system

design.

3.1.1 Effectiveness

The system shall be able to effectively improve the net-

work throughput over lossy links. The major issue caused

by lossy links is that the existing TCP congestion control

algorithm incorrectly interprets packet losses due to link

errors as congestion losses, and correspondingly decreases

the sender’s congestion window size (i.e., transmission

speed). This degrades the network throughput, and fur-

thermore degrades the goodput. In order to effectively

improve the network throughput over lossy links, algo-

rithms are to be developed to either differentiate two types

of losses, or quickly recover from congestion window size

reductions.

3.1.2 Ability to handle incorrect speculations

Schemes shall be developed to handle incorrect specula-

tions. Alternatively, speculation accuracy shall be guaran-

teed (if without schemes to detect incorrect speculations).

Table 1 Similar issues exist in both processor design and TCP protocol design

Processor design Network protocol design

CTP (critical to performance) Execution time Effective throughput

Problem Control hazards degrade processor performance Coexistence of two types of losses degrade TCP

performance in wireless networks

What degrades performance Two possible branching results Two possible types of losses

Why degrades performance Wasting time waiting for branching results Wasting bandwidth responding to link corruption

losses

A solution Speculations (execute instructions as if branch

predictions were always right)

Speculations (apply TCP congestion control as if all

losses were due to link corruption)

Key behind speculation Out-of-order execution; in-order commitment Out-of-order loss differentiation; in-order packet

retransmission

What if speculation was wrong Undo or flush previous execution results Improve speculation accuracy by minimizing

congestion losses

1624 Wireless Netw (2010) 16:1621–1638

123

3.1.3 Fairness

The system shall be designed to be fair with competing

flows. The window size based TCP congestion control was

introduced to solve the fairness issue for each connecting

flow. Whenever an enhancement is proposed, it should not

break this law. This means end users equipped with new

algorithms should contend for bottleneck bandwidth with

other users who may or may not have enhancements in a

fair way. To measure whether or not we meet this goal, a

scientific metric should be defined (e.g., fairness index).

3.1.4 Backward compatibility

The new system shall be backward compatible with

existing legacy networks, so that it will be easy to inte-

grate such a new system with legacy networks. Since TCP

protocol is an end-to-end performance regulation, theo-

retically all end users’ TCP software should be modified

to take the advantage of protocol enhancements. However

this would not be practical in the real world. In the case

of allowing system updates with protocol enhancements,

serious consideration should be given to the system

design, so that the users with enhancements would be able

to perform with the users with legacy protocols and

perform fairly.

3.1.5 Implementation complexity

The system shall be easy to implement. Changes of and/or

additions of protocols should be minimized. This decides

the implementation complexity and in turn the overall

costs. The general rule is we should leverage existing

protocols and use existing networking devices as much as

possible, and should avoid significant changes to the

overall network system architecture.

3.2 System functional blocks and the operation process

With all the considerations in mind, we developed a cross-

layer protocol-speculation based system architecture to

address the challenges. The system functional blocks are

shown in Fig. 1. The system consists of protocol

enhancements at three layers: middleware, transport, and

network, among which, enhancements at the middleware

layer and the network layer provide control functions and

supporting parameters to transport layer functions. At the

transport layer, we added a speculation function called

conditional Bernoulli predictor (see Sect. 4 for details)

providing inputs to a speculation based loss recovery and

congestion window adjustment algorithms (called SpecTCP).

The conditional Bernoulli predictor runs in parallel to the

existing loss detection and loss treatment algorithms, both

Network Backbone Node j
Losses

Congestion Control
Algorithm Manager

SpecTCP Conditional
Bernoulli Loss Predictor

Legacy TCP
(e.g., TCP-Reno)

Distributed Object
Management (e.g.,
CORBA)

Network Layer

Legacy Assumption
on Losses

Loss Detection
(Retran Timer, 3 DUP ACKs)

Congestion Control
and Loss Recovery

“MUX”

Condition Engine by
Minimizing Congestion
Losses at RED Router

ECN Algorithm

1

3

3

3’

4

2

1. Loss detected, request
Congestion control
algorithm manager for
command.

2. Congestion control
algorithm manager
chooses appropriate

treatment (3 or 3’),loss
using global
knowledge of ECN
compatibility.

3. The selected loss
treatment algorithm
generates appropriate
congestion window
control and recovery
commands.

4. Congestion control
and loss recovery
algorithms are
executed.

iNode i

Fig. 1 The system-level operation process

Wireless Netw (2010) 16:1621–1638 1625

123

of which are selectively controlled by the congestion

control algorithm manager at middleware layer.

At the network layer, we added a condition engine

providing required information for the conditional Ber-

noulli predictor. The condition engine consists of mathe-

matical models at ECN-capable RED gateways, producing

networking parameters to maximize the prediction accu-

racy for the conditional Bernoulli predictor at the transport

layer. The mathematical models define ECN queueing

behaviors at RED gateways, and minimize the congestion

losses at RED gateways. The ECN algorithm is mainly

implemented at the network layer, but it provides early

congestion indications to the speculative congestion con-

trol algorithm we added at the transport layer.

At the middleware layer, a simple software called con-

gestion control algorithm manager is created to select and

control the execution of congestion control schemes at the

transport layer. Based on the global knowledge of a net-

work, the manager makes and executes the decision whe-

ther the end system should run the legacy congestion

control algorithm or the newer speculative congestion

control algorithm.

Such end systems and gateways with cross-layer

enhancements, if implemented in a network environment,

operates collaboratively in a way illustrated in Fig. 1. The

general order of software execution is illustrated by arabic

numbers in the figure. Loss events are detected by either

retransmission timer timing out or three duplicated

acknowledgements at the transport layer. Once a loss event

is detected, the congestion control algorithm manager at

the middleware layer will be informed and requested for

commands. Using the global knowledge of the network,

such as whether or not the receiver is ECN compatible, the

congestion control algorithm manager will issue com-

mands about which loss treatment algorithm should be

executed. If the receiver and other nodes along the way to

receiver are ECN capable, then the speculative algorithm is

applied. Otherwise the legacy algorithm is executed.

Finally, the congestion window size is appropriately

adjusted and lost packets are retransmitted.

3.3 Discussions on the system design

The proposed system architecture is effective in improving

network throughput over lossy links. The proposed system

is able to issue correct commands to the congestion control

algorithm for different types of loss events. By specula-

tions, the message sender does not have to waste time and

bandwidth (congestion window size backoff) waiting for

implicit network information about the losses. It solves the

problem that the current TCP incorrectly interprets link

corruption losses as network congestion losses. Therefore,

it improves the network throughput effectively.

The proposed system is able to handle the issue of

incorrect speculations. At the network layer, by minimizing

network congestion losses, the speculation accuracy is

maximized. In addition, for the small possibility of incor-

rect speculation, ECN algorithm is used to provide early

explicit congestion signals. Therefore, when the specula-

tion algorithm itself tends to incorrectly speculate a con-

gestion loss (the fact) as a link corruption loss (the

speculation result), the actual network congestion will be

informed and handled by ECN algorithm.

The proposed system does not starve other competing

flows. Under the normal working condition, no matter

which congestion control algorithm is applied, all users are

controlled by congestion window evolutions which was

designed to reduce unfairness. The unfairness is highly

likely to happen during failure modes of the system. For

example, if the system incorrectly speculated a congestion

loss as a link corruption loss, and ECN packets used to

indicate congestions were lost, the system would not

decrease the sender’s congestion window size (but it

should), which would result in starvation of other com-

peting legacy TCP flows. To improve the ECN’s reliability,

ECN packets are transmitted continuously until the sender

acknowledges that ECN packets are received.

