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Abstract

In executing a voluntary movement, one is faced with the problem of translating a speci-

fication of the movement in task space (e.g. a visual goal) into a muscle recruitment pattern.

Among many brain regions, the primary motor cortex (MI) plays a prominent role in the spec-

ification of movements. In what coordinate frame MI represents movement has been a topic of

considerable debate. In a two-dimensional wrist step tracking experiment, Kakei et al. (1999)

described some MI cells as encoding movement in a muscle coordinate frame and other cells as

encoding movement in an extrinsic coordinate frame. This result was interpreted as evidence

for a cascade of transformations within MI from an extrinsic representation of movement to a

muscle-like representation. However, we present a model that demonstrates that, given a realis-

tic extrinsic-like representation of movement, a simple linear network is capable of representing

the transformation from an extrinsic-space to the muscle recruitment patterns implementing the

movements on which Kakei et al. (1999) focused. This suggests that cells exhibiting extrinsic-

like qualities can be involved in the direct recruitment of spinal motor neurons. These results

call into question models that presume a serial cascade of transformations terminating with MI

pyramidal tract neurons that vary their activation exclusively with muscle activity. Further

analysis of the model shows that the correlation between the activity of an MI neuron and a

muscle does not predict the strength of the connection between the MI neuron and muscle. This

result cautions against the use of correlation methods as a measure of cellular connectivity.
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Introduction

The primary motor cortex (MI) plays an important role in the control of voluntary movement.

Early experiments investigating the control of reaching movements recorded single neuron activity

in MI of the monkey as it performed a center-out reaching task with its hand (Georgopoulos

et al. 1982; Schwartz et al. 1988). The activity of the MI neurons was described as varying with

the cosine between the direction of hand movement in extrinsic space and the neuron’s preferred

direction (PD), also expressed in extrinsic space. A variety of subsequent studies suggest that MI

neural activity may capture other aspects of movement. By varying the origin of hand position in

a three-dimensional center-out task, Caminiti et al. (1990, 1991) described MI as encoding hand

movement in a polar coordinate system centered at the shoulder. Kinematic parameters such as

velocity, acceleration, target direction, and target position may also be represented by the activity

of an MI neuron — in some cases simultaneously (Moran and Schwartz 1999; Schwartz and Moran

2000; Ashe and Georgopoulos 1994) or sequentially (Fu et al. 1995). Isometric studies suggest that

MI may also encode aspects of directional force (Georgopoulos et al. 1992; Sergio and Kalaska

1998).

While an extrinsic representation of movement in MI seems to follow from the results of many of

the studies outlined above, representations of movement in intrinsic space, such as muscle activity

or joint angle deviation, cannot be excluded. If the primate varied its arm configuration while it

performed the same hand trajectory, corresponding MI activity was described more accurately by

models based on joint kinematics or joint torques than models based on hand movement direction

(Scott and Kalaska 1995, 1997). Other models argued that MI activity could be described by equa-

tions based on muscle-shortening velocity (Mussa-Ivaldi 1988) or joint angle deviations (Ajemian

et al. 2000). Support for a muscle-based representation of movement in MI arose from studies which

showed that MI neural activity (and PDs) changed with arm configuration similar to how muscle

electromyographic (EMG) activity did in an isometric task (Sergio and Kalaska 1997) and passive

arm movement (Scott 1997). Other studies show that the activity of red nucleus neurons, which

may encode movement similarly to MI (Houk et al. 1993; Miller and Sinkjaer 1998), correlated

better with muscle activity than other variables (Gibson et al. 1985; Houk et al. 1987; Miller et al.

1993; Miller and Houk 1995; Miller and Sinkjaer 1998). Because MI sends projections directly to

the spinal cord, among other areas, the idea that MI represents movement in an intrinsic space is

an attractive one.

While these studies suggest that MI best represents movement in a particular coordinate frame,

many of them indicate that other coordinate frames may be represented as well (though to a lesser

degree). The results of more recent studies (Kakei et al. 1999, 2003) make the possible simultaneous

representation of multiple coordinate frames in MI neural activity more apparent. These studies

investigated the variation of primate wrist muscle EMG and MI neural activity during a two

degree-of-freedom (DOF) wrist movement task and provided evidence showing the existence of two

subpopulations of MI neurons: neurons with PDs that capture extrinsic properties of movement and

neurons with PDs that encode muscle activation patterns. The existence of both types of neurons
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Figure 1: Graphical representation of a serial processing scheme (left) and a parallel processing scheme (right).

The different shapes represent populations of neurons whose activities are characterized as encoding movement in

different spaces. “Extrinsic,” “Intermediate,” and “Intrinsic” shapes represent MI neural populations; shapes labeled

“Motor Neurons” represent spinal motor neurons.

may support the idea that a serial processing scheme (see figure 1, left side) is implemented within

MI (although Scott 2003 offers a different interpretation — see discussion section). Under this

model, MI is actively involved in the transformation of an abstract, extrinsic representation of

movement into an intrinsic space (Kakei et al. 1999, 2003).

A serial processing scheme is appealing because it offers a simple mechanism for controlling all

visually-guided movements. It also implies that the only projections MI sends to the spinal cord to

control muscles arise from neurons that explicitly encode movement in a muscle coordinate frame.

However, the complex architecture of the central nervous system allows for the possibility of non-

serial processing schemes (cf. Kalaska and Crammond 1992). Figure 1 illustrates a serial processing

scheme (left) versus a series-parallel processing scheme (right, hereafter referred to as “parallel”), in

which multiple populations of MI neurons that are characterized as encoding movement in different

spaces can each directly command muscles. Can an extrinsic-like representation of movement

participate in the direct activation of muscles? Modeling work by Kakei et al. (2003) and Salinas

and Abbott (1995) suggests that this is possible. Both show that a linear transformation exists

between an extrinsic representation of movement and an intrinsic one under specific assumptions of

how movement-related variables are encoded. However, the intrinsic representations used deviate

from how muscles are recruited.
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Figure 2: A schematic showing a monkey right hand gripping a handle in pronated (left), midrange (middle), and

supinated (right) wrist posture. From Kakei et al. (1999). NEED PERMISSION.

