Project 1
Project 1 Objectives

At the end of this project, you should be able to:

• create simple microcontroller-based circuits,
• read digital information from a switch,
• compute errors between desired and actual state variables, and
• convey information about sensors using a set of LEDs.
Part 1: Circuit

• Mount Arduino board to your solderless breadboard. Mount both to frisbee
• Connect and mount the compass. Compass must be 12” above the ground (at least)
• 4 LEDs in circle: will use to display heading or heading error
• 10-LED bar: will use in next project to display distances
• Add a switch
Part 2: Compass Interface

Must implement:

• int16_t get_heading(void)
 – Returns heading in 10ths of a degree.
 – Range: -1799 to 1800 (0 is North)

• Main function: include a while(1) loop that:
 – Gets the heading
 – Displays the heading (part 3)
 – delay_ms(100)
Part 3: Sensor Processing and Display

Must implement:

• `int16_t compute_heading_error(int16_t heading, int16_t heading_goal)`
 – Returns the difference between `heading` and `heading_goal`
 – Return value range: -1799 to 1800 (0 means heading is at `heading_goal`)

• `void display_heading(int16_t theta)`
 – Changes the 4 LEDs to indicate `theta`
 – Must encode at least 8 different orientations
Part 3: Sensor Processing and Display

Must implement:

• In main function: switch state determines whether you display the heading or the heading error

• You may hard-code the heading goal in your main function
Part 4: Hovercraft

• Mount lift fan
• Start mounting batteries and other lift fans
Demonstration/Presentation

• All group members must be present
• 4-5 slide presentation (see project spec)
• Demonstration
• All group members must be able to answer questions about the hardware or software
• Code review
Code

• Check in code to subversion tree (it should be clear which files are for project 1)
• Code must be documented (see project specification for an example)
Other Components into Subversion Tree

• Presentation file

• Circuit diagram
 – Must use EagleCad
 – Deadline for training is Friday (each group must send one envoy to Andy for this). Also – get hyperterm or “screen” training if you have time
Personal Reports

• Next week you will receive a request from catme to fill out an evaluation of you and your group
• Must be filled in to receive project grade
Group Grade

• 35%: Project implementation
• 30%: Demonstration/presentation of working project (to either of the TA or the instructor)
• 35%: Code documentation and circuit diagram
Personal Programming Components

• Must accumulate at least two during the semester
• To receive credit, you must be the primary designer, implementer and debugger of the component
• Your other group members should still help!
Personal Grade

• For all parts not including the personal programming components: each group member should contribute about equally

• If this is the case, then your personal grade will be equal to the group grade

• If not, then the personal grades will be adjusted appropriately
Next ...

• Finish sign-offs of:
 – Subversion
 – Programming the Atmel processor
 – Group: attach LEDs to the Atmel and control them (could be the same ones for the project)

• Start on project 1