The new system is backward compatible with legacy

networks. The congestion control algorithm manager at the

middleware layer functions as a software bridge to ensure

that end users with the new system can communicate with

users with legacy networks. This is achieved by the ability

of switching between the legacy congestion control algo-

rithm and the propose speculative algorithm, based on the

global ECN compatibility information obtained through

middleware layer.

In order to implement such as system, the only new soft-

ware is the congestion control algorithm manager at the

middleware layer. However, given the function of this soft-

ware, it should be fairly easy to implement and deploy. In

addition, protocol modifications are needed at the transport

layer by adding the speculation algorithm and interfaces with

middleware and network layers. Some of these interfaces are

there already, e.g., the interface between transport layer and

network layer for ECN algorithm. At the network layer,

almost nothing needs to be changed, except that the control

parameters for ECN-capable RED gateways should be set

using values suggested by our mathematical models for

congestion loss minimization. This is a network management

task, and may be implemented in the management software.

4 Protocol-level speculations

Motivated by the similar issues and solutions in processor

design, in this section, we describe how we apply

1626 Wireless Netw (2010) 16:1621–1638

123

speculative techniques to the protocol design in details. We

first describe conditional Bernoulli predictor, used to predict

the type of loss events. The prediction function is imple-

mented at the transport layer, but needs control and inputs

from functions at middleware and network layers. We then

present how we use prediction results for SpecTCP.

4.1 Conditional Bernoulli predictor

In this section, we describe the conditional Bernoulli pre-

dictor in detail, and introduce some existing network pre-

dictors. We will compare the performance of conditional

Bernoulli predictor with them in Sect. 6.

4.1.1 Conditional Bernoulli predictor architecture

Most of hardware prediction algorithms used by computer

architects are designed by a pure statistical state-machine-

based approach. This means the transition from current

prediction result to the next is controlled by a state machine

where each state has probabilities of staying at the same

state and transition to other states. These probabilities are

calculated by a certain statistical distribution function

which considers the most recent prediction result, i.e.,

taken or not taken. If the statistical distribution function

used to calculate the probabilities of transitioning into next

states is Bernoulli distribution, then the overall state-

machine-based prediction algorithm would be Bernoulli

prediction. Unlike the 2-bit predictors for processor design,

in a network, it is difficult and complex to obtain and track

the history information about whether or not the recent

prediction result is taken. This has driven our design from a

pure statistical state-machine-based prediction algorithm to

a conditional probability prediction algorithm, in which we

implement an condition engine at the network layer to feed

the conditions needed by the prediction algorithm. We call

it conditional Bernoulli predictor.

Figure 2 shows the conceptual architecture of a condi-

tional Bernoulli predictor. The condition engine at the

network layer uses our congestion loss minimization

models (see Sect. 5 for details) at RED gateways to min-

imize network congestion losses. The output of condition

engine is that congestion loss events are minimized.

Based on the accuracy of this result, the predictor at the

transport layer produces prediction results by setting the

Bernoulli probability p for predicting link corruption los-

ses, and accordingly the probability of predicting conges-

tion losses is 1 - p. If the condition engine is optimized,

i.e., congestion losses are minimized, the prediction engine

at the transport layer sets p = 1, which means predicting

all incoming loss events as link corruption losses. We

intentionally minimize the congestion losses (see Sect. 5)

to make the system implementation simple and effective.

The congestion control manager at the middleware layer

is responsible for enabling or disabling the conditional

Bernoulli predictor. For network backward compatibility

issues, i.e., some network components may not be ECN

capable, the control manager may choose to disable the

prediction function and switch back to the legacy conges-

tion control algorithms. This function is especially useful

for integrating new networking equipments with the

existing network infrastructure.

In summary, the conditional Bernoulli predictor lever-

ages the design concept of 2-bit hardware predictor for

processor design. However, its probability of staying at the

same state, as well as the probability of transition, are

controlled and pre-determined by the condition engine at

the network layer. In addition, the overall architecture is

implemented in software across three network layers.

4.1.2 Qualitative comparison with other network

predictors in the literature

The purpose of reviewing other existing predictors in this

section is to give an introduction to some previous work,

with which we can compare the performance of the con-

ditional Bernoulli predictor. There are many hardware

predictors proposed for computer architecture. For the

reason mentioned in Sect. 4.1, it is technically inefficient to

implement most advanced computer predictors (more

complex than a 2-bit predictor) in a wireless networking

environment.

However, it is reasonable to compare the proposed

conditional Bernoulli predictor with existing prediction

algorithms designed for networks, as well as its design

basis, 2-bit hardware predictor for computers. Before we

show the detailed performance comparison results in Sect.

6, we would like to briefly describe some of predictions

algorithms designed for networks in the literature. Authors

in [19, 20] proposed four types of predictors used to

1 0 Prediction results

Congestion Control
Algorithm Manager

EN (Enable)

Condition Engine by
Minimizing Congestion
Losses at RED Router

ECN Algorithm

Prediction
Decision

Network

TCP

Middleware

Fig. 2 The conceptual architecture of a conditional Bernoulli

predictor

Wireless Netw (2010) 16:1621–1638 1627

123

improve the network throughput over wireless links. They

include one predictor at the receiver and three types of

predictors at the sender. We qualitatively compare our

conditional Bernoulli predictor with the four types pre-

dictors proposed in [19, 20], and the qualitative comparison

results are presented in Table 2.

4.2 SpecTCP algorithm

As the Bernoulli probability is set to p = 1, a SpecTCP

sender treats retransmission timer timing out and/or three

duplicate acknowledgements as indications of link errors.

In this case, the SpecTCP source does not decrease cwnd,

even though the speculation correctness is unknown. This

speculation is based on the condition that no ECN_ECHO

packets are received (i.e., potentially no congestion losses).

Therefore, in order to improve the speculation accuracy, a

scheme is required to minimize losses due to network

congestion. We will discuss it in Sect. 5. If incorrect

speculation was made, i.e., the SpecTCP sender receives

the ECN_ECHO packet sent by the receiver, the sender

treats it as network congestion and triggers the Fast

Recovery algorithm [21] as in the current TCP.

In SpecTCP, the congestion window size is appropri-

ately controlled in the presence of either network conges-

tion or corruption in the following way. Congestion

window is halved using Fast Recovery algorithm when

there is network congestion (explicitly notified by

ECN_ECHO packets), and persists at the previous value in

the presence of corruption. There are two mechanisms that

might be applied to adjust congestion window when

SpecTCP sender detects corruption: (1) keep cwnd

unchanged as the previous value; (2) use Congestion

Avoidance algorithm to slowly increase cwnd. In our

algorithm, we adopt the first mechanism: make congestion

window persist in the previous value.

ECN mechanism will be most effective if it is used with

active queue management (such as RED) [21]. In active

queue management, when a buffer reaches a certain

threshold, the gateway will send a CE packet to the TCP

receiver. Gateways send CE packets before their buffers

overflow. Therefore, packet drops due to congestion hap-

pen only after the gateway has sent CE packets.

Upon receiving the CE packet, the TCP receiver will

keep sending ECN_ECHO packet back to the sender until

it receives a CWR packet from the sender, which means the

sender has responded to network congestion. The sender

only responds to the first ECN_ECHO packet and ignores

others up to one RTT.