We examine the feasibility of the parallel processing scheme through a neural network model

inspired by the work of Kakei et al. (1999). We show that it is computationally possible for a

population of neurons with PDs defined in extrinsic space to directly control muscles appropriately.

The model produces muscle activation patterns similar to those recorded during the task used in

Kakei et al. (1999) (Hoffman and Strick 1999). We train the model with a performance-based

optimization procedure and do not impose an a priori representation of intrinsic movement such as

those used in Kakei et al. (2003) and Salinas and Abbott (1995). We also use the model to examine

the use of correlation methods to make inferences of coding schemes and connectivity. Elements of

this work have been presented previously in poster form (Shah et al. 2002).

MI and Muscle Involvement in the Production of Wrist Movements

Hoffman and colleagues (Kakei et al. 1999, 2003; Hoffman and Strick 1999) described a two DOF

step tracking task in which a human or monkey subject moved a manipulandum with its wrist,

fixed in a pronated, supinated, or midrange posture (figure 2), to move a cursor on a computer

screen from a central point to one of several targets falling on a circle around the starting location.

The kinematics of movement, EMG activity from several muscles, and single neuron activity in MI

were recorded. Muscle activity as a function of target direction exhibited a “truncated cosine-like”

shape — for values of target direction for which a cosine-like function is negative, the truncated

cosine is zero. A cosine of the form B cos(θ − C) + D was fit to the muscle activation patterns,

with a low weight given to values of muscle activity near zero to account for the truncation. The

parameter C defined the muscle’s PD for that wrist posture.

The wrist step-tracking task distinguished three coordinate frames: extrinsic, represented by

the movement of the cursor and unaffected by wrist posture, joint-centered, defined by wrist flex-

ion/extension and radial/ulnar deviation, and muscle, defined by how the muscle PDs rotated as

the wrist posture rotated. As the wrist rotated 180◦ from pronation to supination, muscle PDs

rotated between 40◦ and 110◦ (Kakei et al. 1999). MI neurons were labeled extrinsic-like, muscle-

like, or joint-like, depending on how their PDs rotated as wrist posture rotated 180◦. Because

categorization of neurons was based solely on how their PDs rotated, the suffix “-like” was ex-

plicitly included. 50% of the MI neurons recorded were labeled ”extrinsic-like” because their PDs

changed by only a small amount. The depth of modulation of some neurons in this category varied

with wrist posture. 32% of the MI neurons were labeled ”muscle-like” because their PDs shifted
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similarly to muscle PD shifts. None of the neurons were labeled ”joint-like,” and the rest were not

easily classified. The presence of both extrinsic- and muscle-like neurons led Kakei et al. (1999)

to suggest that a serial processing scheme was implemented in MI. This implies that only intrinsic

neurons (e.g. muscle-like MI neurons) can be pyramidal tract neurons (PTNs). If PTNs consisted

of only intrinsic neurons, one might expect a spatial and temporal distinction between the intrinsic

and extrinsic neurons. However, Kakei et al. (1999) found no such differences.

Methods

Overview and Motivation

The results of Kakei et al. (1999) can be interpreted to support the serial processing scheme.

However, is it computationally feasible for each population of MI neurons recruited for a task

— including extrinsic-like neurons — to directly command muscles? One could approach this

question through the implementation of a model in which both intrinsic-like and extrinsic-like

neurons command muscles. However, in doing so, one would have to make assumptions about the

origin of the intrinsic responses. In addition, it would not be clear what the resulting contribution

of the extrinsic population would be in the movement generation process. In order to avoid these

difficulties, we instead choose to ask a stronger question: can extrinsic-like neurons alone produce

the appropriate muscle responses? To answer this question, we have created a neural network

model in which a population of extrinsic-like neurons directly activate muscles. The model is based

on the task and experimental findings of Kakei et al. (1999). The model presented in this paper

is an extension of the model presented in Fagg et al. (2002), which directly finds muscle activation

patterns that satisfy optimization criteria; the resulting muscle activation patterns are similar to

those reported in Hoffman and Strick (1999) for the wrist movement task.

Model Architecture

The architecture of this network is shown in figure 4. In the following paragraphs, vectors and

matrices are in bold type while scalers and the elements of the vectors and matrices are in italics.

For example, the array of MI neurons is denoted by m, a column vector of which element mi refers

to either m neuron i or the activation level of m neuron i. (For simplicity, the term “neuron” will

be used to refer to a unit from the m array hereafter.) By design, the extrinsic-like neurons behave

like those recorded in Kakei et al. (1999): their PDs are expressed in extrinsic space, but their

activation levels are modulated by wrist posture. Some neurons are more active when the wrist is

pronated than when it is supinated and vice versa. Each neuron sends projections (K) directly to

each of five muscles (a), which correspond to the muscles from which Hoffman and Strick (1999)

and Kakei et al. (1999) recorded.

As described in detail in Fagg et al. (2002), each modeled muscle contributes to the endpoint of

wrist movement through its activation level and pulling direction, which depends on wrist posture.

Hoffman and Strick (1999) determined the pulling direction of a muscle by individually stimulating
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Figure 3: Pulling directions of the five muscles primarily responsible for wrist actuation in the pronated (left),

midrange (center), and supinated (right) wrist postures. Pulling direction was defined to be the immediate direction

of wrist movement after stimulation of the muscle (Hoffman and Strick 1999). Each vector represents the average

pulling direction of the wrist muscle as derived from two monkey subjects. The legend in each circle indicates

extrinsic direction (degrees) and joint movement (Rad, radial; Uln, ulnar; Flx, flexion; Ext, extension). Data from

DS Hoffman, personal communication. 1-ECU, Extensor Carpi Ulnaris; 2-ECRB, Extensor Carpi Radialis Brevis;

3-ECRL, Extensor Carpi Radialis Longus; 4-FCR, Flexor Carpi Radialis; 5-FCU, Flexor Carpi Ulnaris.

the muscle and observing immediate wrist movement. Average pulling directions (in extrinsic space)

for five muscles and three postures are shown in figure 3 (DS Hoffman, personal communication).

