Final Exam

• When: 8:00-10:00 am Monday, May 6th
• Location: here

• 1/3: midterm material
 – See lecture notes for midterm preparation
• 2/3: material since midterm

• 1 page of personal notes
• No electronic devices/books/other notes
Final Preparation

• Exam discussion on D2L
 – Post sample questions (and answers)
 – Some may appear on the exam
• In-class exercises that we have done
• Homework assignments and exams from prior years (both midterms and finals)
 – Note that class coverage in previous years has been different
Pre-Midterm Material

• Number Representations (binary, hex)
 – Two’s complement for signed numbers
• Arithmetic: incrementing, decrementing and shifting
• Bit-wise operators
• Analog to digital conversion (and vice versa)
• Microprocessor components
• Digital I/O on the Atmel Mega processors
• Basic circuits: LEDs, analog comparators, resistors
Key Microprocessor Components

- Data bus
- Data memory (RAM)
- Program memory (EEPROM in our case)
- General-purpose registers
- Special-purpose registers
 - Instruction register
 - Program counter
- Instruction decoder
- Arithmetic Logical Unit
Microcontroller I/O

• Special purpose registers in the Atmel Mega processors:
 – DDRx: data direction
 – PORTx: control pin state
 – PINx: read pin state

• Relationship to C code
New Material

- Pulse-width modulation (PWM)
- H-bridges
- Serial communication and the ASCII representation
- Proportional-derivative control
- Timer/counters
- Interrupts and interrupt service routines
- Finite state machines
Timer/Counters

- Prescalers
- Counters (hardware)
 - Timer 0, 2: 8-bit
 - Timer 1, 3, 4, 5: 16-bit
- Interrupts on timerX overflow
- Computing timerX count frequencies/periods
- Computing timerX interrupt frequencies/periods
Interrupts

• What are they?
• Interrupt service routines. Examples:
 – Pulse Width Modulation (PWM) generation (see slides)
 – Producing digital signals of various frequencies (e.g., can introduce software counters, too)
Finite State Machines

• Definition
 – States
 – Events
 – Transition function
 – Outputs
 – State transition diagrams

• FSMs for control
C Code

• Be prepared to read (and possibly fix) simple C code
• If any, you will not write more than a few lines of code
• Look to lecture discussions of code and your projects as you prepare