Depending on the threshold of RED and the level of

network congestion, ECN_ECHO packets can arrive at the

sender either before or after the retransmit timer times out

due to congestion packet losses (caused by buffer over-

flow). Our proposed SpecTCP is effective in both cases as

described below.

• Case 1: Timer times out after ECN_ECHO packets are

received by the sender.

In this case, the sender will respond to congestion as

indicated by the receipt of ECN_ECHO packets. This case

is desirable.

• Case 2: Timer times out before ECN_ECHO packets

received by the sender.

In this case, the retransmit timer timeout happens at time

t1, and ECN_ECHO packets are received by the sender at

time t2 (t1\ t2). If the difference between t1 and t2 is small

enough, though the TCP sender does not respond to packet

losses indicated by retransmit timer timeout at t1,

ECN_ECHO packets will arrive very quickly, which will

trigger Fast Recovery mechanism to relieve the network

out of congestion.

Table 2 Qualitative comparison of conditional Bernoulli predictor with Vegas-sender, NTG-sender, NDG-sender, and predictor-receiver

Conditional Bernoulli

predictor

Vegas-sender NTG-sender NDG-sender Predictor-receiver

Where to implement Sender Sender Sender Sender Receiver

Min. no. of history to

track

None 1 2 2 3

Other net. perf.

parameters required

None RTT, cong. window size RTT, cong.

window size

RTT,

cong.window

size

Packet inter-arrival time

Help from other

layers?

Yes (need cong. loss

control at net. layer)

No No No No

Complexity Medium (cross layer) High (req. compu. of multi.

network parameters)

High High Low (only need to monitor

inter-arrival time)

Compatible w/legacy

TCP/IP?

Req. RED router Yes Yes Yes Yes

1628 Wireless Netw (2010) 16:1621–1638

123

The difference between t1 and t2 can be decreased by

decreasing t2 as described below. As mentioned above,

using active queue management such as RED, when buffer

reaches threshold, it will send the CE packet to receiver.

Upon receiving the CE packet, the receiver starts to send

ECN_ECHO packets to the sender. Though it is difficult to

control the travel time of ECN_ECHO packets from the

receiver to the sender, we can make the receiver send

ECN_ECHO packets earlier by letting the gateway send the

CE packet earlier. The earlier ECN_ECHO packets are sent,

the earlier they arrive at the sender, i.e., the smaller the

value of t2 is. The time when the gateway sends the CE

packet is decided by the value of threshold. Therefore, an

optimum value of RED’s threshold is very important for the

sender to receive congestion notification quickly. Optimal

RED threshold is one of our current research topics.

5 Improving speculation accuracy: minimizing

congestion losses

In this section, we develop a model to analyze the per-

formance of ECN mechanism in RED gateways, and fur-

thermore, we derive the expressions for the maximum

buffer size and the maximum threshold of a RED gateway

to minimize congestion packet losses. The minimization of

congestion losses significantly improves the accuracy of

speculating that loss events are due to link corruptions (see

Fig. 6 for our results). This indicates that the condition

engine within conditional Bernoulli predictor is optimized.

Therefore, it is reasonable to set p = 1, i.e., to predict all

incoming loss events are caused by link errors.

ECN-capable RED gateways use an exponential

weighted moving average to calculate an average queue

size from the instantaneous queue size, and two thresholds

(minimum and maximum), to determine whether an arriving

packet should be dropped. If the average queue size is

greater than the maximum threshold, the packet is dropped.

If the average queue size is between the minimum and the

maximum thresholds, the packet is marked with a proba-

bility as a Congestion Experienced (CE) packet.

Packet losses due to the average queue size exceeding

the maximum threshold at a RED gateway degrade TCP

performance. The objective of this section is to determine if

packet losses at a gateway can be minimized by optimally

dimensioning the buffer and selecting the two RED

thresholds.

5.1 Notations

We consider a model consisting of two RED gateways fed

by multiple sources. The link connecting two RED gate-

ways is the bottleneck link which causes congestion. The

sources, destinations and the RED gateways use ECN for

end-to-end congestion control. The following notations

will be used in our model:

• Q(t), Q(t)max: Instantaneous and maximum instanta-

neous queue sizes respectively at the RED gateway at

time t.

• Q , Qmax : Average and maximum average queue sizes

respectively at the RED gateway.

• x: Weighting factor for calculating Q .

• p(t): Marking probability at the RED gateway at time t.

• minth, maxth: Minimum and maximum thresholds

respectively of a RED gateway.

• m: total number of TCP flows.

• Wi(t): Window size of the ith TCP flow at time t, t C 0,

i = 1, ..., m.

• SSthreshi: Slow Start threshold for the ith TCP flow,

i = 1, ..., m.

• ri: Round Trip Time (RTT) for the ith TCP flow,

i = 1, ..., m. ri is replaced by r when all the RTTs are

same.

• li : Average share of bottleneck link bandwidth of the

ith TCP flow, i = 1, ..., m.

• l: Bandwidth of bottleneck link which is given by l ¼
Pm

i¼1 li .

• T[1]: Waiting time for the first marking event after the

average queue size exceeds minth.

• bi: Number of window size increases during time T[1]

for the ith TCP flow, i = 1, ..., m.

• si: Propagation delay from source i to the RED

gateway, i = 1, ..., m.

• t0: Time when the first packet is marked at the RED

gateway.

• t1: Time when the last packet, which was sent just

before the first window size reduction, arrives at the

RED gateway.

For every packet arrival, the RED gateway estimates Q

using the following exponential weighted moving average

algorithm

Q �ð1� xÞQþ QðtÞx; ð1Þ

and then calculates the packet marking/dropping

probability p(t) using

pðtÞ ¼
0; 0�Q\minth;

Q�minth

maxth�minth

maxp; minth�Q�maxth;

1; Q [maxth:

8
><

>:
ð2Þ

5.2 Assumptions

We make the following assumptions regarding RED gate-

ways and TCP sources in our analytical model for mini-

mizing packet losses in Sects. 5.3 and 5.4.

Wireless Netw (2010) 16:1621–1638 1629

123

• For small x (as suggested in [15]), Q varies very

slowly, so that consecutive packets are likely to

experience the same marking probability [22].

• The random packet marking of packets in flow i is

described by a Poisson process (non-homogeneous)

with time varying rate ki(t) = p(t)Wi(t)/ri(t) [23].

Accordingly, the waiting time (Ti[n]) for the n - th

marking event of flow i, which is given by

Ti[n] =
P

k=1
n Xi(k), is a Gamma distributed random

variable. Xi(k) is the time interval between (k - 1) and

kth marking events for flow i. Specifically, the expected

value of the waiting time for the first marking event is

E[Ti[1]] = 1/ki(t).

• All TCP sources start sending at the same time, and all

packet are of the same size (as used in [17]). The queue

size is measured in packets.

5.3 Maximum buffer size

Packet drops at an ECN-capable RED gateway are either

due to buffer overflows (Q(t) is equal to the buffer size) or

Q [maxth . In this section, we estimate the buffer size

required for minimizing packet losses.