The activation of the muscles determine extrinsic movement of the wrist (x), analogous to cursor

movement in the task.

The neurons in this model are non-spiking; their activation levels are expressed as a real value

between zero and one, which can be thought of as the firing-rate of the neuron. m has 2N neurons

(we choose 2N = 96). Within a given wrist posture, each neuron is most active when the target

direction is the same as its PD in extrinsic space. For i = 1, . . . , N , the PD of neuron mi, PDmi
,

is defined to be ( i
N

)360◦, while PDmi+N
= ( i−N

N
)360◦ (thus, PDmi

= PDmi+N
). In order to create

the extrinsic-like behavior found in Kakei et al. (1999), we defined the activity of mi to take on a

Gaussian-like shape around PDmi
and included a wrist posture term (wi) to modulate its depth:

mi =

[

exp

[

−

(

PDmi
− θ

σ

)2
]

− wi(ρ)

]+

,

where θ is the target direction and ρ is wrist posture. For i = 1, . . . , N , wi(ρ) = 0, 1/4 or 1/2 for ρ =

pronated, midrange, or supinated, respectively, while wi+N (ρ) = 1/2, 1/4, or 0. Thus, m1 through

mN are more active in the pronated wrist posture while mN+1 through m2N are more active in the

supinated wrist posture. σ defines the width of the Gaussian; this model uses σ = 74.5◦, which

produces a width at half maximum of 120◦. While a narrow tuning function has some advantages

in coding one-dimensional features (Zhang and Sejnowski 1999; Amirikian and Georgopoulos 2000),
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Figure 4: Architecture of this model with 2N = 16 for clarity. The m array represents MI neurons. The curve to the

left of the m array approximates the activation of the m neurons for a target direction near θ = 180◦ when the wrist

is in the pronated (solid line), midrange (dashed), and supinated (dotted) wrist postures. The a array represents the

muscles. Each mi connects to each aj through the connection matrix K. The x array represents the endpoint of wrist

movement. Each ai is connected to each xj through the connection matrix P
ρ, which depends on wrist posture ρ and

represents muscle pulling directions for that wrist posture. Full connections are not illustrated for clarity; connections

that are not illustrated are represented by vertical dotted lines, which indicate that the connections follow the same

pattern as the surrounding illustrated connections. Closed unfilled arrows indicate excitatory connections while open

arrows indicate mixed connections. All units have linear activation functions except m, which has a lower threshold

of zero.
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Figure 5: Activity of m24 (PDm24
= 180◦) as a function of extrinsic target position for wrist posture pronation

(pro: solid line), midrange (mid: dashed line), and supination (sup: dotted line). Note that m24+N has the same PD

as m24, but its activation is higher in supination and lower in pronation.

we use a relatively broad tuning function in the interest of generalization. The function [·]+ returns

zero if its argument is less than zero — this sets the minimum possible activation level of any mi

to zero.

The hard-wired pattern of activity of the neurons behave similarly to the extrinsic-like neurons

modulated by wrist posture recorded in MI by Kakei et al. (1999). Figure 5 shows how the activity

level of one neuron varies with extrinsic target position. Although the activity of this neuron is

modulated by wrist posture, its PD does not change with wrist posture. Figure 6 shows the activity

of the array of neurons in m when the target is at θ = 180◦; the activation pattern is different for the

three different wrist postures. Both extrinsic target direction and wrist posture are represented in

the activation of the neuron array. While the modulation by wrist posture captures some intrinsic

information, a muscle coordinate frame is not represented in the activity of the m array.

The 2N m neurons directly project to an array, a, of five muscles. The connection matrix from

m to a is referred to as K. There are no imposed constraints on the elements of K; they can

take on any real value and each neuron has a direct connection to each muscle (McKiernan et al.

1998). Negative connections can be accounted for with inhibitory interneurons; however, since the

abstraction level of this model is high, we choose instead to allow K to contain both positive and

negative elements. Muscle activity is a linear function of m:

a =
∑

i∈M

Kimi,
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Figure 6: Activity of the array of MI neurons (m, 2N = 96 neurons) for pronation (pro: solid line), midrange (mid:

dashed line), and supination (sup: dotted line) wrist postures when the target direction is θ = 180◦. For m1 through

m48, the activity in pronated position is greater than the activity in midrange, which is greater than the activity in

supinated position. For m49 through m96, the activity in supinated position is greater than the activity in midrange,

which is greater than the activity in pronated position. Both extrinsic target direction and intrinsic wrist posture

are represented by the activity of this array of neurons. Muscle activity is not represented.
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where Ki denotes the weights of the projections from neuron mi to each of the five muscles and M

is the set of all neurons in m.

Each muscle is represented as a unit vector in the direction of its pulling direction, indicated

in figure 4 as the matrix P
ρ, which changes with wrist posture, but is not plastic. We assume

that muscles contribute to the endpoint of movement along their vector of action, where the length

of the vector is proportional to the muscle’s activation level, ai (analogous to the muscle EMG

level). The muscles are also assumed to contribute to the movement endpoint independently of

one-another. Thus, the endpoint of movement, x, is determined by the weighted sum of the muscle

pulling directions as follows:

x =
∑

i∈A

P
ρ
i ai,

where P
ρ
i denotes the pulling direction of muscle i when in posture ρ and A is the set of all muscles.

Note that only the endpoint of wrist movement, not the path of movement, is simulated.