After a TCP session is initiated, the congestion window

size during the slow start phase increases very quickly. The

average queue size (being the output of a low pass filter) of

a RED gateway can not follow the quick change of Q(t); as

a result Q stays less than minth. Therefore, before any loss

events, Q(t) reaches the maximum value if congestion

window size reaches slow start threshold, i.e., Wi(t - si)

= SSthreshi for i = 1, 2..., m, when the packet leaving the

source at t - si reaches the RED buffer. Right after this

time point, the queue size is smaller when the sources are

in congestion avoidance [17]. For m TCP flows, Q(t)max

can be expressed as the output of a system with processing

capacity of
Pm

i¼1 rili and the maximum input rate when

sources reach their slow start threshold.

QðtÞmax ¼
Xm

i¼1

ðWiðt � siÞ � riliÞ ¼
Xm

i¼1

ðSSthi � riliÞ:

ð3Þ

Q(t)max, as given by the above equation, is therefore, the

buffer size required to minimize packet loss at the RED

gateway.

5.4 maxth for RED gateways

Authors in [15] have recommended maxth = 3 9 minth. In

this section, we setup a model to estimate maxth for min-

imizing losses at the RED buffer. We start with the rec-

ommended RED parameter values, and end with values

suggested by our model.

When the average queue size is in the steady-state

condition (during which the sources are in the congestion

avoidance phase), the instantaneous queue size at time t0 is

Qðt0Þ ¼ minth þ
Xm

i¼1

bi; ð4Þ

where bi can be calculated as

bi ¼
E T 1½ �½ �

ri
¼ 1

kiðtÞri
¼ 1

pðtÞWiðtÞ
; i ¼ 1; . . .;m: ð5Þ

Since the difference between t0 and t1 is one RTT, and

the window size of a source is increased by one per RTT

during the congestion avoidance phase, the instantaneous

queue size at time t1 can be expressed as

Qðt1Þ ¼ minth þ
Xm

i¼1

ðbi þ 1Þ: ð6Þ

The average queue size is estimated using an

exponential weighted moving average as shown in (1). If

time is discretized into time slots with each slot being equal

to one RTT, the RED’s average queue size estimation

algorithm at the kth slot can be expressed as

Q½k þ 1� ¼ ð1� xÞQ½k� þ Q½k�x: ð7Þ

In practice, x is very small, and the congestion window

size increases by one every RTT during the congestion

avoidance phase. Therefore, before the first marking event

happens (i.e., no congestion control) it is reasonable to

consider both the instantaneous queue size and the

average queue size to be constant within a very short

time period (see the first assumption in Sect. 5.2). Thus,

by plugging Q(t1) (slot k is equal to t1 in time) into (7)

and assuming that the average queue sizes during the two

previous consecutive time slots are the same, the average

queue size estimated at time t1 can be solved iteratively,

which is

Qmax ¼ Q ¼ minth þ
Xm

i¼1

ðbi þ xÞ: ð8Þ

The first marking event is followed by many random

ECN marking events, which make TCP sources adjust their

congestion window sizes. The average queue size stays at a

certain level smaller than the average queue size at time t1,

as will be shown by our simulation results in Sect. 6 later.

Therefore, (8) gives the maximum average queue size for

minimizing packet losses, i.e. this is our suggested value

of maxth.

5.5 Calculating the average share of bottleneck link

Equation (8) suggests the maximum threshold for a RED

gateway to minimize congestion losses. However, the

1630 Wireless Netw (2010) 16:1621–1638

123

parameter m, the total number of TCP flows, needs to be

bounded. Otherwise, Qmax is not the maximum value.

Assuming a is an integer, then m should satisfy the

following inequality during a pre-defined time period. The

number of connections is not predictable in an indefinite

time span, nor of our interests.

1�m� a; ð9Þ

where a is calculated by (10):

a ¼ BWbn

li

: ð10Þ

The BWbn is the bandwidth of bottleneck link in the

network; and the li is the average share of the bottleneck

link bandwidth of the ith flow. In (10), BWbn is known

when a network is set up. In this section, we focus on the

calculation of the average share of bottleneck link li , and

in turn, we will get the bounded value for m.

We consider a model consisting of a bottleneck link fed

by i TCP-Reno sources. Figure 3 shows the window evo-

lution approximation for TCP-Reno sessions with different

round trip delays sharing a bottleneck link with a RED

gateway. The loss events are represented by ’9’ marks.

This approximation has been used by many researchers

[24, 25] for the analytic understanding of the RED per-

formance. Based on Fig. 3, we use the following additional

notations in our modeling:

wi,j(t) = The jth TCP session’s window size right before

the previous loss event.

wi?1,j(t) = The jth TCP session’s window size right

before the current loss event.

wjavg
ðtÞ = The time-average window size for the jth TCP

session.

ri,j = Round Trip Time (RTT) of the jth TCP session.

li = Average share of the bottleneck link bandwidth.

Li = The time when ith congestion loss event happens.

Consider the scenario in Fig. 3; Xi = Li - Li-1 denotes

the inter-loss duration. The window evolution could be

expressed by the following equation.

wiþ1;jðtÞ ¼
wi;jðtÞ

2
þ Xi

ri;j
: ð11Þ

Since loss events are determined by both the traffic type

and the random marking at RED gateway, it is reasonable

to consider {Xi} as an Independent Identical Distributed

(i.i.d.) renewal process. If we assume in any length of time

interval, the number of loss event is Poisson distributed,

then the total number of loss events in the interval (0, t) is a

Poisson process, denoted by N(t). Therefore, the loss time

interval Xi is an i.i.d. exponential random variable with a

rate parameter k. Within a pre-defined time period, a

Poisson process can be either treated as homogeneous (e.g.,

network accesses during a time period do not vary with

time) thus k is a constant. If it cannot be treated as

homogeneous, the integral of time-varying k within a time

period is a constant. Its probability density function (pdf) is

fXi
ðtÞ ¼ ke�ktuðtÞ: ð12Þ

In addition, the waiting time T[n] = Rk=1
n Xk for a loss event

is a gamma distributed random variable with parameters

(n, k). Its pdf can be found as

fTðtÞ ¼
ke�ktðktÞn�1

CðnÞ uðtÞ; ð13Þ

which is, in the other form,

fTðtÞ ¼
kne�kttn�1

ðn� 1Þ! uðtÞ: ð14Þ

Based on the mathematical nature of the window

evolution we analyzed above, we finally calculate the

average share of bottleneck link bandwidth, which has been

defined as

li ¼
wjavg
ðtÞ

ri;j
: ð15Þ

Taking the expectation for both sides of (11), we have

wiþ1;jðtÞ ¼
wi;jðtÞ

2
þ Xi

ri;j
: ð16Þ

Since any two loss events have the same statistical

characteristics, it is apparent that wi?1,j(t) and wi,j(t) have

the same expected value. Thus,

wjðtÞ ¼ 2
Xi

ri;j
: ð17Þ

Recall that the loss time duration is a renewal process and

the total number of loss events during any length of time

interval is a Poisson process, from (12), we should have

Xi ¼ E½Xi� ¼
1

k
: ð18Þ

Therefore,

Window
size

Time

X1 X2 X3

W1,1
W1,2

W2,1

W3,1

W2,2

Fig. 3 The window evolution approximation with two TCP-Reno

flows

Wireless Netw (2010) 16:1621–1638 1631

123

wjðtÞ ¼
2

kri;j
: ð19Þ

Because Poisson process is ergodic in mean, using the

property of ergodicity, we have

wjavg
ðtÞ ¼ wjðtÞ ¼

2

kri;j
: ð20Þ

Finally, the average share of the bottleneck link bandwidth

is

li ¼
wjavg
ðtÞ

ri;j
¼ 2

kr2
i;j

: ð21Þ

Remarkably, the above result implies that the

connection with the shortest RTT has the largest average

share, which is also found by authors in [17, 26]. Equation

(21) shows that li is a function of the measurable and

configurable ri,j (given k is a constant for Poisson process).

Therefore, a in (9) is found and m is bounded.

6 Performance evaluations

In this section, we present system performance evaluation

results using simulations. We implement the congestion

control algorithm manager at the middleware layer, the

conditional Bernoulli predictor and the SpecTCP at the

transport layer, the congestion loss minimization models

(i.e., optimizations used to improve the speculation accu-

racy) at the network layer, and the required software

interfaces. In the following sections, we will first present

our simulation configurations and evaluation results for the

congestions minimization models (i.e., speculation accu-

racy models). We then describe simulation configurations

and evaluation results in a network with competing flows

for the overall system. Evaluation results are presented in

two steps: first, we compare the performance of our pro-

posed scheme with the baseline network, i.e., the legacy

TCP/IP network with TCP-Reno; secondly, we compare

our proposed scheme with Snoop [27] and TCPW [28].

6.1 Evaluating speculation accuracy improvement

models

We have evaluated the models (see Sect. 5) using ns-2. We

used three configurations as described below.

6.1.1 Verification of the maximum buffer size

To verify the maximum buffer size suggested by our model

in Sect. 5.3, we have run simulations for three different

cases with different values of r and SSthresh as shown in

Table 3. We have measured Q(t)max, and the results are

compared with Q(t)max predicted by our analytical models.

It is seen that values from simulation and analytical models

are close, thereby validating the maximum buffer size

suggested by our analytical model.

6.1.2 Verification of maxth

The RED parameters shown in Table 3 are used to verify

the correctness of the value of maxth suggested by our

model in Sect. 4. Case 1 uses recommended RED param-

eters. To make the different cases comparable, we choose

RTT of all TCP connections to be the same (59 ms). As

shown by the results, Qmax (which we have suggested in (8)

as the value to be used for maxth) obtained from our ana-

lytical model agrees with the one obtained from simulation.

6.1.3 Verification of the optimality

The third simulation shown in Table 3 is used to verify the

optimality of our estimated maxth. Case 1 in Table 3 uses

recommended RED parameters. It works perfectly to

control the TCP congestion without unnecessary packet

drops. However, case 2 in Table 3 uses our proposed

maxth, which is much smaller than the recommended value.

The simulation result shows it achieves the same conges-

tion control effects as the recommended value does. In

addition, one of the benefits of using our estimated value of

maxth is that the queuing delay and buffer size can be

Table 3 Comparison between simulations and analytical models

Sim. cases SSth1 SSth2 r = r1 = r2 (ms) l
(Mbps)

Q(t)max

Anlyt Sim

Verification of maximum buffer size (packets)

Case 1 15 15 59 1.5 19 18

Case 2 15 20 59 1.5 24 23

Case 3 15 15 99 1.5 12 13

Sim. cases x minth

(Pkts)

maxth

(Pkts)

maxp Qmax (Pkts)

Anlyt Sim

Verification of maximum threshold (packets)

Case 1 0.002 5 15 0.1 7 8

Case 2 0.002 5 15 0.2 7 7

Case 3 0.002 7 21 0.1 10 10

Sim. cases x minth

(Pkts)

maxth

(Pkts)

maxp Pkt drops

(Y/N)

Verification of optimality using packet drops

Case 1 0.002 5 15 0.1 No

Case 2 0.002 5 8 0.1 No

Case 3 0.002 5 7 0.1 Yes

1632 Wireless Netw (2010) 16:1621–1638

123

significantly reduced (though it is not shown by simulation

here). Case 3 is used to verify the validity of our proposed

model. The value of maxth is reduced from 8 estimated

using our proposed model to 7. The result of this reduction

is that the objective of no packet drops can never be

achieved.

6.2 Transport layer performance against the baseline

TCP-Reno

In this section, we present our simulation comparison of the

proposed scheme (see Sect. 3) with the baseline scheme,

i.e., the legacy TCP/IP network with TCP-Reno. We first

evaluate goodput by comparing it with TCP-Reno with

ECN capability. We then present the frequency of mis-

predictions and the congestion loss rate for the proposed

system in different BER settings. We have used ns-2. The

ECN implementation is based on RFC 2481 [21].

Two local area networks (10 Mbps) are connected by a

64 Kbps lossy link with a propagation delay of 280 ms.

RED gateways are used in our simulations to set the CE bit

in the packet header. The full-duplex link between gateway

A and gateway B has a BER between 1e-7 and 1.2e-4 in

our simulations. The receiver’s advertised window size,

which is also equal to the initial ssthresh at the sender, is

set to 30 segments.

6.2.1 Congestion window evolutions

In this evaluation, we created multiple packet losses due to

corruption at time 57 s, and network congestion losses at

19, 22, 34 and 50 s.

Comparing window evolutions in Fig. 4, we find that,

when the proposed system is used, the congestion window

persists in the previous value as expected in the presence of

packet losses due to link errors. The Fast Recovery

mechanism is triggered in the presence of network con-

gestion (notified by ECN_ECHO packets). However, when

the current TCP (with ECN capability) is used in the

simulation, the timeout caused by packet losses triggers the

Slow-Start mechanism that results in the reduction of

congestion window to the initial value. The reason is that

the current TCP (though it is ECN capable in our simula-

tion) makes the assumption that all losses are caused by

congestion. Thus, when there is packet loss, no matter

whether it is caused by congestion or corruption, the cur-

rent TCP with ECN capability triggers TCP’s congestion

control mechanism. Since the proposed system predicts the

causes of packet errors (predication accuracy is guaranteed

at network layer), and network congestion is explicitly

notified by ECN_ECHO packets; TCP’s congestion control

mechanism is not triggered when packets are lost due to

link errors.

6.2.2 Goodput

Goodput (the amount of useful information, in bit, being

received by the receiver per second, not including errors)

obtained from simulation experiments for both SpecTCP

and TCP-Reno with ECN capability are compared.

Figure 5 compares the goodput in bit/s and the nor-

malized throughput of both SpecTCP and TCP-Reno with

ECN capability. At the BER of 5e-5, the goodput of our

SpecTCP is almost 5 times higher than that of TCP-Reno

with ECN. From Fig. 5, this improvement is much higher

at higher BER. In addition, the throughput of TCP-Reno

cwnd
cwnd

cwnd

time0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

14.0000

16.0000

18.0000

20.0000

22.0000

24.0000

26.0000

28.0000

30.0000

32.0000

34.0000

36.0000

38.0000

0.0000 20.0000 40.0000 60.0000 80.0000

cwnd
cwnd

cwnd

time
2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

14.0000

16.0000

18.0000

20.0000

22.0000

24.0000

26.0000

28.0000

30.0000

32.0000

34.0000

36.0000

38.0000

0.0000 20.0000 40.0000 60.0000 80.0000

Fig. 4 Comparison of congestion window for TCP-Reno with ECN

(up) and SpecTCP (down)

Wireless Netw (2010) 16:1621–1638 1633

123

with ECN suffers more severely than our SpecTCP as the

error rate increases. We can also see that, with the increase

of BER, the throughput of TCP-Reno with ECN decreases

much faster than our SpecTCP. For example, according to

Fig. 5, when BER increases from 1e-5 to 5e-5, TCP-

Reno’s goodput decreases by 77% in contrast to our

SpecTCP whose goodput only decreases by 12%. This is

because, at higher BER, congestion window reductions for

TCP-Reno is so frequent that congestion window size

cannot reach a high value.