Selecting the MI → Muscle Connections

We wish to show that extrinsic-like neurons can directly generate realistic muscle activation

patterns. We do this in the context of the model by showing that a K exists such that for each

target position and wrist posture, i.) the wrist reaches the target and ii.) muscles only pull (and

never push). In Fagg et al. (2002), we discuss the redundancy in muscle activation patterns and

show that the introduction of a minimum effort criterion applied to the muscles results in a cosine-

like recruitment of muscles similar to that observed experimentally (Hoffman and Strick 1999).

Thus, we include a third criterion: iii.) a minimal degree of effort is used in making the movement.

We employ a gradient-descent method to identify an appropriate K matrix. This is accomplished

as follows: the initial elements of K are randomly chosen from a uniform distribution between −1/2

and 1/2. For a given target and wrist posture, a random K yields a random muscle activation

pattern produced by m and hence a random (and inaccurate) endpoint of wrist movement. As in

Fagg et al. (2002), we define the error as follows:

E(xtarg,a, ρ) =
1

2

∥

∥

∥

∥

∥

xtarg −
∑

i∈A

P
ρ
i ai

∥

∥

∥

∥

∥

2

+
λ

2
‖a‖2 ,

where xtarg is the target location, ‖ · ‖ returns the magnitude of a vector, and λ is a regularization

parameter set to 0.02. λ represents a trade-off between target error and muscle activation. Since

all movements are of unit magnitude, and x is a linear summation of muscle activity, ‖a‖2 is on the

order of 1 for most movements. Thus, λ = 0.02 represents allowable errors on the order of 2% of

movement magnitude. The first term in E(xtarg,a, ρ) represents movement accuracy (criterion i);

the second term represents total muscle activation (effort, criterion iii). The error gradient with

respect to aj is:

∂E

∂aj
= −

(

xtarg −
∑

i∈A

P
ρ
i ai

)T

P
ρ
j + λaj ,
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where T denotes the transpose of a vector. The error for muscle j is defined as:

ej =

{

− ∂E
∂aj

if aj ≥ 0,

−aj otherwise.

To constrain muscle activation to non-negative levels (criterion ii.), ej is set to minimize E(xtarg,a, ρ)

only if aj ≥ 0; otherwise, ej is set to bring aj toward zero.

The connection matrix K is modified as follows:

Knew ← Kold + ηemT ,

where η is a learning rate set to 0.02 in this model and e is a column vector representing the

error terms for all five muscles. Note that this is not intended as a biologically based learning

approach. A K is chosen such that all ajs are non-negative (criterion ii.); within this constraint, a

K is selected such that it minimizes E(xtarg,a, ρ), which includes criteria i. and iii. The gradient

descent method was applied for each of the three wrist postures and 12 targets equally spaced

along a unit circle surrounding the central starting position, yielding a total of 36 distinct tasks;

the 36 tasks constitute one training epoch. Note that each task, by construction, is represented by

a unique m activation pattern (figure 6). K was updated iteratively on each of the 36 tasks until

the mean target error over all 36 tasks was less than 0.05.

30 independent training runs were executed, each with a unique initial K. Over the 30 runs,

the iterative procedure described above converged to a solution within an average (± standard

deviation) of 210, 150 (±7, 137) training epochs. For each run, the standard deviation in target

error (over the 36 tasks) was computed. The mean standard deviation in target error over the 30

runs was 0.041 (±4.13× 10−4). The mean maximum change in any single muscle activation on the

last epoch over all 36 tasks was 0.028 (±3.19 × 10−4), while the mean maximum change in any

single element of K was 0.0014 (±1.95 × 10−5). Thus, termination of a run was accompanied by

convergence of the K matrix. For an individual task, the muscle activation pattern (a, the five-

element vector describing the activation levels of the five muscles) at convergence deviated from

the average over all 30 runs by 0.011 (±7.4 × 10−3), regardless of initial conditions (the initial K

matrix). The K matrix describing the weights of the five projections from each m neuron, on the

other hand, deviated from the average over all 30 runs by 0.52 (± 0.15). However, there was a

general pattern across the 30 runs (see figures 10B and 10C). While there is no unique solution

for K, the different Ks do yield the same muscle activation patterns for each of the 36 tasks. The

existence of unique muscle activation patterns for each of the 36 distinct tasks is discussed in detail

in Fagg et al. (2002). The length of the muscle activation vector, averaged over all 36 tasks, was

‖a‖ = 1.20 (±0.38).
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Figure 7: Normalized polar plots of muscle activation as a function of target direction for muscles ECRL, ECRB,

FCR, and ECU in the midrange wrist posture. Solid lines indicate muscle activation as produced by the model;

dashed lines indicate muscle activation as produced by a monkey subject (Hoffman and Strick 1999; DS Hoffman,

personal communication). Short open arrows are muscle pulling directions. Long closed arrows are model muscle

PDs. The legend in the middle of the figure denotes joint angle deviation and corresponding extrinsic direction of

movement in degrees for the midrange wrist posture: Rad, radial; Uln, ulnar; Ext, extension; Flx, flexion.
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Results

Muscle Activation

The following analysis uses the results from one of the 30 runs. All other runs have very similar

results. Figure 7 shows normalized model muscle activation versus target direction as polar plots

for muscles ECRL, ECRB, FCR, and ECU in the midrange wrist posture. Hoffman and Strick

(1999) analyzed these four muscles from a monkey subject; their data (Hoffman and Strick 1999;

DS Hoffman, personal communication) are included in figure 7 as dashed lines for comparison.

The function B cos(θ − C) + D, where the PD of a muscle is defined to be the parameter C, was

fitted to each muscle activation pattern. Because muscle activation patterns followed a “truncated

cosine” (due to the constraint that all ai ≥ 0), low muscle activation levels (< 0.05 in our analyses)

were given a zero weight in the fitting process. The muscle activation patterns as produced by this

model are similar to those reported in Fagg et al. (2002), which used a gradient descent method

to directly find muscle activation patterns that satisfy the same three criteria as this model. The

model presented in this paper, in contrast, finds a connection matrix K to transform the activity

of the m array into the appropriate muscle activation pattern.

Figure 7 also shows the pulling directions (short open arrow) and calculated PDs (long closed

arrow) of the model muscles. In all four cases, the PD deviates from the pulling direction. The

discrepancy between pulling directions and preferred directions is also seen in the EMG data from

Hoffman and Strick (1999). This difference is the result of the uneven distribution of pulling

directions of the muscles (Fagg et al. 2002). If there is a large gap between the pulling directions

of two muscles, then the muscles have to devote additional effort to pulling against each other in

order to reach a target located within the gap. Thus, the PD of a muscle will tend toward this gap.

The similarity between the muscle activation patterns as produced by this model and those

recorded experimentally demonstrate that it is possible for an extrinsic-like representation to be

translated (via a linear transformation) into an intrinsic representation of movement (muscle acti-

vation patterns).

Correlation Analysis

Inspired by studies that used correlation analysis to suggest that neurons in the red nucleus and

MI directly encode muscle activity (Miller and Sinkjaer 1998; Miller and Houk 1995; Miller et al.

1993; Houk et al. 1993; Gibson et al. 1985; Houk et al. 1987; Gibson et al. 1985), we have calculated

the correlation coefficient for each neuron-muscle pair over all 36 tasks in our model. The formula

used to calculate the correlation coefficient (corrij) between m neuron i (mi) and muscle j (aj) is:

corrij =

∑

ϑ∈Θ

(mi(ϑ)− µmi
)(aj(ϑ)− µaj

)

√

∑

ϑ∈Θ

(mi(ϑ)− µmi
)2
√

∑

ϑ∈Θ

(aj(ϑ)− µaj
)2

,
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where ϑ is the index of task in Θ (the set of 36 tasks), mi(ϑ) is the activation of mi for task ϑ,

aj(ϑ) is the activation of aj for task ϑ, µmi
is the average activation of mi over all 36 tasks, and

µaj
is the average activation of aj .

The correlations between each neuron and each muscle ranged between −0.68 to 0.88. While a

high positive correlation might be interpreted as the neuron coding in a muscle coordinate frame,

in this model it merely indicates that the neuron and the muscle happen to have similar PDs —

they are highly active over the same range of tasks. Figure 8 plots, as a function of target direction

and for each of the three wrist postures, the activities of the neuron and muscle that have the

highest corrij over all neuron-muscle pairs and the activities of the neuron and muscle that have

the lowest corrij . The highest correlation (corrij = 0.88) was found between neuron number 49

(out of 2N = 96) and muscle ECRL. m49 has a PD of 7.5◦, while ECRL has a PD of 342.7◦ in

the pronated wrist posture, 2.2◦ in the midrange posture, and 17.6◦ in supinated posture. Because

the neurons and muscles are active over a wide range of target directions, the PDs of m49 and

ECRL are considered to be similar (figure 8A). The lowest correlation (corrij = −0.68) was found

between m39 and muscle ECU. Neuron m39 has a PD of 292.5◦, while ECU has a PD of 89.3◦ in

the pronated wrist posture, 119.7◦ in the midrange posture, and 155.4◦ in the supinated posture.

m39 and ECU were active over opposite target directions (figure 8B).

Figure 9 summarizes this same relationship between all neuron-muscle pairs. The corrij between

each muscle and neuron as a function of the PD of the neuron is plotted. Note that by construction,

neurons i and i + N (for 1 ≤ i ≤ N) have the same PD. The scale bars on the top left of figure 9

illustrate the relationship between the PDs of the neurons and the index of the neurons (also see

methods section for definition of PDmi
). Also shown for each muscle are their PDs in each of the

three wrist postures. The corrijs between each muscle and the neurons vary sinusoidally with the

PDs of the neurons. For each muscle, there is some neuron with which it has a high corrij (ranging

from 0.77 to 0.88, depending on the muscle). In each case, the PD of that neuron falls within the

range of the PDs of the muscles as the wrist rotates from pronation to supination.

Figure 9 also shows that the corrij between a muscle and a neuron is not determined purely by

the neuron’s PD. As shown in figure 6, neurons 1 through N are more active when the wrist is in

the pronated posture, while neurons N + 1 through 2N are more active when the wrist is in the

supinated posture. If the muscle has the highest corrij with a neuron of index 1 ≤ i ≤ N , then that

muscle’s PD in pronation is closer to PDmi
than its PD in supination (for example, muscle FCU

in figure 9). Similarly, if the muscle has the highest corrij with a neuron of index N + 1 ≤ i ≤ 2N ,

then that muscle’s PD in supination is closer to PDmi
than its PD in pronation (for example,

muscle ECRB in figure 9). This is the case because the higher activation level of the neuron in one

wrist posture over the others contributes more strongly to the correlation measure. Therefore, the

corrij between a muscle and a neuron is determined by their PDs and how active they are in each

of the three wrist postures.
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Figure 8: Activity of an m neuron (dashed curve) and activity of a muscle (solid curve) as a function of target

direction for each of the three wrist postures. A, top three graphs: m49 and muscle ECRL, which have a high

correlation (= 0.88). Note that these graphs are centered around a target direction of 7.5◦, the PD of m49, for clarity.