6.2.3 Misprediction rate

The proposed system (configured by the conditional Ber-

noulli predictor) speculates that losses are due to link

errors. Though we have shown the effectiveness of our

model to improve the speculation accuracy, there must be

mispredictions in reality. Misprediction rate is defined as

the frequency when the proposed system mispredicts a

congestion loss as a loss due to link errors. The simulation

results are shown in Fig. 6. Misprediction rates are a little

higher at smaller BER values (i.e., 1e-7 and 1e-6), but they

still reflect similar performances as those speculation

algorithms used by computer architects [9].

6.2.4 Congestion loss rate

One of the benefits that ECN brings into networks is a

network with ECN scheme has less congestions losses. Part

of Fig. 9 (due to limited space, we do not show a separate

plot) shows that our proposed scheme has much lower

congestion loss rate for all BER settings, comparing with

the legacy TCP-Reno with ECN capability. This indicates

that our congestion loss minimization models are effective

in reducing network congestion losses. Furthermore, the

congestion loss minimization effort itself in this paper is

significant and useful.

It is observed that, when BER is small, the congestion

loss rates for both schemes are low. In a wired network

with ECN capability, end users are pre-notified of future

network congestion events, thus adjusting TCP window

size (i.e., user sending speed) accordingly to prevent severe

network congestions. Similar results are observed when

BER is large. These BER values are even larger than

typical BER values for a RF wireless network. In this case,

frequent link errors significantly disrupt the normal net-

work transmissions. Therefore, end users’ TCP congestion

window sizes can hardly increase to the level causing

network congestions.

6.2.5 Fairness in a network with competing legacy

TCP flows

The impact of a SpecTCP connection on other TCP con-

nections, especially, other legacy TCP (e.g, TCP-Reno)

connections is evaluated. The purpose is to ensure the

proposed scheme does not steal bandwidth from other

legacy TCP flows, or in the worse case, starve other flows.

The definition of fairness, and how to measure it, differs

from case to case. However, most of researchers use the

definition that Jain defined in [29]. It is shown in (22),

where xi is the throughput for the ith user.

0

10000

20000

30000

40000

50000

60000

70000

1.00E-07 1.00E-06 1.00E-05 5.00E-05 1.00E-04 1.20E-04

BER

G
o

o
d

p
u

t
(b

it
/s

)
Spec TCP
TCP Reno

0

0.2

0.4

0.6

0.8

1

1.2

1.00E-07 1.00E-06 1.00E-05 5.00E-05 1.00E-04 1.20E-04

BER

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t

Spec TCP
TCP Reno

Fig. 5 Comparison of goodput (bit/s) (up) and normalized through-

put (down)

16.70%

25%

3.80%
1.80%

0% 0%
0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

1.00E-07 1.00E-06 1.00E-05 5.00E-05 1.00E-04 1.20E-04

BER

F
re

q
u

en
cy

 o
f

M
is

p
re

d
ic

ti
o

n
s

Fig. 6 Misprediction rate of the conditional Bernoulli predictor in

various BER settings

1634 Wireless Netw (2010) 16:1621–1638

123

Fairness index ¼

Pn

i¼1

xi

� �2

n
Pn

i¼1

x2
i

: ð22Þ

Following this definition, we measured the fairness

index between the proposed system and the legacy TCP-

Reno with ECN capability. Figure 7 shows evaluation

results. As seen in Fig. 7, when BER is small, SpecTCP

flows performs fairly with TCP-Reno with ECN. When

BER is large, SpecTCP performs more aggressive (with

minimized congestion loss control at RED gateways) than

TCP-Reno with ECN. It is little unfair to Reno but

reasonable and acceptable.

6.3 Performance comparisons with related work

In this section, we first compare the performance of our

proposed conditional Bernoulli predictor (see Sect. 4) with

other network predictors in the literature. We then com-

pared the performance of SpecTCP with a number of pre-

vious work. They include TCP with ECN, Snoop, and

TCPW (TCP-Westwood). Identical simulations are setup

for all these schemes, and results are presented below.

6.3.1 Performance comparison for the conditional

Bernoulli predictor

Hardware branch predictor is an approach that computer

architects use to improve instruction-level parallelism.

There have been many branch prediction algorithm pro-

posed to improve prediction accuracy with low overhead

and hardware implementation complexity. Branch predic-

tion by these algorithms is based on the information whe-

ther or not the recent prediction is taken. In networks where

we try to predict whether or not a loss is due to congestion

or link corruption, it is not cost-effective to obtain such

information. We therefore compare the performance of our

predictor with those (see Sect. 4 for details) proposed for

similar purpose in network environments.

In addition to the qualitative comparison we performed

in Sect. 4, in this section, we measure the misprediction

rates for all of them. Figure 8 shows the proposed condi-

tional Bernoulli predictor has the best performance. In

addition, it shows the proposed conditional Bernoulli pre-

dictor has the similar performance to a 4096-entry 2-bit

predictor widely used in computer processor design. The

concept of 2-bit predictor forms the conceptual basis of our

proposed conditional Bernoulli predictor for network pro-

tocol design.

6.3.2 Performance comparison for the network

Identical simulations are configured for all TCP improve-

ment schemes. Figure 9 compares the congestion loss rate

(the ratio of congestion losses to the total number of

transmitted packets) among SpecTCP, TCP with ECN,

Snoop, and TCPW. SpecTCP has the smallest congestion

loss rate. This is due to the deployment of ECN based

congestion control and our congestion loss minimization

model (used to guarantee speculation accuracy).

Figure 10 compares the normalized Goodput (Goodput

in bps divided by the total number of transmitted packets)

among four TCP improvement algorithms. As shown in

Fig. 10, SpecTCP outperforms other three algorithms. In

addition, we observed that, when BER is small, the pro-

posed SpecTCP has similar goodput to TCP-Reno with

ECN capability. From Fig. 9, at the same BER values, the

congestion loss rates for both scenarios are also very low.

Because they both have similar low BER (link errors) and

congestion loss rate (errors due to congestions), both sce-

narios should have high goodput. For Snoop and TCPW,

since they do not minimize congestion losses, they get

smaller goodput.

7 Conclusions and future work

We have developed a cross-layer speculative system

architecture to improve throughput for computer networks

over lossy links. The proposed system consists of protocol

enhancements at middleware, transport, and network lay-

ers, among which, enhancements at the middleware layer

and the network layer provide control functions and per-

formance parameters to transport layer functions. Once a

loss event is detected, the congestion control algorithm

manager at the middleware layer is informed and requested

for commands. Using the global knowledge of the network,

such as whether or not the receiver is ECN compatible, the

congestion control algorithm manager will issue com-

mands about which loss treatment algorithm should be

executed.

0

0.2

0.4

0.6

0.8

1

1.2

1.00E-07 1.00E-06 1.00E-05 5.00E-05 1.00E-04 1.20E-04

BERT
h

ro
u

g
h

p
u

t
F

ai
rn

es
s

In
d

ex

Fig. 7 Fairness in a network with TCP-Reno competing flows

Wireless Netw (2010) 16:1621–1638 1635

123

We have proposed speculation algorithms at the trans-

port layer, consisting of a conditional Bernoulli predictor

used to predict the type of a loss event, and a speculative

congestion control algorithm SpecTCP used to adjust the

window size for the predicted losses.

To maximize the speculation accuracy, we have devel-

oped and evaluated mathematical models to minimize

congestion losses at ECN-capable RED gateways. This has

been critical to the function of conditional Bernoulli pre-

dictor at the transport layer. Simulation-based verification

25.00%

0%

7.90%

55%

35%

44%

32%

22%

28%
30%

21%

26%
22%

5%

12%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Max Min Mean

F
re

q
u

en
cy

 o
f

M
is

p
re

d
ic

ti
o

n
s

Conditional Bernoulli Predictor Vegas-sender

NTG-sender NDG-sender

Predictor-receiver

25 .00%

0%

7.90%

18%

1%

8%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

Max Min Mean

F
re

q
u

en
cy

 o
f

M
is

p
re

d
ic

ti
o

n
s

Predictor in SpecTCP

4096-entry 2-bit prediction buffer in a computer

Fig. 8 Comparison with other network predictors (up), and a 4,096-entry 2-bit predictor for computer (down)

0.000%

0.200%

0.400%

0.600%

0.800%

1.000%

1.200%

1.400%

1.00E-07 1.00E-06 1.00E-05 5.00E-05 1.00E-04

BER

C
o

n
g

es
ti

o
n

 L
o

ss
 R

at
e SpecTCP

TCP-ECN

Snoop

TCPW

Fig. 9 Comparison of congestion loss rate

0.7500

0.8000

0.8500

0.9000

0.9500

1.0000

1.0500

1.00E-07 1.00E-06 1.00E-05

BER

N
o

rm
al

iz
ed

 G
o

o
d

p
u

t

SpecTCP

TCP-ECN

Snoop

TCPW

Fig. 10 Comparison of normalized Goodput

1636 Wireless Netw (2010) 16:1621–1638

123

results have shown that our mathematical models can

effectively adjust RED gateway parameters so that con-

gestion losses can be minimized. Most significantly, the

buffer size inside a RED gateway based on our models are

much smaller than previously suggested values. This

means that the task itself has significant contribution to the

network performance improvement.

We have analyzed the feasibility of this system. We have

found that it is effective in improving network throughput

over lossy links, capable of handling incorrect speculations,

fair when used with other competing flows, backward

compatible with legacy networks, and relatively easy to

implement. The proposed system has been found to sig-

nificantly improve throughput over lossy links. We have

achieved significant throughput improvement, up to five

times, over the TCP-Reno with ECN for data transfer across

a typical satellite link with high BERs. Results have also

shown that, the proposed system outperforms Snoop and

TCP-Westwood which do not require ECN-capable RED

gateways and end systems, and cross-layer architecture.

The work can be extended in the following ways. First

of all, congestion loss minimization models can be exten-

ded by integrating adaptive control scheme to allow

dynamic model computations and real-time gateway

parameter reconfigurations, for the changes of network

performance and environments. This may further improve

the performance as the congestion loss minimization

models can dynamically capture network variations, such

as, nodes joining and leaving the network. Secondly, to

validate the proposed system in a real environment, the

proposed system may be implemented and tested with real

Internet traffic. Thirdly, the function of congestion control

manager at the middleware layer may be extended to take

information from LINK and PHY layers, so that any

improvements of the wireless link reliability at LINK and

PHY layers can be considered in making predictions by the

conditional Bernoulli predictor.

References

1. Bai, H., Fu, S., & Atiquzzaman, M. (2005). Transport layer

design in mobile wireless networks. In Y. Pan & Y. Xiao (Eds.),

Invited book chapter in design and analysis of wireless networks.

Hauppauge, NY: Nova Science.

2. Wang, S. Y., & Kung, H. T. (2001). Use of TCP decoupling in

improving TCP performance over wireless networks. ACM
Wireless Networks, 7(3), 221–236.

3. Akyildiz, I. F., Morabito, G., & Palazzo, S. (2001). TCP-peach: A

new congestion control scheme for satellite IP networks. IEEE/
ACM Transactions on Networking, 9(3), 307–321.

4. Sinha, P., Venkitaraman, N., Sivakumar, R., & Bharghavan, V.

(1999). WTCP: A reliable transport protocol for wireless wide-

area networks. In Proceedings of ACM/IEEE MOBICOM (pp.

231–241), Seattle, WA.

5. Goel, S., & Sanghi, D. (1998). Improving performance of TCP over

wireless links. In Proceedings of IEEE TENCON (pp. 332–335).

6. Balakrishnan, H., & Katz, R. (1998). Explicit loss notification and

wireless web performance. In Proceedings of IEEE Globecom
Internet Mini Conference. Sydney, Australia.

7. Bai, H., & Lilja, D. (2005). Buffer requirements at ECN-capable

RED gateways to minimize packet losses. In IEEE electro
information technology conference. Lincoln, NE.

8. Bai, H., Lilja, D., & Atiquzzaman, M. (2005). Applying specu-

lative technique to improve TCP throughput over lossy links. In

IEEE GLOBECOM. St. Louis, MO.

9. Hennessy, J. L., & Patterson, D. A. (2003). Computer architec-
ture: A quantitative approach (3rd ed.). Los Altos: Morgan

Kaufmann.

10. Chen, Y., Sendag, R., & Lilja, D. (2003). Using incorrect spec-

ulation to prefetch data in a concurrent multithreaded processor.

In 17th International parallel and distributed processing sym-
posium. Nice, France.

11. Bai, H., & Atiquzzaman, M. (2003). Error modeling schemes for

fading channels in wireless communications: A survey. IEEE
Communications Surveys and Tutorials, 5(2), 2–9.

12. Dawkins, S., Montenegro, G., Kojo, M., Magret, V., & Vaidya,

N. (2001). End-to-end performance implications of links with

errors. RFC 3155.

13. Cen, S., Cosman, P. C., & Voelker, G. M. (2003). End-to-end

differentiation of congestion and wireless losses. IEEE/ACM
Transactions on Networking, 11(5), 703–717.

14. Floyd, S. (1994). TCP and explicit congestion notification. ACM
Computer Communication Review, 24(5), 10–23.

15. Floyd, S., & Jacobson, V. (1993). Random early detection gate-

ways for congestion avoidance. IEEE/ACM Transaction on Net-
working, 1, 397–413.

16. Zheng, B., & Atiquzzaman, M. (2004). Active queue manage-

ment in TCP/IP networks. In M. Hassan & R. Jain (Eds.), High
performance TCP/IP networking: Concepts, issues, and solutions
(pp. 281–307). Prentice: Prentice-Hall.

17. Liu, C., & Jain, R. (2001). Improving explicit congestion notifi-

cation with the mark-front strategy. Computer Networks, 35(2–3),

185–201.

18. Kunniyur, S., & Srikant, R. (2003). End-to-end congestion con-

trol schemes: Utility functions, random losses and ECN marks.

IEEE/ACM Transactions on Networking, 11(5), 689–702.

19. Biaz, S., & Vaidya, N. H. (1999). Discriminating congestion

losses from wireless losses using inter-arrival times at the

receiver. In IEEE ASSET symposium. Richardson, TX, USA.

20. Biaz, S., & Vaidya, N. (1998). Discriminating congestion losses

from wireless losses: A negative result. In Seventh international
conference on computer communications and networks. New

Orleans, LA, USA.