B, bottom three graphs: m39 and muscle ECU, which have a highly negative correlation (= −0.68). Vertical lines

indicate the PDs of the m neurons (dashed lines) and muscles (solid lines). PRO: pronated, MID: midrange, SUP:

supinated. Note that the activation function of the m neurons are only plotted for the 12 targets, hence the curves

are not as smooth as those in figure 5.
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Note that by construction, m neurons i and i + N (for 1 ≤ i ≤ N) have the same PD. Closed circles mark corrijs

between the muscle and m neurons 1 through N , while open circles mark corrijs between the muscle and m neurons
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Figure 10: A: Scatter plot of the connection weight between mi and aj (Kij) as a function of corrij .The lowest
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by a square. Dashed lines show corrij = 0 and Kij = 0. B : The strength of the connections emanating from m49

to each of the five muscles for all 30 runs (gray dots) and the mean of the 30 runs (black dots). Dashed line shows

Kij = 0. C : Same as B but for m39. This figure shows that corrij does not predict Kij .
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Connection Strength and Correlation

High correlations between the activity of a neuron and the activity of a muscle may be used as

evidence that there is a positive connection between that neuron and muscle. However, this is not

the case in this model. Figure 10A plots the weight, Kij , of the connection between mi and aj as

a function of corrij . The highest correlation associated with each neuron (across the muscles) is

highlighted as a square, while the lowest correlation associated with each neuron is highlighted as

a circle. The corresponding connection weights for both highest and lowest corrijs are normally

distributed: the mean Kij (± standard deviation) for the highest corrijs is 0.096 (±1.36), while

the mean Kij for the lowest corrijs is −0.049 (±1.04). Thus, corrij is not related to Kij — for

some neurons, the connection weight between it and the muscle with which it has a high corrij is

highly negative. The variability in the distribution of lowest corrijs (circles) is less than that of

the highest corrijs (squares). This is due to the requirement that the linear transform specified by

K must produce non-negative muscle activation levels.

Figures 10B and 10C show the weight vector (the strength of the connections emanating from a

single neuron to each of the five muscles) for neurons 49 and 39, respectively, for all 30 runs (gray

dots) and the mean of the 30 runs (black dots). While there is considerable variability between the

30 runs, the weight vector exhibits a general pattern: although the set of all Kijs ranges from −3.2

to 3.7 for the single run focused on in these results, an individual Kij will only vary on the order

of 1 across the 30 runs. Figure 10B shows that the Kij between m49 and ECRL (which have the

highest corrij for the single run) is near zero, while the Kij between m39 and FCU (which have the

lowest corrij) is moderately negative. In addition, the Kij between m49 and FCU is fairly high, but

their corrij is −0.44 for the single run. The Kij between m39 and FCR is highly negative, but their

corrij is 0.74. Thus, even given the pattern across the 30 runs, Kij and corrij may be conflicting.

Figure 10 shows that corrij does not predict the connection strength between mi and aj (cf. König

and Engel 1995; Munk et al. 1995; Engel et al. 1991). By construction, one neuron will exhibit

correlated activity with other neurons. All that is required to produce the observed neuron-muscle

correlation is that the net connection strength to the muscle be positive. This effect is possible

because there are many more neurons than muscles or controlled degrees-of-freedom. Figures 9

and 10 also show that each neuron exhibits the full range of corrijs from highly positive to highly

negative with some muscle.

Sensitivity to Noise

To determine the robustness of the model in the presence of noise, signal dependent noise (Harris

and Wolpert 1998) was added to neuron activity. For each neuron, noise was selected from a normal

distribution with a mean of zero and a standard deviation of miε. Simulations were run 30 times

each with ε = 0.01 (low noise) and ε = 0.1 (high noise), which represent a range of biologically

plausible magnitudes of noise (Todorov 2002; van Beers et al. 2003). For both cases, the model

converged to a unique K (in contrast to the highly variable Ks found by the zero-noise model).

Like the Ks trained without noise, the elements of the Ks trained with a low noise level had a
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wide range (−4.4 to 4.7). However, for high noise, the elements of K had a narrow range (−0.19

to 0.34). In addition, for low noise, corrij did not predict Kij , but for high noise, there was a weak

predictive relationship. The mean Kij for the highest corrijs was 0.06 (±0.09) while the mean Kij

for the lowest corrijs was −0.02 (±0.04). While this tendency was significant (t-test, p < 0.001),

some Kijs between a neuron and muscle with a positive corrij were negative (and vice versa). We

examine the implications of these results in the discussion section.

In neither case did the model reach the termination condition (average target error < 0.05) within

one million training iterations. However, the resulting K produced an endpoint of movement near

the target. Model strategy was tested by removing noise and examining movement endpoint and

muscle activation. The average target error (over the 36 tasks) was 0.07 (± 0.06) for low noise and

0.12 (± 0.08) for high noise. For both levels of noise, a unique (across the 30 runs) muscle activation

vector was found for each of the 36 tasks. To determine if neural noise resulted in a change in muscle

recruitment, we computed ‖a◦(ϑ)− aε(ϑ)‖, where a◦(ϑ) is the muscle activation vector for task ϑ

derived from zero-noise training and aε(ϑ) is derived from noisy training. Averaged over the 36

tasks, the deviation in muscle recruitment was 0.15 (± 0.10) for low noise and 0.37 (± 0.18) for

high noise. The deviation in movement endpoint, computed in the same manner, was 0.05 (±0.03)

for low noise and 0.09 (± 0.05) for high noise. Thus, even though the introduction of noise may

result in different muscle activation patterns and movement endpoints for some tasks, the strategy

was similar.

We examined the model’s ability to reach targets on which it was not explicitly trained. A model

with K trained on the original 12 targets and no noise was presented with 144 random targets

(taken from a uniform distribution between 0◦ and 360◦). While movement endpoints were in the

vicinity of the targets, accuracy was compromised — mean target error increased to 0.22 (± 0.14)

over the 432 tasks (144 targets and 3 wrist postures). If the model was trained with random targets

for each training epoch (for one million epochs), and thus sampled a greater proportion of possible

target directions, the mean error over 144 random targets was 0.11 (± 0.08). We also examined

the model’s sensitivity to the width of the target encoding. When the width of the m neuron

tuning function was increased to σ = 114.5◦, a model trained on the original 12 targets and tested

with 144 random targets had a mean target error of 0.14 (± 0.10). Thus, when trained over a

greater variety of targets or with a wider neuron tuning function, the model’s ability to generalize

increased. Finally, we tested a model with random PDs for the m neurons (as opposed to evenly

distributed PDs) for 30 runs. The only notable difference between the two models was that the

model with randomly distributed MI PDs took an average of 343,330 (± 200,060) iterations to

reach the termination condition.

Discussion

A range of experimental and modeling studies have been used to argue that the primary motor

cortex encodes movement in one or a small number of distinct coordinate frames (e.g., Georgopoulos

et al. 1982; Caminiti et al. 1991; Georgopoulos et al. 1992; Mussa-Ivaldi 1988; Scott and Kalaska
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1997; Ajemian et al. 2000; Miller and Houk 1995; Kakei et al. 1999). These studies rely on evidence

of MI cell activity correlating with some aspect (or aspects) of an executed movement. Emerging

from some of these studies, and from analogies with the robot control domain, is a serial processing

scheme (cf. Dum and Strick 2002; Scott 2000; Loeb et al. 1999) in which an extrinsic representation

of movement (such as a visual cue) is transformed through multiple stages and brain regions and

culminates within MI, where movement may be encoded as an explicit representation of muscle

recruitment levels. However, the results of Kakei et al. (1999) argue against such a specialized

role for MI. In particular, a significant subset of the cells observed in this study exhibited what

Kakei et al. (1999) termed an “extrinsic-like” behavior, in which cell preferred direction (PD) did

not change substantially despite changes in the muscle recruitment pattern. It should be noted

that a large subset of these cells did exhibit a change in the depth of modulation as a function of

wrist configuration, and hence encoded some intrinsic information. In addition, a subset of cells

exhibited “muscle-like” behavior, in which cell PD changed in a fashion similar to muscle PD. The

existence of both extrinsic- and intrinsic-like populations of cells within MI led Kakei et al. (1999)

to support the serial processing scheme and to suggest that a portion of the transformation might

take place within MI itself.

The modeling results presented in this paper suggest that populations of MI neurons that encode

movement in different coordinate spaces can each be directly involved in the recruitment of spinal

motorneurons (we refer to this approach as a parallel processing scheme; figure 1). This perspective

challenges the pure serial processing scheme in which intrinsically-behaving (specifically, muscle-

like) MI cells are the only cortical source of motorneuron input. In addition, experimental evidence

suggests that premotor areas, which encode movement in a more abstract coordinate frame and

likely take part in an earlier stage of the sensorimotor transformation (Kakei et al. 2001, 2003), have

direct connections to spinal motorneurons (Dum and Strick 2002; Luppino et al. 1994). Through

the use of a model of the Kakei et al. (1999) task, we ask about the computational feasibility

of the parallel processing scheme. Rather than implementing a model in which both intrinsic-

and extrinsic-like cells activate muscles, we chose instead to include only the extrinsic-like cells.

Such an approach asks a more interesting question than the former (since intrinsic-like cells should

be capable of driving muscles without the addition of extrinsic-like cells), and also asks a harder

computational question. One benefit of making such a simplification is that it avoids the need for

making specific assumptions about the origins of the muscle-like cell responses. Nevertheless, this

approach is not meant to argue against the existence or utility of intrinsically behaving cells.

Our model shows that a linear transformation exists from a population of extrinsic-like cells

to a muscle activation pattern capable of producing movements to a specified target for the task

described in this paper. In addition to generating appropriate movements, the model also produces

muscle activation patterns similar to the EMG patterns recorded by Hoffman and Strick (1999).

Taken together, these results demonstrate that it is computationally feasible for extrinsic-like MI

neurons to directly command muscle activation patterns, which in turn supports the plausibility of

the parallel processing scheme.
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Interpreting MI Neural Activity

Why do the results of different experimental studies lead to different interpretations of what is

being encoded by MI? Todorov (2000) suggests that because muscle activation patterns (and hence

forces) are affected not only by the descending motor command, but also by the muscle’s length,

change in length, and acceleration of length, the form of the experimental question can lead to

different interpretations about what is being coded by cells of MI. Thus, in some tasks MI activity

appears to reflect extrinsic variables, while in other tasks MI activity appears to reflect intrinsic

variables. In his paper, the issue of multiple representations being simultaneously exhibited by

MI is not addressed (although the issue is also not excluded). An explanation for simultaneous

representations is given by Scott (2003). In his review of the role of MI in goal-directed movements,

Scott (2003) suggests that the different populations of MI neurons, each seemingly representing

different facets of movement, control different elements of the task. For example, in order to move

its arm in a certain way, a primate must also control its posture, different types of spinal neurons,

and a multitude of other variables often ignored in data analysis and modeling work. The different

coordinate frames simultaneously represented in MI neural activity may be due to its control of the

myriad variables necessary to accomplish a task. Although this may be the case, we show that it

is computationally possible for units that behave in one coordinate frame to directly control units

that behave in a different coordinate frame — neurons do not have to correlate their activity with

that of the units they command. Therefore, neurons that behave differently (i.e. extrinsic-like

and muscle-like neurons) can control the same variables (i.e. muscle activation) in parallel. In

addition, Loeb et al. (1999) discusses how having different populations of neurons commanding the

same variables may increase performance and robustness.

Related Modeling Work

Several other modeling studies used error-driven backpropogation to show that a sensorimotor

transformation can be computed by a simple network. Anastasio and Robinson (1989) and Anasta-

sio and Robinson (1990) developed three-layer neural network models of the vestibulo-oculomotor

reflex in which the transformation from the vestibular signals to the appropriate oculomotor re-

sponses were performed by a hidden layer. The authors found that for a network with an equal

number of units in the input, hidden, and output layers, the hidden layer units behaved as tensor

theory would predict: the units were maximally active for a specific direction of eye or head rota-

tion that coincided with the direction of motor response of an output neuron. However, when the

number of hidden layer units was greater than the number of output units, the PDs and activation

magnitudes of the hidden layer units were distributed and did not coincide with the output units.

The latter model produced hidden layer units that behaved much more like the vestibular nucleus

neurons of the cat, which are thought to perform the sensorimotor transformation (Anastasio and

Robinson 1990).