21. Ramakrishnan, K., & Floyd, S. (1999). A proposal to add explicit

congestion notification (ECN) to IP. RFC 2481.

22. Bonald, T., May, M., & Bolot, J. (2000). Analytic evaluation of

RED performance. In INFOCOM (pp. 1415–1424). Tel-Aviv,

Israel.

23. Misra, V., Gong, W., & Towsley, D. (2000). Fluid-based analysis

of a network of AQM routers supporting TCP flows with an

applicaiton to RED. In ACM SIGCOMM (pp. 151–160), Stock-

holm, Sweden.

24. Abouzeid, A., & Roy, S. (2000). Analytic understanding of RED

gateways with mutiple competing TCP flows. In IEEE GLOBE-
COM (pp. 555–560), San Francisco, CA.

25. Abouzeid, A., Roy, S., & Azizoglu, M. (2000). Stochastic mod-

eling of TCP over lossy links. In INFOCOM Tel Aviv, Israel.

26. Mistra, A., Ott, T., & Baras, J. (1999). The window distribution

of multiple TCPs with random loss queues. In IEEE GLOBECOM
(pp. 1714–1726). Rio de Janeiro, Brazil.

Wireless Netw (2010) 16:1621–1638 1637

123

27. Balakrishnan, H., Seshan, S., & Katz, R. (1995). Improving

reliable transport and handoff performance in cellular wireless

networks. ACM Wireless Networks, 1(4), 469–481.

28. Casetti, C., Gerla, M., Lee, S., Sanadidi, M., & Wang, R. (2001).

TCP westwood: Bandwidth estimation for enhanced transport

over wireless links. In Proceedings of ACM Mobicom (pp. 287–

297). Rome, Italy.

29. Jain, R. (1991). The art of computer systems performance anal-
ysis: Techniques for experimental design, measurement, simula-
tion and modeling. New York: John Wiley.

Author Biographies

Haowei Bai is currently a sys-

tems engineer at Space Appli-

cations, Honeywell Aerospace,

Glendale, AZ. He is the Com-

munications Product Develop-

ment Team Lead for Honeywell

Human Space Enterprise Team.

He has previously been a

Research Scientist of Honey-

well Laboratories, Minneapolis,

MN. He received his Ph.D.

degree in Electrical Engineering

from the University of Minne-

sota, Minneapolis, MN, his

M.Sc. degree in Electrical and

Computer Engineering from the University of Dayton, Dayton, Ohio,

and his B.E. degree in Information and Communication Engineering

from Xi’an Jiaotong University, P.R.China. He was a recipient of

2006 Honeywell Outstanding Engineer Award, a recipient of 2004

Honeywell AES Integrated Electronics Systems Technical Achieve-

ment Award, and a recipient of 1999 Shaanxi Province Science and

Technology Achievement Award in China. He is listed in Who’s Who

in Science and Engineering. Much of his current research has focused

on onboard high speed communication network architecture,

dependable wireless networks for aerial vehicles, wireless sensor

systems for vehicle health management, data network system mod-

eling and simulation, fault tolerant computing, TCP over wireless

links, QoS of next generation Internet, and aeronautical telecommu-

nication networks. He has several U.S. and International patents

pending and many publications in these areas. He is a member of

IEEE, and a member of SAE. He serves as a member and the

handbook editor of SAE AS1A3 Mil1394b Avionic Networks com-

mittee, and referee for various technical journals and IEEE/SAE/

AIAA conferences.

David J. Lilja received his

Ph.D. and M.S. degrees in

Electrical Engineering from the

University of Illinois at Urbana

Champaign, and a B.S. in

Computer Engineering from

Iowa State University in Ames.

He is currently a Professor and

the Head of the Department of

Electrical and Computer Engi-

neering at the University of

Minnesota in Minneapolis. He

also serves as a member of the

graduate faculties in Computer

Science and Scientific Compu-

tation, and a Fellow of the Minnesota Supercomputing Institute.

Previously, he worked as a research assistant at the Center for Su-

percomputing Research and Development at the University of Illinois,

and as a development engineer at Tandem Computers in Cupertino,

California. He has been a visiting senior engineer in the Hardware

Performance Analysis group at IBM in Rochester, Minnesota, and a

visiting professor at the University of Western Australia in Perth. He

has chaired and served on the program committees of numerous

conferences, and was a distinguished visitor of the IEEE Computer

Society. His main research interests include computer architecture,

parallel processing, computer systems performance analysis, nano-

computing, and high performance storage systems. He has a special

interest in the interaction of computer architecture with software,

compilers, and circuits.

Mohammed Atiquzzaman
received the M.Sc. and Ph.D.

degrees in electrical engineering

from the University of Man-

chester, England. Currently he

is a professor in the School of

Computer Science at the Uni-

versity of Oklahoma. He is Co-

Editor-in-Chief of Computer

Communications Journal, and

serves on the editorial boards of

IEEE Communications Maga-

zine, Telecommunications Sys-

tems Journal, Wireless and

Optical Networks Journal, and

Real Time Imaging Journal. He has guest edited many special issues

in various journals, and organized special sessions in conferences. He

was technical co-chair of HPSR 2003 and the SPIE Quality of Service

over Next-Generation Data Networks Conference (2001, 2002, and

2003). He also serves on the technical program committee of many

national and international conferences including IEEE INFOCOM,

IEEE GLOBECOM, and IEEE International Conference on Com-

puters and Communication Networks. His current research interests

are in wireless, satellite, and mobile networks, QoS for next-genera-

tion Internet, broadband networks, multimedia over high -speed net-

works, TCP/IP over ATM, multiprocessor systems, and image

processing. He is a coauthor of the book TCP/IP over ATM Networks.

He has taught many short courses to industry in the area of computer

and telecommunication networking. His research has been supported

by state and federal agencies like NSF, NASA, U.S. Air Force, Ohio

Board of Regents, and DITARD (Australia). He has over 130 refereed

publications in the above areas, most of which can be accessed at

http://www.cs.ou.edu/*atiq.

1638 Wireless Netw (2010) 16:1621–1638

123

http://www.cs.ou.edu/~atiq

	Cross-layer speculative architecture for end systems and gateways in computer networks with lossy links
	Abstract
	Introduction
	Thought process: from speculative parallelization to network protocol design
	The proposed system architecture
	Design challenges and considerations
	Effectiveness
	Ability to handle incorrect speculations
	Fairness
	Backward compatibility
	Implementation complexity

	System functional blocks and the operation process
	Discussions on the system design

	Protocol-level speculations
	Conditional Bernoulli predictor
	Conditional Bernoulli predictor architecture
	Qualitative comparison with other network predictors in the literature

	SpecTCP algorithm

	Improving speculation accuracy: minimizing congestion losses
	Notations
	Assumptions
	Maximum buffer size
	maxth for RED gateways
	Calculating the average share of bottleneck link

	Performance evaluations
	Evaluating speculation accuracy improvement models
	Verification of the maximum buffer size
	Verification of maxth
	Verification of the optimality

	Transport layer performance against the baseline TCP-Reno
	Congestion window evolutions
	Goodput
	Misprediction rate
	Congestion loss rate
	Fairness in a network with competing legacy TCP flows

	Performance comparisons with related work
	Performance comparison for the conditional Bernoulli predictor
	Performance comparison for the network

	Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