In another study, Xing and Andersen (2000) developed several three-layer network models of

varying complexity; the task for all models was to produce the correct motor output in response
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to the sensory input. The simplest of these models required no coordinate transformations while

the most complicated of these models required both integration of multiple coordinate frames

and coordinate transformations. In models where coordinate transformations were required, the

coordinate spaces of the hidden layer neurons were distributed and did not correspond to any

particular coordinate frame represented in the output array. In addition, the hidden units of the

more complicated models activated output neurons of different coordinate frames simultaneously.

With a large number of neurons, neurons do not have to behave in a stringent manner in order to

perform a coordinate transformation. A simple linear mapping may be sufficient for the necessary

transformation (Sanger 1994). As shown by these studies (Anastasio and Robinson 1989, 1990;

Xing and Andersen 2000) and our model, the characteristics of the activities of neurons (i.e. how

activity varies with aspects of movement) does not necessarily lead to a causal relationship with

the units the neurons command.

Two other studies use models to show that a linear transformation can accomplish a transfor-

mation similar to the one examined in our model. Kakei et al. (2003) present a simple model

which shares some fundamental architectural features with our model. The model shows that the

weighted sum of two cosines, each of the form B cos(θ − PD) and with different PDs, produces

a third cosine, the PD of which depends on the relative weighting of the first two cosines. The

first two cosines represent two neurons that can be described as extrinsic-like modulated by wrist

posture, while the third cosine represents a neuron that can be described as muscle-like. Kakei

et al. (2003) suggest that this linear summation can account for the muscle-like neurons found in

MI. In another modeling study, Salinas and Abbott (1995) hard-wired an array of sensory neurons

(which behave similar to the extrinsic-like MI neurons in Kakei et al. 1999) and an array of motor

neurons (which behave similar to the muscle-like MI neurons in Kakei et al. 1999) and used a

Hebbian learning rule to modify the connections between the two. After training, the sensory array

could directly produce the appropriate activation patterns in the motor array. We view the results

of these studies as lending support to the parallel processing scheme argued for in this paper.

While our model investigates a similar transformation as those presented in Salinas and Abbott

(1995) and Kakei et al. (2003), our approach allows for the use of an optimization procedure to

select the motor output (muscle activation patterns in our model) as opposed to committing to

a predefined representation. Salinas and Abbott (1995) and Kakei et al. (2003) assume that the

output array follows a Gaussian or cosine form; our method allows for significant flexibility in

selecting an arbitrary output pattern. However, in all cases, the simple, linear transformation is

made possible by the sparse representation exhibited by the input and output representations. The

sparse representation in our model is the result of the optimization procedure and was not explicitly

included. In addition, we show how the muscle activation output of our model leads to endpoint

of movement; this creates a plausible motor plant which allows us to use a performance-dependent

optimization procedure.

The gradient descent method used in our model has certain advantages. While Kakei et al. (2003)

show how the linear summation of two extrinsic-like neuron can produce an arbitrary muscle-like

neuron, our model specifically finds how to weigh the contributions of the extrinsic-like neurons to
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produce the appropriate muscle activation patterns. Salinas and Abbott (1995) employ a Hebbian-

style learning rule which, in the limit, tends toward a linear transformation in which connection

strength is predictable from input/output correlation. Unlike the learning rule employed in our

model, this rule reduces the number of effective degrees-of-freedom (DOFs) that are exploitable

in selecting a connection matrix. Although their learning rule does represent one that is more

biologically plausible (in cortex) than the error-driven rule used in our model, it must presume the

existence of an external module that is able to independently drive the sensory inputs and motor

outputs correctly.

Effects of Noise

The introduction of signal dependent noise in our model leads to a harder problem and thus

a reduction in the DOFs afforded by neural redundancy. While a transformation exists from the

extrinsic-like neurons to muscle activation, there are more restrictions on this transformation. For

example, because the total amount of noise to a muscle is minimized when averaged over many

neurons, it is advantageous to recruit many rather than fewer neurons to provide the same input

(cf. Todorov 2002). Thus, in the model with high neural noise, neurons with similar PDs will

tend to activate a muscle the same way (correlation and connection strength will be related to

some degree). However, in a high noise simulation with more MI neurons (192), and thus greater

DOFs, the predictive relationship between corrij and Kij was weaker. In addition, to keep muscle

activity from growing unreasonably (because neurons are cooperating more), the elements of K

must be close to zero, also a property we observe in the model with high neural noise. While some

of the noisy model behavior can be explained by a reduction in the DOFs, some aspects can also be

explained by similarities with stochastic gradient search methods (Hassoun 1995; Hoptroff and Hall

1989), which intentionally introduce noise in gradient descent optimization. One of the advantages

of this method is that it aids in finding a global minimum (Schoen 1991), seen in the unique Ks

found in both of our models with noisy neurons.

Future Work

In order to focus on the issue of coordinate transformations, we kept the level of abstraction of

our model very high. In the model presented in this paper and in Fagg et al. (2002), we make the

assumption that all muscles pull with equal strength in their pulling directions. Fagg et al. (2002)

discusses how muscle behavior changes when relative pulling strengths are changed. In short, the

qualitative nature of muscle recruitment does not change. We also use an abstract representation of

muscle, in which we do not include time-related aspects of muscle action, in our models. However,

the temporal behavior of muscle recruitment is also important (Hoffman and Strick 1999). One area

of future research with this model is to incorporate the temporal aspects of movement generation

and the dependence on spinal and muscular dynamics (Houk et al. 2002).

Our model includes a well defined representation of movement based on neurons recorded in

Kakei et al. (1999). Why do we see structure in neural activity at all? In continuing work, we have
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adapted this model to include MI neurons that are not hard-wired to behave a certain way. We

are examining the effects of local interactions (not included in the model presented in this paper)

and optimization criteria (such as minimization of metabolic energy, Balasubramanian et al. 2001;

Levy and Baxter 1996; Schreiber et al. 2002) in the formation of neural behavior. Preliminary

results show that the local interactions and optimization criteria produce both extrinsic-like and

muscle-like MI neurons which are active simultaneously during the wrist task.
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